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In this paper, we will use an artificial neural network (ANN) to solve the 

variable order fractional integro-differential algebraic equations (VFIDAEs), 

which is a three-layer feed-forward neural architecture that is formed and trained 

using a backpropagation unsupervised learning algorithm based on the gradient 

descent rule for minimizing the error function and parameter modification 

(weights and biases). When we combine the initial conditions with the ANN 

output, we get a good approximation of the VFIDAE solution. Finally, the analysis 

is complemented by two numerical examples that demonstrate the method 

capability. The collected results show that the suggested strategy is quite 

successful, resulting in superior approximations in these cases. 
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1. Introduction 
Fractional calculus (FC) was successfully implemented in 

science and engineering [1-6]. Clearly the exact solutions of 

the fractional ordinary, partial and integro-differential 

equations are difficult, therefore numerical or even 

approximate algorithm are needed. Various numerical 

techniques have been developed to solve these equations. 

These methods include finite difference, Adomian 

decomposition, variational iteration, Laplace transforms 

and operational matrix methods [7-17]. 

The topic of variable order calculus has recently been 

considered. Samko and Ross (1993) presented the variable 

order derivative in 1993. Several methods for dealing with 

numerical calculations of both variable order ordinary and 

integro-differential equations have been presented. [18]. 

Because of its superior learning capacity, different 

machine intelligence processes, particularly artificial neural 

network (ANN) approaches, have emerged as a potent 

methodology for solving a range of real-world issues in 

recent years [19,20].  

The advantages of the ANN technique, such as learning, 

adaptiveness, error computation, and fault-tolerance, have 

received a lot of attention [21-23]. The research of ANN for 

solving ordinary and partial differential equations is now 

receiving a lot of interest [24-29]. 

The FIDAEs are a generalization of integral and integro-

differential equations with algebraic constraints which arise 

in the problem of evaluation of a chemical reaction within a 

small cell [30], dynamic processes in chemical reactors 

[31], identification of memory kernels in heat conduction 

and viscoelasticity [32] and etc. [33-37]. 

The purpose of this paper is to find numerical solution 

of variable order fractional integro-differential algebraic 

equations (VFIDAEs) using ANN. 

Although several authors have looked into analytical 

and numerical methods for solving integral and integer 

order integro-differential equations, developing appropriate 

methods for solving variable fractional order integro-

differential algebraic equations is, as far as we know, a new 

topic in the literature. We use an ANN approach to solve 

VFIDAEs since analytical techniques cannot always 

provide the precise solution. 

 

2. Preliminaries 
In this section, we recall some definitions and general 

concepts related to fractional calculus which may be used 

further in this paper [38-41]. 

 

Definition 2.1 (Conformable variable-order fractional 

derivative). The (left) conformable variable-order 

fractional derivative from a of a function 

ƒ: [a, ∞) → R of order α: [a, ∞) → (0, 1] is defined by: 

𝐶𝐷𝑎
𝛼(𝑡)

𝑓(𝑡) = lim
𝜀→0

𝑓(𝑡+𝜀(𝑡−𝑎)1−𝛼(𝑡))−𝑓(𝑡)

𝜀
, 𝑡 > 𝑎   

when a = 0, ones write 𝐶𝐷𝛼(𝑡) . 
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Let α: [a,∞) → (0, 1] and 𝐶𝐷𝑎
𝛼(𝑡)

 denotes the 

conformable fractional derivative. Then ∀ t > a, the 

following properties are holds 

1. 𝐶𝐷𝑎
𝛼(𝑡)(𝑘𝑓 + 𝑑g) = 𝑘𝐶𝐷𝑎

𝛼(𝑡)(𝑓) +

𝑑𝐶𝐷𝑎
𝛼(𝑡)(g) ∀ 𝑘, 𝑑 ∈ ℝ. 

2. 𝐶𝐷𝑎
𝛼(𝑡)(𝑓g) = 𝑓𝐶𝐷𝑎

𝛼(𝑡)(g) + g𝐶𝐷𝑎
𝛼(𝑡)(𝑓). 

3. 𝐶𝐷𝑎
𝛼(𝑡)

(
𝑓

g
) =

g𝐶𝐷𝑎
𝛼(𝑡)

(𝑓)−𝑓𝐶𝐷𝑎
𝛼(𝑡)

(g)

g2  𝑖𝑓 g ≠ 0. 

4. If ƒ is differentiable, then 𝐶𝐷𝑎
𝛼(𝑡)(𝑓) = (𝑡 − 𝑎)1−𝛼(𝑡) 𝑑𝑓

𝑑𝑡
. 

 

3. The Approach  
Let us consider the following (VFIDAEs) 

𝐶𝐷𝑎
𝛼𝑖(𝑥)

𝑢𝑖(𝑥) = ∑ ∫ 𝑘𝑖(𝑥, 𝑡) 𝑢𝑖(𝑡)𝑑𝑡 +
𝑥

0
𝑛
𝑖=1

𝑓𝑖(𝑥),    ∀ 𝑖 = 1,2, … , 𝑛 − 1 …(1) 

such that: 

𝑔(𝑥, 𝑢1, 𝑢2, … , 𝑢𝑛) = 0   …(2) 

With the initial condition: 

𝑢𝑖(𝑥0) = 𝑎𝑖  , 𝑖 = 1,2, … , 𝑛 …(3) 

Let 𝑢𝑖𝑁(𝑥, 𝛺) represents the approximate solution of ANN 

model with  is a vector containing corresponding weights 

and x is the input data. Problem (1)-(3) is transformed into 

the following problem:  

𝐶𝐷𝑎
𝛼𝑖(𝑥)

𝑢𝑖𝑁(𝑥, 𝛺) = ∑ ∫ 𝑘𝑖(𝑥, 𝑡) 𝑢𝑖𝑁(𝑡, 𝛺)𝑑𝑡 +
𝑥

0
𝑛
𝑖=1

𝑓𝑖(𝑥) , ∀  𝑖 = 1,2, … , 𝑛 − 1   …(4) 

such that: 

𝑔(𝑥, 𝑢1𝑁(𝑥, 𝛺), 𝑢2𝑁(𝑥, 𝛺), … , 𝑢𝑛𝑁(𝑥, 𝛺)) = 0  …(5) 

The approximate solution of ANN may be written as 

𝑢𝑖𝑁(𝑥, 𝛺) = 𝑎𝑖 + (𝑥 − 𝑥0)𝑁𝑖(𝑥, 𝛺), 𝑖 = 1,2, … , 𝑛…(6) 

The first term 𝑎𝑖 in the right-hand side does not contain 

adaptable parameters and satisfies only initial/boundary 

conditions, whereas the second term (𝑥 − 𝑥0)𝑁𝑖(𝑥, 𝛺) 

contain the single output 𝑁𝑖(𝑥, 𝛺) of feed forward neural 

network with input x and vector containing the 

corresponding weights 𝛺 .  

Consider a three-layer ANN with one input node x, one 

hidden layer consisting of m number of nodes and one 

output node 𝑁𝑖(𝑥, 𝛺).  

The output 𝑁𝑖(𝑥, 𝛺) is expressed as: 

𝑁𝑖(𝑥, 𝛺) = ∑ 𝑣𝑖𝑗𝜑(𝑧𝑖𝑗)𝑚
𝑗=1 , ∀ 𝑖 = 1,2, … , 𝑛   …(7) 

where 𝑧𝑖𝑗 = 𝑤𝑖𝑗𝑥 + 𝑢𝑖𝑗, 𝑤𝑖𝑗 represents the weight from the 

input to the 𝑗𝑡ℎ  hidden unit, 𝑣𝑖𝑗  represents the weight from 

the  𝑗𝑡ℎ  hidden unit to the output unit, and 𝑢𝑖𝑗 represents the 

bias for the 𝑗𝑡ℎ hidden node.  

In this investigation we have considered the sigmoid 

function 𝜑(𝑥) =
1

1+𝑒−𝑥 as an activation function. 

The approximate solution 𝑢𝑖𝑁(𝑥, 𝛺)  satisfies the initial 

conditions and the error function may be computed as 

follows: 

𝐸𝑖(𝑥𝑙 , 𝛺) = 𝐶𝐷𝑎
𝛼𝑖(𝑥𝑙)

𝑢𝑖𝑁(𝑥𝑙 , 𝛺) −

∑ ∫ 𝑘𝑖(𝑥𝑙 , 𝑡) 𝑢𝑖𝑁(𝑡, 𝛺)𝑑𝑡 −
𝑥𝑙

0
𝑛
𝑖=1

𝑓𝑖(𝑥𝑙) , ∀𝑖 = 1,2, … , 𝑛 − 1  …(8) 

and   

𝐸𝑛(𝑥𝑙 , 𝛺) = 𝑔(𝑥𝑙 , 𝑢1𝑁(𝑥𝑙 , 𝛺), 𝑢2𝑁(𝑥𝑙 , 𝛺), …, 
𝑢𝑛𝑁(𝑥𝑙 , 𝛺)) …(9) 

where 𝑥𝑙  , 𝑙 = 1,2, … , ℎ are collocation points in (0, T]. 

We now construct an unconstrained minimization 

problem related to the system (1)-(3) as: 

Minimize ∑ ∑ [𝐸𝑖(𝑥𝑙 , 𝛺)]2𝑛−1
𝑖=1

ℎ
𝑙=1 + ∑ [𝐸𝑛(𝑥𝑙 , 𝛺)]2ℎ

𝑙   

 …(10) 

The minimization problem (10) can be written as follows  

Minimize 𝐸(𝑥, 𝛺) =
1

2
∥  𝜓(𝑥, 𝛺) ∥2

2   …(11) 

where: 

 𝜓(𝑥, 𝛺) = [𝐸1(𝑥1, 𝛺), 𝐸1(𝑥2, 𝛺), … , 𝐸1(𝑥𝑙 , 𝛺), 
𝐸2(𝑥1, 𝛺), 𝐸2(𝑥2, 𝛺), … , 𝐸2(𝑥𝑙 , 𝛺), …, 
𝐸𝑛(𝑥𝑙 , 𝛺)]𝑇  

 

4. Error Backpropagation Learning Algorithm 

(EBPLA) 
The EBPLA will be used to crush the network constraints 

(weights) and for minimizing the total error function 

𝐸(𝑥, 𝛺) of the ANN. Here the gradient descent method [42] 

has been used for modifying the parameters. 

𝑤𝑖𝑗
𝑘+1 = 𝑤𝑖𝑗

𝑘 + ∆𝑤𝑖𝑗
𝑘 = 𝑤𝑖𝑗

𝑘 + (−𝜂
𝜕𝐸(𝑥,𝛺)𝑘

𝜕𝑤𝑖𝑗
𝑘 )  …(12) 

𝑣𝑖𝑗
𝑘+1 = 𝑣𝑖𝑗

𝑘 + ∆𝑣𝑖𝑗
𝑘 = 𝑣𝑖𝑗

𝑘 + (−𝜂
𝜕𝐸(𝑥,𝛺)𝑘

𝜕𝑣𝑖𝑗
𝑘 )  …(13) 

where 𝜂 is the learning parameter, k is an iteration step that 

is used to update the weights, and 𝐸(𝑥, 𝛺)  is the total error 

function. 

 

5. Structure of Multi-Layer ANN Model for 

VFIDAEs  
We consider a three-layer ANN model for the present 

problem given by equations (1)-(3). The construction of 

neural network architecture, which consists of an input layer 

with single input node and a bias, one hidden layer having 

five hidden nodes and output layer contains one output 

node. Initial weights 𝑤𝑗   from input to hidden layer and 𝑣𝑗 

from hidden to output layer are considered as random. 

Architecture of the three layers ANN with five hidden 

nodes, single input and output layer (with one node) is 

shown in Figure 1. 
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Figure 1. Proposed ANN architecture. 

 

6. Computation of the Gradient for VFIDAEs 
For minimizing the error function 𝐸(𝑥, 𝛺) that is to update 

the network parameters (weights), we differentiate 𝐸(𝑥, 𝛺) 

with respect to the parameters. Thus, the gradient of 

network output with respect to their inputs is calculated as 

follows. 

The conformable variable order fractional derivative of  

𝑁𝑖(𝑥, 𝛺) is given by: 

𝐶𝐷𝑎
𝛼𝑖(𝑥)

𝑁𝑖(𝑥, 𝛺) = 𝑣𝑖𝑗𝜑′(𝑧𝑖𝑗)𝑤𝑖𝑗𝑥1−𝛼𝑖(𝑥)   …(14) 

Let 𝐶𝐷𝑎
𝛼𝑖(𝑥)

𝑁𝑖(𝑥, 𝛺) = 𝑁𝑖𝛽 represents the derivative of the 

network output with respect to its inputs. The derivative of 

𝑁𝑖𝛽  with respect to other parameters may be found as 

(according to conformable variable order fractional 

derivative rules)  
𝜕𝑁𝑖𝛽

𝜕𝑤𝑖𝑗
= 𝑣𝑖𝑗𝑥1−𝛼𝑖(𝑥)(𝜑′(𝑧𝑖𝑗) + 𝜑′′(𝑧𝑖𝑗)𝑤𝑖𝑗𝑥)   …(15) 

𝜕𝑁𝑖𝛽

𝜕𝑣𝑖𝑗
= 𝑤𝑖𝑗𝑥1−𝛼𝑖(𝑥)𝜑′(𝑧𝑖𝑗) …(16) 

𝜕𝑁𝑖𝛽

𝜕𝑢𝑖𝑗
= 𝑤𝑖𝑗𝑣𝑖𝑗𝑥1−𝛼𝑖(𝑥)𝜑′′(𝑧𝑖𝑗)   …(17) 

Here: 

𝑁𝑖(𝑥, 𝛺) = ∑ 𝑣𝑖𝑗𝜑(𝑧𝑖𝑗)𝑚
𝑗=1  and  𝑧𝑖𝑗 = 𝑤𝑖𝑗𝑥 + 𝑢𝑖𝑗 

From (6) we have (by differentiating) 

𝐶𝐷𝑎
𝛼𝑖(𝑥)

𝑢𝑖𝑁(𝑥) = (𝑥 − 𝑥0)1−𝛼𝑖(𝑥)𝑁𝑖(𝑥, 𝛺) + (𝑥 −

𝑥0)𝐶𝐷𝑎
𝛼𝑖(𝑥)

𝑁𝑖(𝑥, 𝛺))  …(18) 

After simplifying the above equation, we get 

𝐶𝐷𝑎
𝛼𝑖(𝑥)

𝑢𝑖𝑁(𝑥) = (𝑥 − 𝑥0)1−𝛼𝑖(𝑥)𝑁𝑖(𝑥, 𝛺) + (𝑥 −

𝑥0)(𝑤𝑖𝑗𝑣𝑖𝑗𝜑′(𝑧𝑖𝑗)𝑥1−𝛼𝑖(𝑥))  …(19) 

 

7. Algorithm 
Step 1. Randomly select the initial values of adjustable 

parameters Ω𝑠  , 𝑠 = 1,2, … , 𝑛(𝑛𝑚)  and select an error 

tolerance parameter 𝜀 > 0. 

Step 2. Initialize the input vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑙]. 
Step 3. Calculate the output values  𝑁𝑖(𝑥, Ω)  , 𝑖 = 1,2, … , 𝑛 

using equation (7).  

Step 4. Calculate the error function 𝐸(𝑥, Ω) using equation 

(11). 

Step 5: Update the parameters using unsupervised 

backpropagation algorithm Ω𝑠
𝑘+1 = Ω𝑠

𝑘 + (−𝜂
𝜕𝐸(𝑥)𝑘

𝜕Ω𝑠
𝑘 ).  

Step 6: If  𝐸(𝑥, Ω) ≤ 𝜀, then go to step 7 else go to step 2.  

Step 7: The last parameters will be stored after the learning 

algorithm finished. 
 

The diagram of the constructing the learning algorithm 

for the proposed approach is shown in Figure 2. 
 

 
Figure 2. Diagram of the constructing the learning 

algorithm for the approach. 
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8. Numerical Examples 
The capability of the approach described in the preceding 

part was demonstrated by applying it to some tested 

examples. 

The approximate results by ANN model are compared 

with exact solutions of each example in order to show the 

powerfulness of the proposed method. 

 

Example 8.1. Consider the following VFIDAEs:  

𝐶𝐷𝑎
𝛼(𝑥)

𝑢(𝑥) = 𝑥 ∫ 𝑢(𝑡)𝑑𝑡 + ∫ 𝑣(𝑡)𝑑𝑡 + 𝑓(𝑥)
1

0

1

0
 …(20) 

0 = 𝑢(𝑥) + 𝑣(𝑥) − 𝑒−𝑥 − sin 𝑥  …(21) 

The function f (x) is elected such that the closed form of the 

problem is 𝑢(𝑥) = 𝑒−𝑥 , 𝑣(𝑥) = sin 𝑥  and the initial 

conditions 𝑢(0) = 1, 𝑣(0) = 0 . 

The corresponding ANN approximate solution is 

expressed as: 

𝑢𝑁(𝑥, 𝛺) = 1 + 𝑥𝑁1(𝑥, 𝛺)  

and  

𝑣𝑁(𝑥, 𝛺) = 𝑥𝑁2(𝑥, 𝛺)  

Next, we construct the error functions: 

𝐸1(𝑥, 𝛺) = 𝐶𝐷𝑎
𝛼(𝑥)

𝑢𝑛(𝑥, 𝛺) − 𝑥 ∫ 𝑢𝑛(𝑡, 𝛺)𝑑𝑡 −
1

0

∫ 𝑣𝑁(𝑡, 𝛺)𝑑𝑡 − 𝑓(𝑥)
1

0
    …(22) 

and  

𝐸2(𝑥, 𝛺) = 𝑢𝑛(𝑥, 𝛺) + 𝑣𝑁(𝑡, 𝛺) − 𝑒−𝑥 − sin 𝑥  …(23) 

Therefore  

𝐸(𝑥, 𝛺) =
1

2
∑ {(𝐸1(𝑥𝑖 , 𝛺))2 + (𝐸2(𝑥𝑖 , 𝛺))

2
}10

𝑖=1   …(24) 

The network is trained for ten equidistant points in [0, 1] 

and five hidden nodes. After more than 30000 iterations we 

get the ANN solutions. Comparison between exact and 

ANN solutions for  (𝑥)= 0.5 ,  (𝑥)= 1 −
𝑥

2
 and 

(𝑥)= 0.97 − 0.03 cos (
𝑥

10
)  are cited in Figures 3-5 

respectively. The values of the maximum error and the 

mean squared errors for some different values of (x) are 

listed in Table 1. One may see that the approximate 

solutions from the proposed ANN method have excellent 

agreement with the exact solutions for different values of 

(x). 

 

 
Figure 3. Exact and ANN results for  (𝑥)= 0.5. 

 

 
Figure 4. Exact and ANN results for  (𝑥)= 1 −

𝑥

2
. 
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Figure 5. Exact and ANN results for  (𝑥)= 0.97 − cos

𝑥

10
. 

 

Table 1. The maximum error and the MSE of Example 8.1. 

α(x) Max. Error MSE of U MSE of V 

0.5 43.499982 10−  63.7137 10−  51.5248 10−  

1 −
𝑥

2
 44.999940 10−  63.0907 10−  

51.6361 10−  

0.97 − cos
𝑥

10
 49.998299 10−  63.1004 10−  53.4722 10−  

 

Example 8.2. Consider the following VFIDAEs:  

𝐶𝐷𝑎
𝛼(𝑥)

𝑢(𝑥) = ∫ 𝑢(𝑡)𝑑𝑡 + ∫ 𝑣(𝑡)𝑑𝑡 + 𝑓(𝑥)
1

0

1

0
  …(25) 

(𝑢(𝑥))2 +
1

2
𝑣(𝑥) = 𝑒−2𝑥 +

sin 𝑥

2
 …(26) 

With exact solution  𝑢(𝑥) = 𝑒−𝑥 , 𝑣(𝑥) = sin 𝑥, and initial 

condition 𝑢(0) = 1, 𝑣(0) = 0. 

Suppose: 

𝑢𝑁(𝑥, 𝛺) = 1 + 𝑥𝑁1(𝑥, 𝛺), 𝑣𝑁(𝑥, 𝛺) = 𝑥𝑁2(𝑥, 𝛺)  

So: 

𝐸1(𝑥, 𝛺) = 𝐶𝐷𝑎
𝛼(𝑥)

𝑢𝑛(𝑥, 𝛺) − ∫ 𝑢𝑛(𝑡, 𝛺)𝑑𝑡 −
1

0

∫ 𝑣𝑁(𝑡, 𝛺)𝑑𝑡 − 𝑓(𝑥)
1

0
  …(27) 

and 

𝐸2(𝑥, 𝛺) = (𝑢𝑛(𝑥, 𝛺))2 +
1

2
𝑣𝑁(𝑡, 𝛺) − 𝑒−2𝑥 −

1

2
sin 𝑥 

 …(28) 

Hence: 

𝐸(𝑥, 𝛺) =
1

2
∑ {(𝐸1(𝑥𝑖 , 𝛺))2 + (𝐸2(𝑥𝑖 , 𝛺))

2
}10

𝑖=1   …(29) 

The ANN solution is obtained after more than 40000 

iterations. Comparison between the exact and ANN 

solutions for  (𝑥)= 0.5 ,  (𝑥)= 1 −
𝑥

2
 and  (𝑥)= 0.97 −

0.03 cos (
𝑥

10
)  are cited in Figures 6-8 respectively. The 

values of the maximum error and the mean squared errors 

for some different values of (x) are listed in Table 2. 
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Figure 6. Exact and ANN results for  (𝑥)= 0.5. 

 

 
Figure 7. Exact and ANN results for  (𝑥)= 1 −

 𝑥 

2
. 

 

 
Figure 8. Exact and ANN results for  (𝑥)= 0.97 − cos

𝑥

10
. 
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Table 2. The maximum error and the MSE of Example 8.2. 

α(x) Max. Error MSE of U MSE of V 

0.5 59.999190 10−  66.2693 10−  
52.9309 10−  

1 −
𝑥

2
 59.999381 10−  

51.7025 10−  
56.9724 10−  

0.97 − cos
𝑥

10
 44.999943 10−  

69.8193 10−  
41.3141 10−  

 

9. Conclusions 
This paper presents a new approach to solve VFIDAEs by 

using ANN model. Correctness of the proposed method has 

been examined by solving various VFIDAEs. Moreover, the 

algorithm is unsupervised and error backpropagation 

algorithm is used to minimize the error function. Consistent 

initial weights from input to hidden and from hidden to 

output are random. One may see from the graphs that the 

approximate solutions by ANN is effective. Finally, the 

ANN method is both good and simple in terms of 

computing. 
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