Contra $\omega_{\text {pre }}$-Continuous Functions

Waqas B. Jubair and Haider J. Ali*
Department of Mathematics College of Science, Mustansiriyah University, Baghdad-Iraq

Article's Information	Abstract
Received:	In this paper, we present some concepts related to $\omega_{\text {pre }}$-open set and study
19.04 .2022	some of its basic properties, facts and some examples are given to illustrate our
Accepted:	
09.05 .2022	
Published:	
30.09 .2022	
Keywords:	
Pre-open	
ω-Open set	
$\omega_{\text {pre }}$-Open sets	
Contra continuous functions	

DOI: 10.22401/ANJS.25.3.07
Corresponding author: drhaiderjebur@uomustansiriyah.edu.iq

1. Introduction

In this work, $\left(X, \tau_{X}\right),\left(Y, \tau_{Y}\right)$ are supposed to be topological spaces (for short X and Y), which have no separation exams except whenever state. For a subset A its interior and closure are denoted by $\operatorname{int}(A)$ and $\operatorname{cl}(A)$, respectively. Also, A is said b-open if $A \subseteq \operatorname{int}(\operatorname{cl}(A)) \cup \operatorname{cl}(\operatorname{int}(A))$ and A is ω-open if for every point in it, there is an open set U containing x with $U-A$ is countable [6], while A is $\omega_{\text {pre }}{ }^{-}$ open (shortly ω_{p}-open) whenever replacing the open set to be pre-open [7] and every pre-open, ω-open set is ω_{p}-open. The ω_{p}-closed and ω_{p}-interior defined as in $\operatorname{cl}(A)$ and $\operatorname{int}(A)$, respectively. Dontchev introduced the notion of contra continuity. He defined a function $f: X \longrightarrow Y$ contra continuous if the inverse image of V is closed in X whenever V is open set in Y is contra continuous [4]. A function $f: X$ $\longrightarrow Y$ is said to be almost contra ω-continuous [2] (resp.; almost contra-precontinuous [5]) if $f(V)$ is ω-closed (resp.; pre-closed) for every regular open set V in Y.

2. Contra Continuous Via $\omega_{\boldsymbol{p}}$-Open Sets

Dontchev introduced the notion of contra continuity. He defined a function $f: X \rightarrow Y$ is contra continuous if the inverse image of each open set in Y is closed in X. By the same context, we can define the following:

Definition 2.1, [2]. A function $f: X \rightarrow Y$ is called ω continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists ω-open set U containing x, such that $f(x) \subseteq U$.

Definition 2.2. A function $f: X \rightarrow Y$ is said to be contra ω_{p} continuous if the inverse image of open set in Y is ω_{p}-open in X.

Remark 2.1. (1) Every contra ω-continuous function contra ω_{p}-continuous.
(2) Every contra continuous function is contra ω_{p} continuous but the convers not true.

Example 2.1. Let the identity function $f:\left(Z, \tau_{\text {ind }}\right) \rightarrow$ $\left(Z, \tau_{D}\right)$, then f is contra ω_{p}-continuous but not contra continuous.

Proposition 2.1. A function $f: X \rightarrow Y$ is contra ω_{p} continuous if and only if for every closed subset F of Y, then $f^{-1}(F)$ is ω_{p} open in X.
Proof. Given f is contra ω_{p}-continuous function and F is closed in Y then $Y-F$ is open in Y but f is contra ω_{p} continuous, then $f^{-1}(Y-F)$ is ω_{p}-closed, but $x-\left(f^{-1}(Y-F)=f^{-1}(F)\right.$ is ω_{p} open set.

Conversely, by the same way of above.

Lemma 2.1. A subset U of space X is ω_{p}-open if and only if every point in U is ω_{p}-interior point to U.

Lemma 2.2, [6]. The following properties hold for subsets
A, B of a space X :
(1) $x \in \operatorname{Ker}(A)$ if and only if $A \cap F \neq \varnothing$ for only closed set F containing x.
(2) $A \subseteq \operatorname{Ker}(A)$ and $A=\operatorname{Ker}(A)$ if A is open in X.
(3) if $A \subseteq B$, then $\operatorname{Ker}(A) \subseteq \operatorname{Ker}(R)$.

Al-Nahrain Journal of Science

ANJS, Vol. 25 (3), September, 2022, pp. 40-42

Proof. Let U be ω_{p}-open set and $x \in U$, then U an $\omega_{p^{-}}$ neighborhood for each it's point.

Conversely, for each $x \in U$, we get ω_{p}-open set V_{x} containing x and contained in U, that is $U=\mathrm{U}_{\mathrm{i} \in \Lambda} U_{i}$, but the arbitrary union of ω_{p}-open sets is also ω_{p} open. so U is ω_{p}-open.

Proposition 2.2. A function $f: X \rightarrow Y$ is contra ω_{p} continuous if for each $x \in Z$ and each closed set F containing $f(x)$, there exists ω_{p}-open set U containing x such that $f(U) \subseteq F$.
Proof. Assume that f is contra ω_{p}-continuous and F is closed set containing $f(x)$ for some $x \in X$, so that $x \in$ $f^{-1}(F)$, then $f^{-1}(F)$ is ω_{p}-open set in Z (by Proposition 2.2). If $f^{-1}(F)=U$, then U is ω_{p} open set containing x, such that $f(U)=f\left(f^{-1}(F)\right) \subset F$.

Conversely, let F be any closed set of Y if $f^{-1}(F)=\emptyset$, then there is nothing to prove. Suppose that $f^{-1}(F) \neq \varnothing$ and $x \in f^{-1}(F)$, then $f(x) \in f f^{-1}(F) \subset F$ which implies that there exists ω_{p}-open set U containing x, such that $x \in$ $U \subset f^{-1}(F)$. So $x \in \omega_{p}-\operatorname{int}\left(f^{-1}(F)\right)$. Thus $f^{-1}(f)$ is ω_{p}-open set in x.

Proposition 2.3. If a function $f: X \rightarrow Y$ is contra ω_{p} continuous, then $f\left(\omega_{p}-c l(A)\right) \subseteq \operatorname{Ker}(f(A))$, for every subset A of X.
Proof. Let A be any subset of X and assume that $Y \notin$ Ker $(f(A))$ then there is a closed set F containing $f(x)$ in Y such that $f(A) \cap F=\emptyset$, then $A \cap f^{-1}(F)=\emptyset$, but f is contra ω_{p}-continuous then by Proposition 2.2, $f^{-1}(F)$ is ω_{p} open set containing x so x is not ω_{p}-adherent point to A that is, $\mathrm{x} \notin \omega_{p} c l(A) \mathrm{Y}=\mathrm{f}(\mathrm{x}) \notin \mathrm{f}\left(\omega_{p} c l(A)\right)$. Therefore $f\left(\omega_{p} c l(A)\right) \subseteq \operatorname{Ker}(f(A))$.

Proposition 2.4. A function $f: X \rightarrow Y$ is ω_{p}-continuous if and only if for each $x \in X$ and each open set V containing $f(x)$, there exists ω_{p}-open set U containing x, such that $f(U) \subseteq V$.
Proof. Assume that f is ω_{p}-continuous and V is open set containing $f(x)$, for some $x \in X$, so that $x \in f^{-1}(V)$ then $f^{-1}(V)$ is ω_{p}-open set in X (since f is ω_{p} continuous) now put $f^{-1}(V)=U$ with $x \in U$ then U is ω_{p} open set containing x, such that $f(U)=f\left(f^{-1}(V)\right) \subset V$. Hence $f(U) \subset V$.

Conversely; let V beany open set of Y, if $f^{-1}(V)=\emptyset$, then there is nothing to prove. Suppose $f^{-1}(V) \neq \varnothing$ and $x \in f^{-1}(V)$, then $f(x) \in f\left(f^{-1}(V)\right) \subset V$, then there exists ω_{p} open set U containing x such that $x \in U \subset f^{-1}(F)$, so $x \in \omega_{p}-\operatorname{int}\left(f^{-1}(V)\right)$ so (by Lemma 2.1) $f^{-1}(V)$ is $\omega_{p^{-}}$ open set in X.

Proposition 2.5. A function $f: X \rightarrow Y$ is contra ω_{p} continuous, then f is ω_{p} - continuous whenever Y is regular.
Proof. Let V be an open set of Y containing $f(x)$ for some $x \in X$, then there is an open set W in Y, such that $f(x) \in$ $W \subseteq \bar{W} \subseteq V$ (since Y regular so by Proposition 2.2, we obtain ω_{p}-open set U containing x with $f(U) \subset c l(W) \subset$ V. Therefore f is ω_{p}-continuous.

Proposition 2.6. Let $f: X \rightarrow Y$ be a contra ω_{p} continuous function then Y is not a discrete space, whenever X is $\omega_{p^{-}}$ connected space.
Proof. Assume the domain is discrete and there is a nonempty clopen set A of it, then $f^{-1}(A)$ is nonempty proper ω_{p}-open and ω_{p}-closed subset of X so X is not ω_{p} - connected space, which is a contrary with our hypothesis.

Proposition 2.7. If $f: X \rightarrow Y$ is surjective contra ω_{p}-continuous function and X is ω_{p}-connected space, then Y is connected.
Proof. Suppose there are two nonempty disjoint open sets V_{1} and V_{2} and there union equal to Y. So $f^{-1}\left(V_{1}\right)$ and $f^{-1}\left(V_{2}\right)$ are disjoint ω_{p}-open sets in X and their union equal to X. So X is ω_{p}-disconnected, which is contrary with our hypothesis, therefor Y is connected.

Definition 2.3. A function f from X into Y is said to be almost contra ω_{p}-continuous if $f^{-1}(V) \in \omega_{p}$-closed set in X, for every regular open V in Y.

Definition 2.4. A subset A of space X is said to be regular open if $A=\bar{A}^{\circ}$.

Theorem 2.1. Let f be a function from X into Y, then the following are equivalents:
(1) f is almost contra ω_{p}-continuous.
(2) $f^{-1}(F)$ is ω_{p} open in X, whenever F is regular closed in Y.
(3) For every $x \in X$ and every regular closed set F containing $f(x)$ in Y, there exists an ω_{p}-open U in X containing x with $f(U) \subseteq F$.
(4) For every regular open set V non containing $f(x)$ in Y for some $x \in X$, there is an ω_{p}-closed set K in X with $x \notin$ K, such that $f^{-1}(V) \subseteq K$.
Proof. (1) \rightarrow (2) let F be a regular closed set in Y then F^{c} is regular open in Y, but by our assumption that f is almost contra ω_{p}-continuous. So we get $X-f^{-1}(F)=f^{-1}(Y-$ $F)$ is ω_{p}-closed in X and hence $X-\left(X-f^{-1}(F)\right)=$ $f^{-1}(F)$ is ω_{p}-open in X.

We can prove (2) \rightarrow (1) by the same way to a bove.
(2) \rightarrow (3) assume F be regular closed set in Y containing $f(x)$ in Y for some $x \in X$ and so by (2) $f^{-1}(F) \omega_{p}$-open in

Al-Nahrain Journal of Science

ANJS, Vol. 25 (3), September, 2022, pp. 40-42
X containing x. Put $f^{-1}(F)=U$, then $f(U)=$ $f f^{-1}(F) \subseteq F$.
(3) \rightarrow (2) let F be any regular closed set in codomain and x belong to $f^{-1}(F)$ so $f(x) \in f f^{-1}(F) \subset F$, then by (3) there is ω_{p}-open set U_{x} containing x, such that $f\left(U_{x}\right) \subset F$, then $U_{x} \subseteq f^{-1}\left(f\left(U_{x}\right)\right) \subset f^{-1}(F)$, so x is ω_{p}-interior point to $f^{-1}(F)$ but x is an arbitrary, so $f^{-1}(F)$ is ω_{p}-open set (by Lemma 2.1).
(3) \rightarrow (4) assume V is a regular open set with $f(x) \notin V$ in a space Y then $Y-V$ is a regular closed with $f(x) \in Y-$ V, so by (3) there is ω_{p}-open set U in X with $x \in U$ and $f(U) \subset Y-V U \subseteq f^{-1} f(U) \subset f^{-1}(Y-V)=f^{-1}(Y)-$ $f^{-1}(V)=X-f^{-1}(V)$ that $U \subseteq X-f^{-1}(V) X-(X-$ $f^{-1}(V) \subseteq X-U f^{-1}(V) \subseteq X-U$. Put $H=X-U$, so H is ω_{p}-closed set in X with $x \notin H$.

Definition 2.5. A space X is said to be:
(1) ω_{p}-compact if for all ω_{p} open cover of X has a finite subcover.
(2) Countably ω_{p}-compact if every countable cover of X through ω_{p}-open sets has finite subcover.
(3) ω_{p}-Lindelof if for all ω_{p}-open cover of X has a countable subcover.
(4) S-Lindelof [6] if for all cover of X by regular closed sets has a countable subcover.
(5) countably S-closed [15] if for all countable cover of X by regular closed sets has a finite subcover.
(6) S-closed [16] if for all regular closed cover of X has a finite subcover.

Theorem 2.2. Let f be a function from X into Y be an almost contra ω_{p}-continuous surjection. The following statements are holds:
(1) If X is ω_{p}-compact, then Y is S-closed.
(2) Y is S-Lindelof whenever X is ω_{p}-Lindelof.
(3) Y is countably S-closed whenever X is countably $\omega_{p^{-}}$ compact.
Proof. If (1) hold then the other also holds.
Let $\left\{V_{\alpha}: \alpha \in I\right\}$ be any regular closed cover of Y. Since we have f is almost contra- ω-continuous, then $\left\{f^{-1}\left(V_{\alpha}\right) \alpha \in\right.$ $I\}$ is an ω_{p}-open contra of X and hence there is a finite subset I_{\circ} of I, such that $X=U\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I_{\circ}\right\}$, so we have $Y=U\left\{V_{\alpha}: \alpha \in I_{\circ}\right\}$ and Y is S-closed.

Definition 2.6. The space X we call it:
(1) ω_{p}-closed compact if every ω_{p}-closed cover of X has a finite subcover.
(2) Countably ω_{p}-closed compact if every countable contra of X by ω_{p} closed sets has a finite subcover.
(3) ω_{p} Closed-Lindelof if for all cover of X by ω_{p} closed sets has a countable subcover.
(4) Nearly compact if for all regular open cover of X has a finite subcover.
(5) Nearly countably compact if for all countable cover of X by regular open sets has a finite subcover.
(6) Nearly Lindelof if for all cover of X by regular open sets has a countably subcover.

Theorem 2.3. Let f be a function from X into Y and f is almost contra- ω_{p} - continuous surjection. The following statements are hold:
(1) Y is nearly compact if X is ω_{p}-closed compact.
(2) Y nearly lindelof if X is ω_{p}-closed lindellof.
(3) Y is nearly countably compact if X is countably ω_{p} closed compact.
Proof. If (1) holds then the other holds also, let $\left\{V_{\alpha}: \alpha \in I\right\}$ be regular open cover of Y, but f is almost contra- ω_{p} continuous, then $\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I\right\}$ is an ω_{p}-closed cover of X. Since X is ω_{p} closed compact, then there exists a finite subset I_{\circ} of I with $X=\cup\left\{f^{-1}\left(V_{\alpha}\right) \alpha \in I_{\circ}\right\}$ thus, we get $Y=$ $\cup\left\{V_{\alpha}: \alpha \in I_{0}\right\}$ and Y is nearly compact.

Definition 2.7. A function f from space X in to a space Y is said to be almost contra ω_{p}-continuous if the inverse image of regular open in Y is ω_{p}-closed in X.

References

[1] Al-Zoubi K. and Al-Nashef B.; "The topology of ω open subsets", Al-Manarah Journal, 9(2): 169-179, 2003.
[2] Al-Omari A. and Noorani M.S.; "Contra- ω-continuous and almost contra- ω-continuous", International Journal of Mathematics and Mathematical sciences: 1-13, 2007.
[3] Dlaska K.; Ergun N. and Ganster M.; "Countably Sclosed space", Mathematica Slovaca, 44(3): 337-348, 1994.
[4] Dontchev J.; "Contra-continuous functions and strongly S-closed spaces", International Journal of Mathematics and Mathematical Sciences, 19(2): 303-310, 1996.
[5] Ekici E.; "Almost contra-precontinuous functions", Bulletin of the Malaysian Mathematical Sciences Society, 27(1): 53-65, 2004.
[6] Hdeib H. Z.; " ω-Continuous function", Dirasat Journal, vol-16 no.2, pp. 136-153, 1989.
[7] Hussain K. A.; Ali H. J. and Soady A. M.; "Certain concept, by using $\omega_{\text {pre }}$-open sets", Journal of Southwest Jiotong University, 54(6): 1-6, 2019.
[8] Jafari S. and Noiri T.; "On contra-precontinuous function", Bulletin of the Malaysian Mathematical Sciences Society, 25(2): 115-128, 2002.
[9] Joseph J. E. and Kwack M. H.; "On S-closed space", Proceedings of the American Mathematical Society, 80(2): 341-348, 1980.
[10] Mashhour A. S.; Abd El-Monsef M. E. and El-Dccb S. N.; "On precontinuous and Weak precontinuous Mappings", Proc. Math. and Phys. Soc. Egypt. 51 1981.

