

Contra $\omega_{\rm pre}$ –Continuous Functions

Waqas B. Jubair and Haider J. Ali*

Department of Mathematics College of Science, Mustansiriyah University, Baghdad-Iraq

Article's Information	Abstract
Received:	In this paper, we present some concepts related to $\omega_{\rm pre}$ -open set and study
Accepted:	some of its basic properties, facts and some examples are given to illustrate our work. Several theoretical results are stated and proved throughout this paper.
09.05.2022	
Published:	
30.09.2022	
Keywords:	
Pre-open	
ω-Open set	
ω_{pre} -Open sets	
Contra continuous functions	
DOI: 10.22401/ANJS.25.3.07	
Corresponding author: drhaiderjebur@uomustansiriyah.edu.iq	

1. Introduction

In this work, (X, τ_X) , (Y, τ_Y) are supposed to be topological spaces (for short X and Y), which have no separation exams except whenever state. For a subset A its interior and closure are denoted by int(A) and cl(A), respectively. Also, A is said b-open if $A \subseteq int(cl(A)) \cup cl(int(A))$ and A is ω -open if for every point in it, there is an open set U containing x with U - A is countable [6], while A is ω_{pre} open (shortly ω_p -open) whenever replacing the open set to be pre-open [7] and every pre-open, ω -open set is ω_p -open. The ω_p -closed and ω_p -interior defined as in cl(A) and int(A), respectively. Dontchev introduced the notion of contra continuity. He defined a function $f: X \longrightarrow Y$ contra continuous if the inverse image of V is closed in X whenever V is open set in Y is contra continuous [4]. A function f: X \rightarrow Y is said to be almost contra ω -continuous [2] (resp.; almost contra-precontinuous [5]) if f(V) is ω -closed (resp.; pre-closed) for every regular open set V in Y.

2. Contra Continuous Via ω_p -Open Sets

Dontchev introduced the notion of contra continuity. He defined a function $f: X \to Y$ is contra continuous if the inverse image of each open set in *Y* is closed in *X*. By the same context, we can define the following:

Definition 2.1, [2]. A function $f: X \to Y$ is called ω -continuous if for each $x \in X$ and each open set *V* of *Y* containing f(x), there exists ω -open set *U* containing *x*, such that $f(x) \subseteq U$.

Definition 2.2. A function $f: X \to Y$ is said to be contra ω_p continuous if the inverse image of open set in *Y* is ω_p -open in *X*.

Remark 2.1. (1) Every contra ω -continuous function contra ω_p -continuous.

(2) Every contra continuous function is contra ω_p - continuous but the convers not true.

Example 2.1. Let the identity function $f:(Z, \tau_{ind}) \rightarrow (Z, \tau_D)$, then f is contra ω_p -continuous but not contra continuous.

Proposition 2.1. A function $f: X \to Y$ is contra ω_p - continuous if and only if for every closed subset *F* of *Y*, then $f^{-1}(F)$ is ω_p open in *X*.

Proof. Given *f* is contra ω_p -continuous function and *F* is closed in *Y* then *Y* – *F* is open in *Y* but *f* is contra ω_p continuous, then $f^{-1}(Y - F)$ is ω_p -closed, but $x - (f^{-1}(Y - F) = f^{-1}(F)$ is ω_p open set.

Conversely, by the same way of above.

Lemma 2.1. A subset U of space X is ω_p -open if and only if every point in U is ω_p -interior point to U.

Lemma 2.2, [6]. The following properties hold for subsets *A*, *B* of a space *X*:

- (1) $x \in \text{Ker}(A)$ if and only if $A \cap F \neq \emptyset$ for only closed set *F* containing *x*.
- (2) $A \subseteq \text{Ker}(A)$ and A = Ker(A) if A is open in X.
- (3) if $A \subseteq B$, then Ker (A) \subseteq Ker (R).

ANJS, Vol.25 (3), September, 2022, pp. 40-42

Proof. Let *U* be ω_p -open set and $x \in U$, then *U* an ω_p -neighborhood for each it's point.

Conversely, for each $x \in U$, we get ω_p -open set V_x containing x and contained in U, that is $U = \bigcup_{i \in \Lambda} U_i$, but the arbitrary union of ω_p -open sets is also ω_p open. so U is ω_p -open.

Proposition 2.2. A function $f: X \to Y$ is contra ω_p - continuous if for each $x \in Z$ and each closed set *F* containing f(x), there exists ω_p -open set *U* containing *x* such that $f(U) \subseteq F$.

Proof. Assume that f is contra ω_p -continuous and F is closed set containing f(x) for some $x \in X$, so that $x \in f^{-1}(F)$, then $f^{-1}(F)$ is ω_p -open set in Z (by Proposition 2.2). If $f^{-1}(F) = U$, then U is ω_p open set containing x, such that $f(U) = f(f^{-1}(F)) \subset F$.

Conversely, let *F* be any closed set of *Y* if $f^{-1}(F) = \emptyset$, then there is nothing to prove. Suppose that $f^{-1}(F) \neq \emptyset$ and $x \in f^{-1}(F)$, then $f(x) \in f f^{-1}(F) \subset F$ which implies that there exists ω_p -open set *U* containing *x*, such that $x \in$ $U \subset f^{-1}(F)$. So $x \in \omega_p - int(f^{-1}(F))$. Thus $f^{-1}(f)$ is ω_p -open set in *x*.

Proposition 2.3. If a function $f: X \to Y$ is contra ω_p - continuous, then $f(\omega_p - cl(A)) \subseteq \text{Ker}(f(A))$, for every subset A of X.

Proof. Let *A* be any subset of *X* and assume that $Y \notin \text{Ker}(f(A))$ then there is a closed set *F* containing f(x) in *Y* such that $f(A) \cap F = \emptyset$, then $A \cap f^{-1}(F) = \emptyset$, but *f* is contra ω_p -continuous then by Proposition 2.2, $f^{-1}(F)$ is ω_p open set containing *x* so *x* is not ω_p -adherent point to A that is, $x \notin \omega_p cl(A) Y = f(x) \notin f(\omega_p cl(A))$. Therefore $f(\omega_p cl(A)) \subseteq \text{Ker}(f(A))$.

Proposition 2.4. A function $f: X \to Y$ is ω_p -continuous if and only if for each $x \in X$ and each open set *V* containing f(x), there exists ω_p -open set *U* containing *x*, such that $f(U) \subseteq V$.

Proof. Assume that f is ω_p -continuous and V is open set containing f(x), for some $x \in X$, so that $x \in f^{-1}(V)$ then $f^{-1}(V)$ is ω_p - open set in X (since f is ω_p continuous) now put $f^{-1}(V) = U$ with $x \in U$ then U is ω_p open set containing x, such that $f(U) = f(f^{-1}(V)) \subset V$. Hence $f(U) \subset V$.

Conversely; let *V* beany open set of *Y*, if $f^{-1}(V) = \emptyset$, then there is nothing to prove. Suppose $f^{-1}(V) \neq \emptyset$ and $x \in f^{-1}(V)$, then $f(x) \in f(f^{-1}(V)) \subset V$, then there exists ω_p open set *U* containing *x* such that $x \in U \subset f^{-1}(F)$, so $x \in \omega_p - int(f^{-1}(V))$ so (by Lemma 2.1) $f^{-1}(V)$ is ω_p open set in *X*. **Proposition 2.5.** A function $f: X \to Y$ is contra ω_p - continuous, then f is ω_p - continuous whenever Y is regular.

Proof. Let *V* be an open set of *Y* containing f(x) for some $x \in X$, then there is an open set *W* in *Y*, such that $f(x) \in W \subseteq \overline{W} \subseteq V$ (since *Y* regular so by Proposition 2.2, we obtain ω_p –open set *U* containing *x* with $f(U) \subset cl(W) \subset V$. Therefore *f* is ω_p –continuous.

Proposition 2.6. Let $f: X \to Y$ be a contra ω_p continuous function then *Y* is not a discrete space, whenever *X* is ω_p -connected space.

Proof. Assume the domain is discrete and there is a nonempty clopen set A of it, then $f^{-1}(A)$ is nonempty proper ω_p -open and ω_p -closed subset of X so X is not ω_p - connected space, which is a contrary with our hypothesis.

Proposition 2.7. If $f: X \to Y$ is surjective contra ω_p – continuous function and X is ω_p – connected space, then Y is connected.

Proof. Suppose there are two nonempty disjoint open sets V_1 and V_2 and there union equal to *Y*. So $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint ω_p -open sets in *X* and their union equal to *X*. So *X* is ω_p -disconnected, which is contrary with our hypothesis, therefor *Y* is connected.

Definition 2.3. A function f from X into Y is said to be almost contra ω_p – continuous if $f^{-1}(V) \in \omega_p$ -closed set in X, for every regular open V in Y.

Definition 2.4. A subset *A* of space *X* is said to be regular open if $A = \overline{A}^\circ$.

Theorem 2.1. Let f be a function from X into Y, then the following are equivalents:

- (1) f is almost contra ω_p –continuous.
- (2) $f^{-1}(F)$ is ω_p open in X, whenever F is regular closed in Y.
- (3) For every x ∈ X and every regular closed set F containing f(x) in Y, there exists an ω_p −open U in X containing x with f(U) ⊆ F.
- (4) For every regular open set V non containing f(x) in Y for some x ∈ X, there is an ω_p-closed set K in X with x ∉ K, such that f⁻¹(V) ⊆ K.

Proof. (1) \rightarrow (2) let *F* be a regular closed set in *Y* then F^c is regular open in *Y*, but by our assumption that *f* is almost contra ω_p -continuous. So we get $X - f^{-1}(F) = f^{-1}(Y - F)$ is ω_p - closed in *X* and hence $X - (X - f^{-1}(F)) = f^{-1}(F)$ is ω_p -open in *X*.

We can prove $(2) \rightarrow (1)$ by the same way to a bove.

 $(2) \rightarrow (3)$ assume F be regular closed set in Y containing

f(x) in Y for some $x \in X$ and so by (2) $f^{-1}(F) \omega_p$ -open in

ANJS, Vol.25 (3), September, 2022, pp. 40-42

X containing x. Put $f^{-1}(F) = U$, then $f(U) = ff^{-1}(F) \subseteq F$.

 $(3) \rightarrow (2)$ let *F* be any regular closed set in codomain and *x* belong to $f^{-1}(F)$ so $f(x) \in ff^{-1}(F) \subset F$, then by (3) there is ω_p -open set U_x containing *x*, such that $f(U_x) \subset F$, then $U_x \subseteq f^{-1}(f(U_x)) \subset f^{-1}(F)$, so *x* is ω_p -interior point to $f^{-1}(F)$ but *x* is an arbitrary, so $f^{-1}(F)$ is ω_p -open set (by Lemma 2.1).

(3)→(4) assume V is a regular open set with $f(x) \notin V$ in a space Y then Y - V is a regular closed with $f(x) \in Y - V$, so by (3) there is ω_p -open set U in X with $x \in U$ and $f(U) \subset Y - V U \subseteq f^{-1}f(U) \subset f^{-1}(Y - V) = f^{-1}(Y) - f^{-1}(V) = X - f^{-1}(V)$ that $U \subseteq X - f^{-1}(V) X - (X - f^{-1}(V) \subseteq X - U f^{-1}(V) \subseteq X - U$. Put H = X - U, so H is ω_p -closed set in X with $x \notin H$.

Definition 2.5. A space *X* is said to be:

- (1) ω_p -compact if for all ω_p open cover of X has a finite subcover.
- (2) Countably ω_p -compact if every countable cover of X through ω_p -open sets has finite subcover.
- (3) ω_p -Lindelof if for all ω_p -open cover of X has a countable subcover.
- (4) *S*-Lindelof [6] if for all cover of *X* by regular closed sets has a countable subcover.
- (5) countably *S*-closed [15] if for all countable cover of *X* by regular closed sets has a finite subcover.
- (6) *S*-closed [16] if for all regular closed cover of *X* has a finite subcover.

Theorem 2.2. Let *f* be a function from *X* into *Y* be an almost contra ω_p -continuous surjection. The following statements are holds:

- (1) If X is ω_p -compact, then Y is S-closed.
- (2) *Y* is *S*-Lindelof whenever *X* is ω_p -Lindelof.
- (3) *Y* is countably *S*-closed whenever *X* is countably ω_p -compact.

Proof. If (1) hold then the other also holds.

Let $\{V_{\alpha}: \alpha \in I\}$ be any regular closed cover of *Y*. Since we have *f* is almost contra- ω -continuous, then $\{f^{-1}(V_{\alpha})\alpha \in I\}$ is an ω_p -open contra of *X* and hence there is a finite subset *I*₀ of *I*, such that $X = \bigcup \{f^{-1}(V_{\alpha}): \alpha \in I_0\}$, so we have $Y = \bigcup \{V_{\alpha}: \alpha \in I_0\}$ and *Y* is *S*-closed.

Definition 2.6. The space *X* we call it:

- (1) ω_p -closed compact if every ω_p -closed cover of X has a finite subcover.
- (2) Countably ω_p -closed compact if every countable contra of *X* by ω_p closed sets has a finite subcover.
- (3) ω_p Closed-Lindelof if for all cover of X by ω_p closed sets has a countable subcover.
- (4) Nearly compact if for all regular open cover of *X* has a finite subcover.
- (5) Nearly countably compact if for all countable cover of X by regular open sets has a finite subcover.

(6) Nearly Lindelof if for all cover of *X* by regular open sets has a countably subcover.

Theorem 2.3. Let *f* be a function from *X* into *Y* and *f* is almost contra- ω_p - continuous surjection. The following statements are hold:

- (1) *Y* is nearly compact if *X* is ω_p -closed compact.
- (2) *Y* nearly lindel of if *X* is ω_p -closed lindellof.
- (3) *Y* is nearly countably compact if *X* is countably ω_p -closed compact.

Proof. If (1) holds then the other holds also, let $\{V_{\alpha}: \alpha \in I\}$ be regular open cover of *Y*, but *f* is almost contra- ω_p -continuous, then $\{f^{-1}(V_{\alpha}): \alpha \in I\}$ is an ω_p -closed cover of *X*. Since *X* is ω_p closed compact, then there exists a finite subset *I*₀ of *I* with $X = \bigcup \{f^{-1}(V_{\alpha})\alpha \in I_0\}$ thus, we get $Y = \bigcup \{V_{\alpha}: \alpha \in I_0\}$ and *Y* is nearly compact.

Definition 2.7. A function f from space X in to a space Y is said to be almost contra ω_p -continuous if the inverse image of regular open in Y is ω_p -closed in X.

References

- [1] Al-Zoubi K. and Al-Nashef B.; "The topology of ω open subsets", Al-Manarah Journal, 9(2): 169-179, 2003.
- [2] Al-Omari A. and Noorani M.S.; "Contra- ω-continuous and almost contra-ω-continuous", International Journal of Mathematics and Mathematical sciences: 1-13, 2007.
- [3] Dlaska K.; Ergun N. and Ganster M.; "Countably Sclosed space", Mathematica Slovaca, 44(3): 337-348, 1994.
- [4] Dontchev J.; "Contra-continuous functions and strongly S-closed spaces", International Journal of Mathematics and Mathematical Sciences, 19(2): 303-310, 1996.
- [5] Ekici E.; "Almost contra-precontinuous functions", Bulletin of the Malaysian Mathematical Sciences Society, 27(1): 53-65, 2004.
- [6] Hdeib H. Z.; " ω-Continuous function", Dirasat Journal, vol-16 no.2, pp. 136-153, 1989.
- [7] Hussain K. A.; Ali H. J. and Soady A. M.; "Certain concept, by using ω_{pre}-open sets", Journal of Southwest Jiotong University, 54(6): 1-6, 2019.
- [8] Jafari S. and Noiri T.; "On contra-precontinuous function", Bulletin of the Malaysian Mathematical Sciences Society, 25(2): 115-128, 2002.
- [9] Joseph J. E. and Kwack M. H.; "On S-closed space", Proceedings of the American Mathematical Society, 80(2): 341-348, 1980.
- [10] Mashhour A. S.; Abd El-Monsef M. E. and El-Dccb S. N.; "On precontinuous and Weak precontinuous Mappings", Proc. Math. and Phys. Soc. Egypt. 51 1981.