

On m_{χ} - ω_b -Open Sets

Waqas B. Jubair and Haider J. Ali*

Department of Mathematics College of Science Mustansiriyah University, Baghdad-Iraq

Article's Information	Abstract
Received: 26.03.2022 Accepted: 02.04.2022 Published: 30.06.2022	In this paper, we shall use the <i>m</i> -structure topological spaces to introduce new concept, which is the m_{χ} - ω -open set. Several facts, results and examples are given to illustrate our work.
Keywords:	-
<i>b</i> -open set	
ω-open set	
ω <i>b</i> -open set	
DOI: 10.22401/ANJS.25.2.07	
*Corresponding author: drhaiderjebur@uomustansiriyah.edu.iq	

1. Introduction

In this work, *m*-space always mean m-structure topological spaces on which no separation axioms are assumed unless explicitly stated. In this paper, the structure topological space on a nonempty set \mathcal{X} is denoted by $(\mathcal{X}, m_{\mathcal{X}})$ or simply by \mathcal{X} .

For a subset *A* of \mathcal{X} , the $m_{\mathcal{X}}$ -closure and the $m_{\mathcal{X}}$ -interior of *A* in \mathcal{X} are denoted by $m_{\mathcal{X}}$ -Cl(*A*) and $m_{\mathcal{X}}$ -Int(*A*) respectively. The researchers Maki in 1996 [6], Popa in 2000 [8], Ali in 2018 [2] and Humadi in 2019 [4] introduced and study the properties of *m*-structure space also introduce some types of spaces via *m*-structure. A subset *A* of a space \mathcal{X} is said to be ω -open set if for every point *x* in *A*, there exists an open set *U* containing *x*, such that *U*-*A* = countable, [1,3]. If *U*-*A* = finite, then *A* is called *N*-open set. In the same context Humadi in 2020 defined supra ω -open set, [5]. A subset *A* of a space \mathcal{X} is said to be *b*-open if $A \subseteq \text{Int}(\text{Cl}(A))$ $\cup \text{Cl}(\text{Int}(A))$ [9] and a set *A* is called ω_b -open if for every point in *A*, there exists *b*-open set *U* containing *x*, such that *U*-*A* = countable, [7].

2. m_{χ} - ω -Open Sets

In this section, we shall study the ω -open set by using *m*-structure spaces, we presented some of results and examples regarding this concept. Also, we introduced other kinds and concepts.

Definition 2.1, [2,6,8]. Suppose that \mathcal{X} is a non-empty set and $P(\mathcal{X})$ the family of subsets of \mathcal{X} . Let $m_{\mathcal{X}}$ be any subfamily of $P(\mathcal{X})$. Then $m_{\mathcal{X}}$ is said to be minimal structure (shortly *m*-structure) on \mathcal{X} if \emptyset , $\mathcal{X} \in m_{\mathcal{X}}$ and the pair $(\mathcal{X}, m_{\mathcal{X}})$ is used to denote the m-structure space. Any element of $m_{\mathcal{X}}$ is said to be $m_{\mathcal{X}}$ open $(m_{\mathcal{X}}$ -O) and the complement of an m_{χ} -open set is said to be m_{χ} -closed (m_{χ} -C). Clearly each topological space is *m*-space.

Note. From now on, we will denote all m_{χ} -closed sets by Fm_{χ} .

Definition 2.2, [2,6,8]. Suppose that \mathcal{X} is a non-empty set and $m_{\mathcal{X}}$ is an *m*-structure on \mathcal{X} . For a subset V of \mathcal{X} , the $m_{\mathcal{X}}$ -closure of $V(m_{\mathcal{X}} - \overline{V})$ and the $m_{\mathcal{X}}$ -interior of $V(m_{\mathcal{X}} - V^{\circ})$ are distinguishing by:

- 1. $m_{\mathcal{X}} \cdot \overline{V} = \bigcap \{ W \colon V \subseteq W, \mathcal{X} \setminus W \in m_{\mathcal{X}} \}.$
- 2. $m_{\chi} V^{\circ} = \bigcup \{E : E \subseteq V, E \in m_{\chi}\}.$

Lemma 2.1, [2,8]. Assume that the pair $(\mathcal{X}, m_{\mathcal{X}})$ is a minimal structure space. For any to subset U and V of \mathcal{X} , the following properties are holds:

- 1. $m_{\mathcal{X}} (Z \setminus U)^{\circ} = \mathcal{X} \setminus m_{\mathcal{X}} \overline{U}$.
- 2. If $(\mathcal{X} \setminus U) \in m_{\mathcal{X}}$, then $m_{\mathcal{X}} \overline{U} = U$ and if $U \in m_{\mathcal{X}}$, then $m_{\mathcal{X}} U^{\circ} = U$.
- 3. If $U \subseteq V$, then $m_{\chi} \overline{U} \subseteq m_{\chi} \overline{V}$ and $m_{\chi} U^{\circ} \subseteq m_{\chi} V^{\circ}$.
- 4. $m_{\chi} \overline{(m_{\chi} \overline{U})} = m_{\chi} \overline{U}$ and $m_{\chi} (m_{\chi} U^{\circ})^{\circ} = m_{\chi} U^{\circ}$.

Lemma 2.2, [2]. Assume that V is a subset of m-space \mathcal{X} . Then $x \in m_{\mathcal{X}} - \overline{U}$ if and only if $K \cap U \neq \emptyset$, for every $K \in m_{\mathcal{X}}$ containing x.

Definition 2.3, [2]. An m-structure m_{χ} on a non-empty set χ is said to has property \mathfrak{B} if the union of any family of m_{χ} -open subsets belong to m_{χ} .

ANJS, Vol.25 (2), June, 2022, pp. 34-38

Definition 2.4, [2]. The pair space $(\mathcal{X}, m_{\mathcal{X}})$ which is minimal space has the Property (I) if the any finite intersection of $m_{\mathcal{X}}$ -open sets is $m_{\mathcal{X}}$ -open.

Definition 2.5. A subset U of an *m*-space $(\mathcal{X}, m_{\mathcal{X}})$ is said to be:

- 1. m_{χ} -dense if $m_{\chi} \overline{U} = \chi$.
- 2. m_{χ} -nowhere dense if $m_{\chi} (m_{\chi} \overline{U})^{\circ} = \emptyset$.

Definition 2.6, [2]. Suppose that *Y* is nonempty subset of *m*-space $(\mathcal{X}, m_{\mathcal{X}})$. Then the space (Y, m_Y) is called *m*-subspace of $(\mathcal{X}, m_{\mathcal{X}})$ if $m_Y = \{V \cap Y: V \in m_{\mathcal{X}}\}$.

Definition 2.7, [2]. We have $f : (\mathcal{X}, m_{\mathcal{X}}) \longrightarrow (Y, m_Y)$ is called *m*-open (*m*-closed) if f(V) is an m_Y -open (m_Y -closed) set in (Y, m_Y) for every $m_{\mathcal{X}}$ -open ($m_{\mathcal{X}}$ -closed) subset V in $(\mathcal{X}, m_{\mathcal{X}})$.

Definition 2.8. A subset V of *m*-space $(\mathcal{X}, m_{\mathcal{X}})$ is $m_{\mathcal{X}}$ -*b*-open set if $V \subseteq m_{\mathcal{X}} \overline{(m_{\mathcal{X}} - U^{\circ})} \cup m_{\mathcal{X}} - (m_{\mathcal{X}} - \overline{U})^{\circ}$.

Definition 2.9. A subset *V* of an *m*-space \mathcal{X} is called $m_{\mathcal{X}}$ - ω -open set if every single $x \in V$, there exists an $m_{\mathcal{X}}$ -open set *U* containing *x*, such that $U \setminus V$ is a countable set and the complement of an $m_{\mathcal{X}}$ - ω -open set is called $m_{\mathcal{X}}$ - ω -closed set. Clearly every $m_{\mathcal{X}}$ -open set is $m_{\mathcal{X}}$ - ω -open set, but the converse might be not valid as a rule.

Example 2.1. Suppose $(\mathcal{X}, m_{\mathcal{X}})$ is indiscrete *m*-structure space then any nonempty proper subset of it is $m_{\mathcal{X}}$ - ω -open set, but not $m_{\mathcal{X}}$ -open, where \mathcal{X} is in finite countable.

Definition 2.10. Assume $(\mathcal{X}, m_{\mathcal{X}})$ is a minimal space and V is a subset of it then $x \in \mathcal{X}$ is called $m_{\mathcal{X}}$ - ω -int-point to V if there exists an $m_{\mathcal{X}}$ - ω -open set U, such that $x \in U \subseteq V$. The set of all $m_{\mathcal{X}}$ - ω -int-points for V is denoted by $m_{\mathcal{X}}$ - ω - U° .

Remark 2.1. Every m_{χ} interior point is m_{χ} - ω -interior point but the convers is not true.

Example 2.2. Let $\mathcal{X} = \{a,b,c\}, m_{\mathcal{X}} = \{\emptyset, \mathcal{X}, \{a\}, \{b\}, \{c\}\}$. Since each point is $m_{\mathcal{X}}$ - ω -interior, then the points of each set are its $m_{\mathcal{X}}$ - ω -interior points.

Example 2.3. In Example 2.1, each point in \mathcal{X} is $m_{\mathcal{X}}$ - ω -interior points to \mathcal{X} .

Definition 2.11. Suppose \mathcal{X} is a minimal space and $V \subseteq X$, then $x \in \mathcal{X}$ is called $m_{\mathcal{X}}$ - ω -limit point to V if all $m_{\mathcal{X}}$ - ω -open set U containing x, we have $(U \setminus \{x\}) \cap V \neq \emptyset$, the set of all $m_{\mathcal{X}}$ - ω -limit points for V is denoted by $m_{\mathcal{X}}$ - ω -d(V).

Remark 2.2. Every m_{χ} - ω limit point is m_{χ} -limit point but the converse is not true.

Example 2.4. Let $\mathcal{X} = \{1, 2, 3\}$ $\tau =$ indiscrete topology $A = \{1, 2\}$, then 3 is a $m_{\mathcal{X}}$ -limit point to A, since $\{3\}$ is ω -open set containing 3 and $\{3\} \cap A = \emptyset$.

Definition 2.12. Suppose \mathcal{X} is a minimal space and $V \subseteq \mathcal{X}$ then $x \in \mathcal{X}$ is called $m_{\mathcal{X}}$ - ω -adherent point to V if every single $m_{\mathcal{X}}$ - ω -open set U containing x intersected with V. (i.e., $U \cap V \neq \emptyset$), the set of all $m_{\mathcal{X}}$ - ω -adherent points for V is denoted by $m_{\mathcal{X}}$ - ω -adh(V) or $m_{\mathcal{X}}$ - ω - \overline{V} .

Example 2.5. Assume $\mathcal{X} = \{1, 2, 3\}$ and $m_{\mathcal{X}}$ be any minimal structure. Obviously $1, 2 \in \mathcal{X}$ are $m_{\mathcal{X}}$ - ω -adherent points for the set $\{1, 2\}$.

Definition 2.13. Suppose $\mathcal{X} \neq \emptyset$ set and $m_{\mathcal{X}}$ a minimal structure on \mathcal{X} . For a subset *V* of \mathcal{X} , the $m_{\mathcal{X}}$ - ω -Cl(*U*) of *V* and the $m_{\mathcal{X}}$ - ω -int(*U*) of *V* are characterized by:

1. $m_{\mathcal{X}} - \omega - U^{\circ} = \bigcup \{ W: W \subseteq U, \omega \text{ is an } \mathcal{X} - \omega \text{ open} \}.$

2. m_{χ} - ω - $\overline{U} = \cap \{E: U \subseteq E, E \text{ is an } m_{\chi}$ - ω -closed $\}$.

Example 2.6. Suppose $\mathcal{X} = \mathbb{R}$ and $m_{\mathcal{X}} = \{\emptyset, \mathbb{R} \setminus \{1\}, \mathbb{R} \setminus \{2\}, \mathbb{R}\}$. So $m_{\mathcal{X}}$ - ω -Int($\mathbb{R} \setminus \{1\}$) = $\mathbb{R} \setminus \{1\}$ and $m_{\mathcal{X}}$ - ω -Cl($\mathbb{R} \setminus \{1\}$) = \mathbb{R} .

Definition 2.14. A function $f: (\mathcal{X}, m_{\mathcal{X}}) \to (Y, m_Y)$ is called m- ω -open (m- ω -closed) function if f(V) is an m_Y - ω -open $(m_Y$ - ω -closed) set in (Y, m_Y) for every m_X -open $(m_X$ -closed) subset V in (\mathcal{X}, m_X) .

Example 2.7. Let $\mathcal{X} = \{a, b, c\}, Y = \{1, 2, 3\}, m_{\mathcal{X}} = \{\emptyset, \{b, c\}, \{a, c\}, \{a, b\}, \mathcal{X}\}, m_{Y} = \{\emptyset, \{2, 3\}, \{1, 3\}, Y\}$. We define $f : (\mathcal{X}, m_{\mathcal{X}}) \longrightarrow (Y, m_{Y})$ such that f(a) = 1, f(b) = 2, f(c) = 3. It is clear that f is an *m*- ω -open (*m*- ω -closed) function but neither $m_{\mathcal{X}}$ -open nor $m_{\mathcal{X}}$ -closed function.

Proposition 2.1. Suppose $(\mathcal{X}, m_{\mathcal{X}})$ be a minimal space, the following are equivalent.

- 1. The union of any family of m_{χ} - ω -O sets is an m_{χ} - ω -O set.
- 2. The intersection of any family of m_{χ} - ω -C sets is an m_{χ} - ω -C set.

Proof. 1. Assume V_{α} is a m_{χ} - ω -O set for each $\alpha \in \Lambda$. To prove that $\cup \{V_{\alpha}, \alpha \in \Lambda\}$ is an m_{χ} - ω -O. Let $x \in \cup \{V_{\alpha}, \alpha \in \Lambda\}$, then $x \in V_{\alpha i}$ for some $\alpha_i \in \Lambda$. Since $V_{\alpha i}$ is an m_{χ} - ω -O, then there exists U be an m_{χ} -O set such that $x \in U$ and $U \setminus V_{\alpha i}$ is a countable set. Since $V_{\alpha i} \subseteq \cup \{V_{\alpha}, \alpha \in \Lambda\}$, then $(\cup V_{\alpha}, \alpha \in \Lambda\})^c \subseteq (V_{\alpha i})^c$. So $U \cap (\cup V_{\alpha}, \alpha \in \Lambda\})^c \subseteq U \cap (V_{\alpha i})^c$. Hence $U \setminus \cup \{V_{\alpha, \alpha} \in \Lambda\} \subseteq U \setminus V_{\alpha i}$. Since $U \setminus V_{\alpha i}$ is a countable set, then $U \setminus \cup \{V_{\alpha, \alpha} \in \Lambda\}$ is also countable. Hence $\cup \{V_{\alpha, \alpha} \in \Lambda\}$ is an m_{χ} - ω -O set. 2. Clear by (1).

Remark 2.3. Suppose the pair $(\mathcal{X}, m_{\mathcal{X}})$ is a minimal space. For subsets *A* and *B* of \mathcal{X} , the following properties hold:

ANJS, Vol.25 (2), June, 2022, pp. 34-38

- 1. The intersection of any collection of m_{χ} - ω -O set may not be an m_{χ} - ω -O set.
- 2. The union of any collection of m_{χ} - ω -C set may not be an m_{χ} - ω -C set.

Example 2.8. Let $\mathcal{X} = \mathbb{R}$ and $m_{\mathcal{X}} = \{\emptyset, \mathbb{R}, (-1, 1], [1, 3]\}$, then $m_{\mathcal{X}}$ - ω -O sets are $\{\emptyset, (-1, 1], [1, 3], (-1, 1), (1, 3), (1, 3], [1, 3), \mathbb{R} \setminus \{\text{finite set}\}, \mathbb{R}\}$, we note that the sets $\{(-1, 1]\}$, $\{[1,3]\}$ are an $m_{\mathcal{X}}$ - ω -open set and $\{(-1,1]\} \cap \{[1,3]\} = \{1\}$ not be an $m_{\mathcal{X}}$ - ω -open set.

Proposition 2.2. Suppose V is a subset of minimal space \mathcal{X} , then:

1. *V* is an m_{χ} - ω -O set -if and only if and m_{χ} - ω - $V^{\circ} = V$.

2. *V* is an m_{χ} - ω -*C* set -if and only if m_{χ} - ω - $\overline{V} = V$.

Proof. 1. As the union of m_{χ} - ω -O set is m_{χ} - ω -O set, then m_{χ} - ω - V° is the biggest m_{χ} - ω -O set contained in V. But V is m_{W} - ω -O set, then m_{χ} - ω - $V^{\circ} = V$. Conversely, whenever m_{χ} - ω - $V^{\circ} = V$, then V is m_{χ} - ω -O set, (since m_{χ} - ω - V° is an m_{χ} - ω -O set).

2. As the intersection of m_{χ} - ω -C sets is m_{χ} - ω -C set, then m_{χ} - ω - \overline{V} is the smallest m_{χ} - ω -C set containing V. Since V is an m_{χ} - ω -C set, then m_{χ} - ω - $\overline{V} = V$.

Conversely, whenever $m_{\chi} - \omega - \overline{V} = V$, then *V* is an $m_{\chi} - \omega$ -C set (since $m_{\chi} - \omega - \overline{V}$ is an $m_{\chi} - \omega$ -C set).

Proposition 2.3. Suppose V and U be two subsets of minimal space \mathcal{X} and $V \subseteq U$, then:

- 1. $m_{\chi} V^{\circ} \subseteq m_{\chi} \omega V^{\circ}$.
- 2. m_{χ} - ω - $\overline{V} \subseteq m_{\chi}$ - \overline{V} .
- 3. $m_{\chi} \omega \overline{V} \subseteq m_{\chi} \omega \overline{U}$.
- 4. $m_{\chi} \omega V^{\circ} \subseteq m_{\chi} \omega U^{\circ}$.
- 5. $m_{\mathcal{X}}^{\circ} \omega X^{\circ} = \mathcal{X}$ and $m_{\mathcal{X}} \omega (\emptyset)^{\circ} = \emptyset$.
- 6. m_{χ} - ω -Cl(χ) = χ and m_{χ} - ω -Cl(\varnothing) = \varnothing .
- 7. $m_{\chi} \cdot \omega \cdot V \cong V$ and $V \subseteq m_{\chi} \cdot \omega \cdot \text{Cl}(V)$
- 8. m_{χ} - ω -Int $(m_{\chi}$ - ω -int $(V)) = m_{\chi}$ - ω -Int(V)
- 9. m_{χ} - ω -Cl $(m_{\chi}$ - ω -cl $(V)) = m_{\chi}$ - ω -Cl(V)
- 10. m_{χ} - ω -Cl(V^{c}) = $(m_{\chi}$ - ω -Int(V))^c.
- 11. m_{χ} - ω -Int $(V^c) = (m_{\chi} \omega Cl(V))^c$.

Proof. 1. Suppose $x \in m_{\mathcal{X}} - V^{\circ}$, then there exists an $m_{\mathcal{X}}$ -O set $V_{\mathcal{X}}$ such that $x \in V_{\mathcal{X}} \subseteq V$, for this reason that every $m_{\mathcal{X}}$ -O set is an $m_{\mathcal{X}}$ - ω -O set, then $x \in m_{\mathcal{X}} - \omega - V^{\circ}$.

- 2. Suppose $x \in m_{\chi} \omega \overline{V}$ and suppose $x \notin m_{\chi} \overline{V}$, then there exists M be an m_{χ} -O set such that $x \in M$ and $M \cap V = \emptyset$. For this reason that every m_{χ} -O set is an m_{χ} - ω -O set, then $x \notin m_{\chi}$ - $\omega \overline{V}$ and so $m_{\chi} \omega \overline{V} \subseteq m_{\chi} \overline{V}$.
- 3. Suppose $x \in m_{\chi} \omega \overline{V}$, then each $m_{\chi} \omega O$ set *K* containing *x* intersect *V*, since $V \subseteq U$, then the set *K* intersect *U*. Hence $x \in m_{\chi} \omega \overline{U}$.
- 4. Suppose $x \in m_{\mathcal{X}} \omega V^{\circ}$, then there exists an $m_{\mathcal{X}} \omega O$ set $V_{\mathcal{X}}$, such that $x \in V_{\mathcal{X}} \subseteq V$. For this reason implies that $V \subseteq U$, then $x \in V_{\mathcal{X}} \subseteq U$. Hence $x \in m_{\mathcal{X}} \omega U^{\circ}$.
- 5. For this reason that \mathcal{X} and \emptyset are $m_{\mathcal{X}}$ - ω -O sets, but $m_{\mathcal{X}}$ - ω -Int(\mathcal{X}) = \cup {*V*: *V* is an $m_{\mathcal{X}}$ - ω -O, *V* \subseteq \mathcal{X} } = $\mathcal{X} \cup$ (all $m_{\mathcal{X}}$ - ω -O sets) = \mathcal{X} . In this manner $m_{\mathcal{X}}$ - ω -Int (\mathcal{X}) = \mathcal{X} .

So far by the as \emptyset is the only m_{χ} - ω -O set contained in \emptyset , then m_{χ} - ω -Int (\emptyset) = \emptyset .

- 6. Since m_X-ω-cl(X) = ∩{U: X ⊆ U, U is m_X-ω-C set}. But X is the only m_X-ω-C set comprising X. In this way m_X-ω-Cl(X) = X. Thus m_X-ω-Cl(X) = X. Inasmuch as m_X-ω-\$\overline{\
- 7. By definition.
- By Proposition 2.1, we note that m_χ-ω-Int(V) is an m_χ-ω-O set. So, by Proposition 2.2, we conclude m_χ-ω-Int(m_χ-ω-Int(V)) = m_χ-ω-Int(V).
- 9. By Proposition 2.1, we note that m_{χ} - ω -Cl(V) is an m_{χ} - ω -C set. So, by Proposition 2.2 we conclude that m_{χ} - ω - $\overline{m_{\chi}} \omega \overline{V} = m_{\chi}$ - ω - \overline{V} .
- 10. Suppose $x \in m_{\chi} \cdot \omega \operatorname{Cl}(V^{c})$ and suppose $x \notin (m_{\chi} \cdot \omega \operatorname{Int}(V))^{C}$, then $x \in m_{\chi} \cdot \omega \operatorname{Int}(V)$. Thus, there is an $m_{\chi} \cdot \omega \operatorname{O}$ set V_{χ} , such that $x \in V_{\chi} \subseteq V$. In this way $x \in V_{\chi}$ and $V_{\chi} \cap V^{c} = \emptyset$. So $x \notin m_{\chi} \cdot \omega \operatorname{Cl}(V^{c})$. Thus we get $m_{\chi} \cdot \omega \operatorname{Cl}(V^{c}) \subseteq (m_{\chi} \cdot \omega \operatorname{Int}(V))^{C}$. Now assume $x \notin m_{\chi} \cdot \omega \operatorname{Cl}(V^{c})$. Thus there is an $m_{\chi} \omega \operatorname{O}$ set V_{χ} , such that $x \in V_{\chi}$ and $V_{\chi} \cap V^{c} = \emptyset$. Thus $x \in V_{\chi} \subseteq V$, and in this manner $x \in m_{\chi} \cdot \omega \operatorname{Int}(V)$. So $x \notin (m_{\chi} \cdot \omega \operatorname{Int}(V))^{c}$. Thus we get $(m_{\chi} \omega \operatorname{Int}(V))^{c} \subseteq m_{\chi} \cdot \omega \operatorname{cl}(V^{c})$.
- 11. Assume $x \in m_{\mathcal{X}}$ - ω -int(V^c), then there is an $m_{\mathcal{X}}$ - ω -O set $V_{\mathcal{X}}$ such that $x \in V_{\mathcal{X}} \subseteq V^c$. In this manner $x \in V_{\mathcal{X}}$ and $V_{\mathcal{X}} \cap V = \emptyset$. So $x \notin m_{\mathcal{X}}$ - ω -Cl(V). Thus we get $x \in (m_{\mathcal{X}}$ - ω -cl(V))^c, therefore $m_{\mathcal{X}}$ - ω -Int(V^c) $\subseteq (m_{\mathcal{X}}$ - ω -Cl(V))^c. Now, let $x \in (m_{\mathcal{X}}$ - ω -Cl(V))^c, then $x \notin m_{\mathcal{X}}$ - ω -Cl(V) and in this way there is an $m_{\mathcal{X}}$ - ω -O set $V_{\mathcal{X}}$ such that $x \in V_{\mathcal{X}}$ and $V_{\mathcal{X}} \cap V = \emptyset$. So $x \in V_{\mathcal{X}}$ and $V_{\mathcal{X}} \subseteq V^c$. Therefore $x \in m_{\mathcal{X}}$ - ω -Int(V^c) and hence $(m_{\mathcal{X}}$ - ω -Cl(V))^c $\subseteq m_{\mathcal{X}}$ - ω -Int(V^c).

Proposition 2.4. A subset *A* of an minimal space \mathcal{X} is an $m_{\mathcal{X}}$ - ω -O -if and only if for every $x \in A$, there exists an $m_{\mathcal{X}}$ -open subset *U* containing *x* and a countable subset *M*, such that $U \setminus M \subseteq A$.

Proof. Let *A* be an m_{χ} - ω -O and $x \in A$, then there exists an m_{χ} -O subset *V* containing *x*, such that $V \setminus A$ is countable. Assume $M = V \setminus A = V \cap (X \setminus A)$. Then $V \setminus M \subseteq A$. Other side, assume $x \in A$. Then there exists an m_{χ} -O subset *V* containing *x* and a countable subset *M*, such that $V \setminus M \subseteq A$. Thus $V \setminus A \subseteq M$ and $V \setminus A$ is countable set.

Theorem 2.1. Let \mathcal{X} be an *m*-space and $M \subseteq \mathcal{X}$. If *M* be an $m_{\mathcal{X}}$ - ω -closed, then $M \subseteq B \cup K$ for some $m_{\mathcal{X}}$ -closed subset *B* and a countable subset *K*.

Proof. Let *M* be an $m_{\mathcal{X}}$ - ω -closed, then $\mathcal{X} \setminus M$ is an $m_{\mathcal{X}}$ - ω -O and hence for every $\mathbf{x} \in \mathcal{X} \setminus M$, there exists $m_{\mathcal{X}}$ -O set *V* containing *x* and a countable set *K*, such that $V \setminus K \subseteq \mathcal{X} \setminus M$. Thus $M \subseteq (X \setminus V) \cup K$. Let $B = \mathcal{X} \setminus V$. Then *B* is an $m_{\mathcal{X}}$ -closed such that $M \subseteq B \cup K$.

ANJS, Vol.25 (2), June, 2022, pp. 34-38

Theorem 2.2. If each non-empty m_{χ} -O set of an m-space χ is an infinite and χ have the Property (I), then m_{χ} - ω -Cl(V) = m_{χ} -Cl(V) for each m_{χ} -O set V of χ .

Proof. Clearly $m_{\chi} \cdot \omega - \operatorname{Cl}(V) \subseteq m_{\chi} - \operatorname{Cl}(V)$ by proposition (2.3). Now, let $x \in m_{\chi} - \operatorname{Cl}(V)$ and B be an $m_{\chi} \cdot \omega$ -O subset containing *x*. Then there exists an m_{χ} -O set *U* containing *x* and a countable set *M*, such that $U \setminus M \subseteq B$. Thus $(U \setminus M) \cap V \subseteq B \cap V$ and so $(U \cap V) \setminus M \subseteq B \cap V$. Since $x \in U$ and $x \in m_{\chi}$ -Cl(*V*), $U \cap V \neq \emptyset$. Since \mathcal{X} have the Property (I), $U \cap V$ is an m_{χ} -O and by the hypothesis $U \cap V$ is an infinite. Therefore, $B \cap V \neq \emptyset$, which means that $x \in \mathcal{X} \cdot \omega$ -Cl(*V*). Hence m_{χ} -Cl(*V*) $\subseteq m_{\chi} \cdot \omega$ -Cl(*V*) and therefore m_{χ} -Cl(*V*).

Corollary 2.1. If each non-empty $m_{\mathcal{X}}$ -O set of an *m*-space \mathcal{X} is an infinite and \mathcal{X} have the Property (I), then $m_{\mathcal{X}}$ - ω -int(V) = $m_{\mathcal{X}}$ -Int(V) for each $m_{\mathcal{X}}$ -closed set V of \mathcal{X} .

Proof. Clearly m_{χ} -Int(*V*) $\subseteq m_{\chi}$ - ω -Int(*V*) by Proposition 2.3. Now, suppose $x \in m_{\chi}$ - ω -int(*V*). Then $x \notin \chi \setminus m_{\chi}$ - ω -Int(*V*) and so $x \notin m_{\chi}$ - ω -Cl(*V*^c). By Theorem 2.3, we conclude that $x \notin m_{\chi}$ -Cl(*V*^c) and so $x \in m_{\chi}$ -Int(*V*). Hence m_{χ} - ω -Int(*V*) $\subseteq m_{\chi}$ -Int(*V*) and therefore m_{χ} - ω -Int(*V*) = m_{χ} -Int(*V*).

Definition 2.15. Let \mathcal{X} be a minimal space, $V \subseteq \mathcal{X}$, V is called $m_{\mathcal{X}}$ - ω -dense in \mathcal{X} if $m_{\mathcal{X}}$ - ω -cl $(V) = \mathcal{X}$.

Definition 2.16. An *m*-space $(\mathcal{X}, m_{\mathcal{X}})$ is called minimal compact if every $m_{\mathcal{X}}$ -O cover of \mathcal{X} has a finite subcover.

Definition 2.17. A minimal space $(\mathcal{X}, m_{\mathcal{X}})$ is called *m*-*b*-compact if for every $m_{\mathcal{X}}$ -*b*-O cover has a finite subcover.

Definition 2.18. A minimal space $(\mathcal{X}, m_{\mathcal{X}})$ is called *m*- ω compact if for every $m_{\mathcal{X}}$ - ω -O cover has a finite subcover.

Definition 2.19. A minimal space $(\mathcal{X}, m_{\mathcal{X}})$ is called $m \cdot \omega_b$ compact if for every $m_{\mathcal{X}} \cdot \omega_b$ -O cover has a finite subcover.

Proposition 2.5. Let $(\mathcal{X}, m_{\mathcal{X}})$ be minimal space, then:

- (i) Every *m*-b-compact space is *m*-compact.
- (ii) Every *m*- ω -compact space is *m*-compact.
- (iii) Every m- ω_b -compact space is m-compact, m-b-compact and m- ω -compact.

Proof. (i) Let $(\mathcal{X}, m_{\mathcal{X}})$ be *m*-*b*-compact space and $c = \{U_{\alpha} : \alpha \in \Lambda\}$ be $m_{\mathcal{X}}$ -open cover for \mathcal{X} , but every $m_{\mathcal{X}}$ -open set in $m_{\mathcal{X}}$ -*b*-open set, so c is $m_{\mathcal{X}}$ -*b*-open cover for *m*-*b*-compact space \mathcal{X} , so $\mathcal{X} \subseteq \bigcup_{i=1}^{n} \{U_{\alpha_i}\}$, then \mathcal{X} is *m*-compact space

The proof of other parts is similar to the proof of (i).

Proposition 2.6. Every $m_{\chi} - \omega_b$ -closed subset of $m - \omega_b$ -compact space is also $m - \omega_b$ -compact.

Proof. Let *F* be $m_{\mathcal{X}} - \omega_b$ -closed subset of $m - \omega_b$ -compact space \mathcal{X} and $c = \{U_{\alpha} : \alpha \in \Lambda\}$ be $m_{\mathcal{X}} - \omega_b$ -open cover to *F*, that is $F \subseteq \bigcup_{\alpha \in \Lambda} \{U_{\alpha}\}$, so:

 $\mathcal{X} \subseteq (\bigcup_{\alpha \in \Lambda} \{U_{\alpha}\}) \cup (\mathcal{X} - F)$

but \mathcal{X} is $m - \omega_b$ -compact, then $\mathcal{X} \subseteq (\bigcup_{i=1}^n U_{\alpha_i}) \cup (\mathcal{X} - F)$ that is $F \subseteq \bigcup_{i=1}^n U_{\alpha_i}$, therefore F is $m - \omega_b$ -compact.

Definition 2.20. A function $f: (\mathcal{X}, m_{\mathcal{X}}) \to (Y, m_Y)$ is said to be $m \cdot \omega_b$ -continuous if $f^{-1}(U)$ is $m_{\mathcal{X}} \cdot \omega_b$ -open in \mathcal{X} for every $m_{\mathcal{X}}$ -open set in Y.

Proposition 2.7. Let $f: (\mathcal{X}, m_{\mathcal{X}}) \to (Y, m_Y)$ be surjective $m \cdot \omega_b$ -continuous function, if \mathcal{X} is $m \cdot \omega_b$ -compact space, then *Y* is *m*-compact.

Proof. Let $c = \{U_{\alpha} : \alpha \in \Lambda\}$ be m_{χ} -open cover for *Y*, that is $Y \subseteq \bigcup_{\alpha \in \Lambda} \{U_{\alpha}\}$, then:

$$\mathcal{X} = f^{-1}(Y)$$

$$\subseteq f^{-1}(\bigcup_{\alpha \in \Lambda} \{U_{\alpha}\})$$

$$= \bigcup_{\alpha \in \Lambda} f^{-1}(\{U_{\alpha}\})$$
but \mathcal{X} is m - ω_b compact, then:

$$\mathcal{X} \subseteq \bigcup_{i=1}^n f^{-1}(\{U_{\alpha_i}\})$$
and so:

$$Y = f(\mathcal{X})$$

$$\subseteq \bigcup_{i=1}^n ff^{-1}(\{U_{\alpha_i}\})$$

$$= \bigcup_{i=1}^n (\{U_{\alpha_i}\})$$

Therefore, Y is m-compact space.

Acknowledgement

We wish to express our sincere thanks to the Mustansiriyah University of Mustansiriyah / College of Science / Department of Mathematics for supporting this work.

Conflicts of Interest

The authors declare that there is no conflict of interest.

References

- [1] Ali. H. J.; "On *N_c*-continuous functions", Italian Journal of Pure and Applied Mathematics, 44: 558-566, 2020.
- [2] Ali H. J. and Dahham M. M.; "When *m*-Lindelof sets are m_{χ} -semi closed, J. Phys.; Conf. Ser., 1003012044, 2018.
- [3] Hdeib H. X.; "ω-Closed mapping", Rev. Colomb. Math., 16 (1-2): 65-78, 1982.
- [4] Humadi N. K. and Ali H. J.; "Certain types of function by using supra ω_c -continuous sets", Journal of Physics: Conference Series, 1294 (3), 032016, 2019.
- [5] Humadi N. K. and Ali H. J.; "Certain types of functions by using supra w[^] -open sets", Italian Journal of Pure and Applied Mathematics, 44: 589-601, 2020.
- [6] Maki H.; "On generalizing semi-open and pre-open sets", Report for Meeting on Topological Spaces and its Applications", Yatsushiro College of Technology: 13-18, 1996.
- [7] Noiri T.; Al-Omari A. and Noorani M.S.; "On- ω_b -open sets and *b*-Lindelof spaces", European Journal of Pure and Applied Mathematics, 1 (3): 3-9, 2008.

Al-Nahrain Journal of Science

ANJS, Vol.25 (2), June, 2022, pp. 34-38

- [8] Popa V. and Noiri T.; "On *m*-continuous functions", An. Univ. Dunarea De Jos Galati, Ser. Mat. FiX. Teor., 2 (18): 31-41, 2000.
- [9] Sarsak M.S, "On *b*-open sets and associated generalized open sets", Questions and answers in General Topology, 27:.157-173, 2009.