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The main objective of this article is to study the degree of best one-sided multiplier
approximation of unbounded functions g eL, ,, (" ),Y =[-11] by means of the average

modulus of smoothness by using sequences of algebraic polynomials Pn of degree less than n,
n>r+1,also in this search we shall prove a direct theorem by sequences Pn and some results.
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1. Introduction

Al-Saidy and Al-Saad [1] in 2014 obtained the degrees of
pointwise summability in the "one-sided" approximation of
functions.

Al-Saidy and Jawad [2] in 2015 studied best one-sided
approximation by different operators in weighted spaces,
also Al-Saidy and Abeer [3] in 2017 achieved the best one
multiplier approximation of functions by Bernstein-
Durrmeyer operators.

Al-Saidy and Ali [4] in 2020 obtained the degree of best
multiplayer approximation of periodic unbounded functions
using trigonometric operators.

2. Basic Concepts
In the beginning, we will put the most important
definitions and basic lemmas which are used later in this

paper.

Definition 1, [5]. A series Y a, is called a multiplier
n=0

convergence if there is a sequence {y,}"_ , such that
> a,y, <o and we will say that {\, |~ isamultiplier

n=0
for the convergence.

Definition 2, [5]. For any real valued function g, if there
exists a sequence {v,} in which jgwn (x)dx <o,
X

o0
n=0"

then we say that v, is a multipliers for the integral.
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Definition 3. Let g €lpy, (V)Y =[-11],p €[l o) be

the space of all unbounded real valued functions f, such that
[gw,(y)dy <o with the norm:
y

1/p
||g||p,\un=(j|g\vn(y)l"dyj Ly €Y
X

Definition 4. For g elpy, (V)Y =[-11], we will

define the following concepts:

L o(9,8)p,, =sup|g(y +h)—g(y)||p v is  the
lh|<& n

multiplier modulus of continuity of the function g for all
3> 0.

2. %.(9.9)p,y, =[g..9),, »pel0=) keN is

the multiplier averaged modulus of smoothness of g of
order k.

Definition 5. Let g Loy, Y)Y =[-11] be the degree

of best "one-sided" multiplier approximation of a function
g with respect to algebraic polynomials is given by:

E @pygy =i ([P0 =l #Pns G <Poy Py (V) <

9(y)<4, )

where P, be the set of all algebraic polynomials.
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Lemma 1, [6]. Let g eW S (W be the class of all

functions on [-1,1] with absolutely continuous (r — 1)-th
derivative), r > 0, there is a sequence of algebraic
polynomials P, of degree less than n, n > r + 1, such that:

K r+l
|g(y)_Pn(Y)|Sn—rr(«/l—y_2) N
| 1Y
Cr%(dl—yz +Hj Y e[-11]

Lemma 2, [5]. Let w(t), t > 0 be the modulus of continuity
and B > 0 is constant, then there is a sequence of algebraic
polynomials qn(y) of degree less than or equal to n, such that
forally e [-1,1]

;
RVE
qun(y)_\/l_yz{TyJ <
C «?1— 2+i 1 O<r<1
YO e

where C is a constant which depends on 3 only.

Lemma 3. For any r e (0,1), there exists a sequence of
algebraic polynomials g,/ (y),y € [-1,1], such that:

OSQH(Y)—(%M/l—YZJSS

n r
Proof. Consider the function:

o(t) :(%Ht |j , tel[-11]

for each m € N, let Zy be the best approximation
polynomial of ¢. By Jackson's theorem [7], we have:

12 00 <=
m

Putting t = Jl—y 2

Ifm=n

Zn(W)_[%"’ 1—y2)r

Cc
< —
nl'

Zn(Ay)—(%+ ij

where Ay =1-y2,

C 1 =) _cC
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C (1 e
OSZn(Ay)+n—r—(H+,/ij sn—r

1 '
OSQF(Y)—(HﬁL AYJ Sn_r

where q;(y)zzn(Ay)+:—r. u

Lemma 4. If r € (0,1), then there is a sequence of algebraic
polynomials g, (y), such that:

c 1 '
—n—qun(y)— H+\/Ay <0
Proof. From the proof of Lemma 3, we have:

r
—%szn(Ay)—[l+ ij sg
n n

nr

C C C (1. =Y

where qg(y)zzn(Ay)—g.Thus:
nl’
C 1 '
—n—,Sqn‘(y)—(T\/ij <0 m
Lemma5, [8]. For g e M , then t(g,8) =0O(3), &> 0and
6— 0.
The following lemma is easy to prove.

For then

1(9.8),,,, =0().

Lemma 6. gely,, V)Y =[-11 ,

3. Main Results
In this section, we will be get the approximation for
gely,, (P),¥Y=[-11] by using two polynomials,

Py (y) and py (y).

Theorem 1. If g € Loy, (¥), ¥=[-11],0<r<1, then
there are two polynomials py (y) and p;,(y), for all

y =[-11], suchthat py . (y)<g(y)<pq.(y).
Proof. From Lemma 1, there is pn, so that:

|pn(y)—g(y)ﬁ%(ﬁyz)”l+
irIT (iﬂll—yzjr

n
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K 1 C.In(1 r CK,(1 /—).CC,In_CK, (1 >
——r(\/l—yz) —r—(ﬁ+ 1—y2] < nar HJF 1-y< |+ nar+l < nar HJF 1-y< )+

nr nr+1
2 + CC. In
|on(y)—<91(y)S%(xil—yz)r r e
C max{K,.C,}

' 2
() )
r 2Cmax{K .C, }In
Adding %(\fl—yz)m irr(nh/l y j to the < anr (nh/l y j

both sides of the last inequality, implies to: Putting 2C max{Kr ,Cr} to be C, we have:
K~ r+1 >
0<p(y)-9()+—{i-y?) + <Ko foyE) s

C In 2K~ r+l1 r
nr+1 (n \él y j S_nrr( fl—yZ) + 2Cr|n(1+ 1_y2j +@(1+ 1_y2j
n

nl’+1 n n

2C, In ; 4
nHl[ J @ S2K,( imy?) 1+c;2|rn£n = j ©

nl'
From Lemma 2, we have:

Hence 0<p;,(y)—g(y), and therefore:
0<q,(y)-1- yz{ ] a(y)<pir(y) @

Similarly, we can prove that:
; r
(i, iz ) 2K, [ —5\*" C, In(1
(n+ y jn2r @ - nrr( 1—y2) _an H+ 1—y2 <
The inequality (2) multiplied by K, , we get: P (y)-g(y)<0
n,r -

) ) h-y? ' and so:
OSqun(y)—Krdl—yz[TJ Prr(Y)<g(Y) (8)

1 7)1 From (7) and (8), we get:
SCKr[T 1_y2j ®) Par(Y)<g(Y)<pi (y) =

an

From Lemma 3, we have: Theorem2. Let g el (/)Y =[-11], then:

e
0<agq(y)- ( +l-y j =hr (4) ”m’r(y)_g(y)”wn g(f,nir}
Pwn

Proof. From (6), we have:

Celn C,lin "'ccC.In + K, =\
0<q;(y) Lofimy7| <S80 () pic (V-9 <= (-y?) T+
r+1 nr+l n nr nr+ C I
Add 1), (3) and (5), t: nn
ing (1), (3) and (5), we ge nzr (n ﬁj

K:r( /,=l_y2)r+1+
2C, In " CcK, (1 C,In
1 (n Vi-y j n—rr(—+’\ll‘y2]+ﬁ

2Kr ( 1_y2)r+1 .

[ O-90),, <

Crlz?n(l+ 1—}’2]
n n

P.Wn
n

where:
. B K CI‘ In N _ P.wn
pn,r(y)_pn(y)+ rQn(y)+n2r+lqn(y) <2Kr (\/m)rﬂ Cr|n
Since: - n' PsWn n2r+l P.Wn
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2K, 1 — C,In
< nr —J.l( 1_y ) dy+n2r+l+
C/nnt —

n2|’ ;I.l 1_y dy
_Cyr Cilnn  zC, Inn
T pr | perst nar
_Cirinn+nC, Inn
B n2r+i
<Clr C, <C
Sher Tnaa S pr

By Lemma 6, r(g i) = O(ij . Then:
n’ n’

o), o)
n P.wn n

Theorem 3. Let g Lo, Y ),Y =[-11], then:

B 1
lo)-par )], ST(f ’n_rj

Proof. Since:
2K, >\t C.Inn(1
S

g(x)—pn,(y)<0
Then:

2K, (W)"H_’_Cr Inn [l_’_

Py

1—y2js

n’ n’ n
Prr(y)—g(y)=0

2K~ r+l
0<py, (¥)-g(y) < (i-y?) T+

nl’
Cr|nn(l+\/m]

nr n

1—y2j2

Similarly, as in the proof of Theorem 2, it may be proved

that:
lo)=pa,r )], ST(g,nirj m

Py
Theorem4.Let gel,, ()Y =[-11], then:

- 1
En(@)py, SCr[g,n—r]

Proof.
s O=par O, =[P ) -a(¥)+a(y)-

P.wp

P W,

<[pir -9, +lo)-pa .

From Theorems 2 and 3, we get:
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1 1
”prT,r ()= Pas (')"p,wn : T(g 'n_rjp,\un —H{g ’n_'jpvwn

SZt(g,nirj
pv‘Vn

Hence:

- 1
En(@)p.y, gCr(g,n—rj |

PWn
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