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1. Introduction 
Fractional calculus began around 300 years ago, on 

September 30, 1695, when Gottfried Leibniz received a 

letter from G. A. L'Hôpital, which answered the question 

"what meaning of the derivative of order 1/2?" However, 

fractional calculus did not develop in the same way as 

integer calculus until the twentieth century, when life 

became more complex and a slew of scientific inventions 

improved scientific research tools. As a result, scientists 

developed a slew of fractional calculus methods, which are 

now used in fields such as engineering and 

communications, etc. plays a key role in many sectors of 

research, particularly engineering, where the study of 

fractional differential equations stability theory is essential 

[10]. 

Branches of fractional calculus in different fields were 

started earlier in 1695, but the classical calculus found 

numerous applications in science and engineering, which 

affect later on fractional calculus to have so many 

applications which are solved successfully that are difficult 

to be solved using classical calculus. Fractional calculus 

remained inactive until the twentieth century, when it 

became necessary to simulate real-world issues in fields like 

as biology, bioengineering, astronomy, physics, and 

engineering [1,2]. Hence after, fractional calculus, followed 

by fractional order ordinary differential equations (FODEs), 

is a crucial subject in applied mathematics [3-5]. In 

continuative to what was mentioned above, stability 

analysis FODEs is more difficult to study than the stability 

analysis in ordinary differential equations (ODEs), because 

fractional derivatives have weakly singular kernels and 

nonlocal [4-6]. Also, as is well known the dynamical system 

is stable when it is allowed to perform persistent tiny 

oscillations about the state of motion, or around the system 

equilibrium. This notion may be utilized in a variety of ways 

to examine the stability of ODEs in general and FODEs in 

particular. The first approach uses eigenvalues, whereas the 

second was entrenched by Lyapunov at the end of the 19th 

century and was successfully applied to whole whose 

stability can be studied using the first approach, and even so 

for those problems in which the first approach failed to be 

applied problems. The direct method of Lyapunov's is 

abbreviated as the direct method, since it may be used, 

directly to differential conditions with solution's no prior 

knowledge and applied [8]. Beyond this method, the 

primary concept is to develop a scalar function, say V, that 

meets certain stated requirements in order to assess the 

stability of the system of ODEs [6].  

Matignon was the first researcher how in present 

stability results linked to the restricted modeling of FODEs 

in his Ph.D. thesis in 1994 [5,8]. There are also a number of 

significant conclusions relating to the linear system of 

FODEs with Caputo fractional derivative of order 𝛼,where 

0 < α ≤ 1, such as, Qian et al. in 2012 [8] examined the linear 

FODEs were he used Riemann-Liouville fractional order 

derivative. Following that, a number of scholars looked at 

the stability of nonlinear FODEs with fractional order 

derivatives between 0 and 1, see for more information [6]. 
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It is also worth noting that, owing to the complexity of 

the ODEs or FODEs, using trajectories to verify the 

asymptotic stability of the system is not always viable. 

Backstepping is a nonlinear control technique for stabilizing 

systems of differential equations, whether ordinary or 

partial, in which it is based on the concept of introducing a 

set of intermediate variables and the procedure of precisely 

given negativity of Lyapunov function derivatives that help 

us to build a common control Lyapunov function for the 

system [7–9]. Because of this nature, the backstepping 

technique is easy applied method to different classes of 

systems, where there are different types of backstepping 

method depending on the number of control functions 

introduced in the system. The first type of backstepping has 

virtual variables and control function in the last equation of 

dynamic system, which is called the adaptive backstepping 

method while the second type it has virtual variables and 

control functions in each equation 𝑛  of the dynamic 

system[7,9-11].  

In this work, we aim to determine the Lyapunov 

characterization function for the asymptotic stability of the 

solution of the FODEs defined by the adaptive backstepping 

approach in this study we will explore. The backstepping 

stabilization approach that has been refined and enhanced to 

be more relevant for systems Caputo FODE's in order to 

obtain asymptotically stable solutions. 

 

2. Preliminaries 
The concepts of stability, control and solution of specific 

systems are of excellent importance in many real-life 

problems. Therefore, their basic essential notions appeared 

to be required to comprehend such issues; and thus, we will 

provide some of them in this part, which are required for the 

remainder of this article. 

Obviously, we start first with the basic fundamental 

definitions in fractional calculus of integration and 

derivatives of those which will be used in this work. 

 

Definition 1, [12-15]. The left and right Riemann-Liouville 

fractional integrals of order 𝛼 ∈ 𝑅+, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁 

of continuous function 𝑦 over certain domain are given 

respectively by:  

𝐼𝑎,𝑡
𝛼𝑅𝐿 𝑦(𝑡) =

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

𝑎
𝑦(𝜏)𝑑𝜏  …(1) 

and 

𝐼𝑎,𝑡
𝛼𝑅𝐿 𝑦(𝑡) =

1

Γ(𝛼)
∫ (𝜏 − 𝑡)𝛼−1
𝑏

𝑡
𝑦(𝜏)𝑑𝜏  …(2) 

where Γ stands for the standard gamma function. 

 

Definition 2, [16,17]. The left and right Riemann–Liouville 

fractional derivative of order 𝛼 ∈ ℝ+, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈
𝑁 of continuous function 𝑦 over certain domain are defined 

respectively as: 

𝐷𝑎,𝑡
𝛼𝑅𝐿 𝑦(𝑡) =

1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝑡 − 𝜏)𝛼−1
𝑡

𝑎
𝑦(𝜏)𝑑𝜏  …(3) 

and 

𝐷𝑎,𝑡
𝛼𝑅𝐿 𝑦(𝑡) =

(−1)𝑛

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝜏 − 𝑡)𝛼−1
𝑏

𝑡
𝑦(𝜏)𝑑𝜏  …(4) 

 

Definition 3, [12, 18]. The left and right Caputo fractional 

derivative of order 𝛼 ∈ ℝ+, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁  of a 

continuous function 𝑦  over a certain domain are defined 

respectively by: 

𝐷𝑡
𝛼

𝑎
𝐶 𝑦(𝑥) =

1

𝛤(𝑛−𝛼)
∫

1

(𝑥−𝜏)𝛼−𝑛
𝑦(𝑛)(𝑡)𝑑𝜏

𝑥

𝑎
  …(5) 

and 

𝐷𝑏
𝛼

𝑡
𝐶 𝑦(𝑡) =

(−1)𝛼

𝛤(𝑛−𝛼)
∫

1

(𝜏−𝑡)𝛼−𝑛
𝑦(𝑛)(𝜏)𝑑𝜏

𝑏

𝑥
  …(6) 

The considered system of FODEs is of Caputo fractional 

derivative, which has the form: 

𝐷𝑥
𝛼

𝑡0
𝐶 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 𝑥(𝑡0) = 𝑥0  …(7) 

 where 𝛼 ∈ (0,1 ], 𝑓: [𝑡0, ∞] × Ω → 𝑅𝑛  is a piecewise 

continuous function in t, locally Lipschitzian in x and Ω ⊆
ℝ𝑛 is a certain domain that contains the origin. Also, it is 

necessary to recall that 𝑥∗  is an equilibrium point of the 

dynamic system Error! Reference source not found. if 

𝑓(𝑡, 𝑥∗) = 0. 

The direct methods of stability may be used to study 

quantitively behavior of system Error! Reference source 

not found. constructing the Lyapunov function, which must 

ensure the modified system's asymptotic stability and, is one 

of the essential instruments in the backstepping approach. 

Lyapunov functions are scalar functions used to show and 

establish the stability of solutions or a system's equilibrium 

point, assuming they exist and are not unique. Before 

entering into and introducing the major topic of this article, 

we need a more additional concepts to refresh our minds on 

the Lyapunov functions.  

If a continuous function 𝑉(𝑡) > 0 for all 𝑡 ≠ 0, then V 

is called positive definite and  where a function 𝑉(𝑡) <
0 , for all 𝑡 ≠ 0,  is called negative definite. The main 

theorem of stability using Lyapunov direct method is that 

stated next: 

 

Theorem 1, [27-30]. Suppose that 𝑉 is a scalar continuous 

real valued function of the state variables 𝑡1, 𝑡2, … , 𝑡𝑛 

defined on the region Ω containing the origin and if: 

i. 𝑉(𝑡) > 0 , ∀𝑡 ∈ Ω and �̇�(𝑡) ≤ 0 , then the zero 

solution is stable. 

ii. 𝑉(𝑡) > 0 , ∀𝑡 ∈ Ω and �̇�(𝑡) < 0, ∀𝑡 ∈ Ω  , then the 

zero solution is asymptotically stable. 

iii. 𝑉(𝑡) > 0 , ∀𝑡 ∈ Ω and �̇�(𝑡) > 0 , ∀𝑡 ∈ Ω , then the 

zero solution is unstable. 

 

Regarding Lyapunov functions, we have the following 

conclusions for the fractional order derivative. 

 

Theorem 2, [7]. Suppose a Lyapunov function defined as 

𝑉 =
1

2
𝑧2 , where the variable of interest is z. If 𝑧 𝐷𝑡

𝛼
0
𝐶 𝑧 <

0, for all 0 < 𝛼 ≤ 1 is ensured, then 𝑧�̇� < 0 is satisfied. 

 

In the next theorem, the relation between Lyapunov 

function and Caputo fractional order derivative will be 

given. 
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Theorem 3, [17]. Suppose Lyapunov function 𝑉(𝑡) ∈ 𝑅 , 

which has Caputo fractional derivative of order 𝛼, 0 < 𝛼 ≤
1, then: 

1

2
𝐷𝑡
𝛼

0
𝐶 𝑉2(𝑡) ≤ 𝑉(𝑡) 𝐷𝑡

𝛼
0
𝐶 𝑉(𝑡), ∀ 𝑡 > 0  …(8) 

 

Theorem 4, [17]. If 𝑡 = 0 is an equilibrium point of the 

Caputo fractional order autonomous system:  

𝐷𝑡
𝛼

0
𝐶 𝑦(𝑡) = 𝑓(𝑦(𝑡)), 0 < 𝛼 ≤ 1  …(9) 

where 𝑦(𝑡) ∈ 𝑅 . Then: 

a) If 𝑦(𝑡) 𝐷𝑡
𝛽

0
𝐶 𝑦(𝑡) ≤ 0 , then the point 𝑦 = 0 is stable.  

b) If 𝑦(𝑡) 𝐷𝑡
𝛽

0
𝐶 𝑦(𝑡) < 0 ,  then the point 𝑦 = 0  is 

asymptotically stable. 

 

3. The Adaptive Backstepping Method for System 

of FODE's 
For stabilizability and solvability of a specific FODEs 

system of the form: 

𝐷𝑡
𝛼1

0
𝐶 𝑦1 = 𝑓1(𝑦1, 𝑦2)            

𝐷𝑡
𝑎2

0
𝐶 𝑦2 = 𝑓2(𝑦1, 𝑦2, 𝑦3)     

⋮
𝐷𝑡
𝑎𝑛

0
𝐶 𝑦𝑛 = 𝑓𝑛(𝑦1 , 𝑦2, … , 𝑦𝑛)}

 
 

 
 

  …(10) 

where 0 < i  1, i = 1, 2, …, n. We add a controller function 

𝑢  to be applied for the last equation of the FODEs the 

adaptive backstepping method to a specific system as a 

result, this system of fractional order derivatives will take 

the following structure:  

𝐷𝑡
𝛼1

0
𝐶 𝑦1 = 𝑓1(𝑦1, 𝑦2)                         

𝐷𝑡
𝑎2

0
𝐶 𝑦2 = 𝑓2(𝑦1, 𝑦2, 𝑦3)

⋮
                   

𝐷𝑡
𝑎𝑛

0
𝐶 𝑦𝑛 = 𝑓𝑛(𝑦1 , 𝑦2, … , 𝑦𝑛) + 𝑢(𝑡)}

 
 

 
 

  …(11) 

where 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡))𝜖𝑅
𝑛  is the state 

vector of the system, 𝛼𝑖 ∈ (0,1],  𝑓𝑖 ,  𝑖 = 1,2, … , 𝑛  are 

continuous functions and 𝑢 is the controller input functions, 

which will be introduced for the purpose for asymptotically 

stabilizing the original system of FODEs asymptotically 

and as a consequence find its solution [28-30]. 

Now the objective is to apply the backstepping method 

in order to design a state feedback control function, which 

asymptotically stabilizes the origin system. The design 

procedure may for simplify approach divided into n – steps, 

as it is given in the next theorem: 

 

Theorem 5. Suppose the system of FODEs Error! 

Reference source not found., with state variable 𝑥 ∈ ℝ𝑛 

and controller function 𝑢:ℝ𝑛 → ℝ.  If the Lyapunov 

functions of the lower subsystems of the FODEs system 

Error! Reference source not found. are supposed to be:  
𝑉1(𝑧1) = 𝑝1𝑧1𝑝1 , 𝑝1 ∈ ℝ

+, 𝑧1(𝑡) ∈ ℝ                  

𝑉𝑖(𝑧1, 𝑧2, … , 𝑧𝑖) = 𝑉𝑖−1(𝑧1, 𝑧2, … , 𝑧𝑖−1) + 𝑝𝑖𝑧𝑖𝑝𝑖
} 

 …(12) 

Where 𝑝𝑖 ∈ ℝ
+, 𝑧𝑖(𝑡) ∈ ℝ , 𝑖 = 2,3, … , 𝑛, then there exists 

a nonlinear controller function 𝑢, which make system 

Error! Reference source not found. asymptotically 

stable and solvable, where: 

𝛽𝑖(𝑧1, 𝑧2, … , 𝑧𝑖) = 𝑓𝑖(𝑧1, 𝑧2, … , 𝑧𝑖 , 𝑥𝑖+1, … , 𝑥𝑛) − 𝑧𝑖   
for all 𝑖 = 2,3, … , 𝑛. 

Proof. As it is followed in the backstepping method, for 

simplicity and comparison purpose the proof will be 

breakdown into steps as follows: 

Step 1: We will discuss the stability of first subsystem by 

taking the first equation of system of Error! Reference 

source not found., namely: 

𝐷𝑡
𝛽1

0
𝐶 𝑦1 = 𝑓1(𝑦1, 𝑦2)  …(13) 

where 𝑦2  represents a virtual controller introduced for 

stability, and define 𝑦1 = 𝑧1, then derive this transformation 

both sides, with fractional order 𝛽1 using Caputo fractional 

order derivative with respect to time t, to get: 

𝐷𝑡
𝛽1

0
𝐶 𝑧1 = 𝐷𝑡

𝛽1
0
𝐶 𝑦1  = 𝑓1(𝑧1, 𝑦2, … , 𝑦𝑛)  …(14) 

assuming the first Lyapunov function in quadratic form as: 

𝑉1(𝑧1) =
1

2
𝑧1
2 = 𝑧1

𝑇𝑝1𝑧1, 𝑝1𝜖ℝ
+  …(15) 

with its derivative, with respect of time t is: 

�̇�1(𝑧1) = 𝑧1𝑧1̇ = − 𝑧1
𝑇𝑞1𝑧1 < 0  …(16) 

where 𝑞1  is a positive constant. Since it is required 

that 𝑧1 𝐷𝑡
𝛼1

0
𝐶 𝑧1 < 0 that define by using Theorem 2, 𝑧1𝑧1̇ <

0  that is given by using Theorem 3 and 4, �̇�1(𝑧1)  be a 

negative definite function in ℝ𝑛 , with application of 

Lyapunov stability theory, then equation Error! Reference 

source not found. will be asymptotically stable. It is clear 

that if we take the virtual control 𝑦2 = 𝛽1(𝑧1), then equation 

Error! Reference source not found. is asymptotically 

stable. The function 𝛽1(𝑧1) had better to be assessed while 

𝑧2 = 0 is regarded as a controller. 

Step 2: To make the second equation of system Error! 

Reference source not found. stable, define the error 

function between 𝑦2 and 𝛽1(𝑧1) to be as follows: 

𝑧2 = 𝑦2 − 𝛽1(𝑧1)  …(19) 

hence the time derivative of the error dynamics of 

subsystem Error! Reference source not found., is given 

by: 

𝐷𝑡
𝛼1

0
𝐶 𝑧1 = 𝑓1(𝑧1, 𝑦2, 𝑦3… , 𝑦𝑛)                                         

𝐷𝑡
𝛼2

0
𝐶 𝑧2 = 𝑓1(𝑧1, 𝑧2+𝛽1(𝑧1), 𝑦3… , 𝑦𝑛) − 𝐷𝑡

𝛼2
0
𝐶 𝛽(𝑧1)

} 

 …(20) 

where 𝑥3  is a virtual controller of subsystem Error! 

Reference source not found., which is chosen so that to 

stabilize this subsystem and suppose it is equal to 𝛽1(𝑧1). 

In order to find the second Lyapunov function 𝑉2 , 
which stabilizes asymptotically equation Error! Reference 

source not found., suppose 𝑉2 to be defined by: 

𝑉2(𝑧1, 𝑧2) =
1

2
𝑧1
2 +

1

2
𝑧2
2  

= 𝑉1 + 𝑧2
𝑇𝑝2𝑧2,  𝑝2 ∈ ℝ

+  …(21) 

then the derivative of 𝑉2 with respect to time 𝑡 is: 

 �̇�2(𝑧1, 𝑧2) = 𝑧1�̇�1 + 𝑧2�̇�2  

 = − 𝑧1
𝑇𝑞1𝑧1 − 𝑧2

𝑇𝑞2𝑧2 < 0  …(22) 

where 𝑞1 and 𝑞2 are positive constants. By chosen suitable 

value of 𝛽1(𝑧1) to make 𝑧2 𝐷𝑡
𝛽2

0
𝐶 𝑧2 < 0, we get: 

𝑧1 𝐷𝑡
𝛽1

0
𝐶 𝑧1 + 𝑧2 𝐷𝑡

𝛽2
0
𝐶 𝑧2 < 0  …(23) 

Since that by using Theorem 2, it is known that: 

𝑧1𝑧1̇ + 𝑧2𝑧2̇ < 0 …(24) 
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we get �̇�2(𝑧1, 𝑧2) is a negative definite function in ℝ𝑛 and 

by using Lyapunov stability theory with Theorems 3 and 4, 

then the subsystem Error! Reference source not found. is 

asymptotically stable. Similarly, if the virtual control is 

taken to be 𝑦3 = 𝛽2(𝑧1, 𝑧2)  is assumed to the subsystem 

Error! Reference source not found. asymptotically stable.  

Step n: As in the above steps, the same approach will be 

followed, we arrive at the nth step by defining the error 

function 𝑧𝑛 as: 

𝑧𝑛 = 𝑦𝑛 − 𝛽𝑛−1(𝑧1, 𝑧2, … , 𝑧𝑛)  …(25) 

and suppose that z1, z2, … , zn are the state variables of the 

overall transformed system is given by: 

𝐷𝑡
𝛽1

0
𝐶 𝑧1 = 𝑓1(𝑧1, 𝑥2, 𝑦3… , 𝑦𝑛)  

𝐷𝑡
𝛼2

0
𝐶 𝑧2 = 𝑓1(𝑧1, 𝑧2+𝛽1(𝑧1), 𝑦3… , 𝑦𝑛) − 𝐷𝑡

𝛼2
0
𝐶 𝛽1(𝑧1)  

⋮ 

𝐷𝑡
𝛼𝑛

0
𝐶 𝑧𝑛 = 𝑓𝑛(𝑧1, 𝑧2+𝛽1(𝑧1), … , 𝑧𝑛 + +𝛽𝑛−1(𝑧1, 𝑧2, …, 

𝑧𝑛−1)) − 𝐷𝑡
𝛽𝑛

0
𝐶 𝛽𝑛−1(𝑧1, 𝑧2, … , 𝑧𝑛) + 𝑢  

  …(26) 

and define Lyapunov function as: 

𝑉𝑛(𝑧1, 𝑧2, … , 𝑧𝑛) =
1

2
𝑧1
2 +

1

2
𝑧2𝑧2

2 +⋯+
1

2
𝑧𝑛−1
2 +

1

2
𝑧𝑛
2  

 = 𝑉𝑛−1(𝑧1, 𝑧2, … , 𝑧𝑛−1) +
𝑧𝑛

𝑇𝑝𝑛𝑧𝑛 , 𝑝𝑛𝜖ℝ
+  …(27) 

Also, differentiate 𝑉𝑛 with respect to time t, give: 

�̇�𝑛(𝑧1, 𝑧2, … , 𝑧𝑛) = 𝑧1𝑧1̇ + 𝑧2𝑧2̇ +⋯+ 𝑧𝑛𝑧�̇�  

 = − 𝑧1
𝑇𝑞1𝑧1 − 𝑧2

𝑇𝑞2𝑧2 −⋯− 𝑧𝑛
𝑇 

 …(28) 

where 𝑞1,𝑞2,𝑞3,…,𝑞𝑛are positive constants. Also, here we 

will get 𝑧1𝑧1̇ + 𝑧2𝑧2̇ +⋯+ 𝑧𝑛𝑧�̇� < 0 , when we choose 

suitable controller function 𝑢 and: 

𝑧1 𝐷𝑡
𝛼1

0
𝐶 𝑧1 + 𝑧2 𝐷𝑡

𝛼2
0
𝐶 𝑧2 +⋯+ 𝑧𝑛 𝐷𝑡

𝛼𝑛
0
𝐶 𝑧𝑛 < 0  …(29) 

then by using Theorem 2,  𝑧1𝑧1̇ + 𝑧2𝑧2̇ +⋯+ 𝑧𝑛𝑧�̇� < 0 . 

and hence �̇�𝑛 is by using Theorem 3and 4 a negative definite 

function in 𝑅𝑛 and similarly by Lyapunov stability theory, 

subsystem Error! Reference source not found. is 

asymptotically stable. The virtual control: 

𝑦𝑛 = 𝛼𝑛−1(𝑧1, 𝑧2, … , 𝑧𝑛−1)  …(30) 

may be evaluated, which makes subsystem Error! 

Reference source not found. is asymptotically stable. 

Thus, as a result of the above steps, system Error! 

Reference source not found. is globally asymptotically 

stable for all initial condition 𝑥𝑖(0) ∈ ℝ
𝑛, 𝑖 = 1,2, … , 𝑛.    ◼ 

 

4. Applications 
In this section, two examples are considered as an 

application to illustrate the validity and applicability of the 

proposed approach for stabilizing systems of Caputo 

fractional order.  

 

Example 1. Consider the homogeneuous linear system of 

Caputo FODEs: 

𝐷𝑡
𝛼1

0
𝐶 𝑦1(𝑡) = 2𝑦2               

𝐷𝑡
𝛼2

0
𝐶  𝑦2(𝑡) =  −𝑦1 − 3𝑦2

}  …(31) 

by using backstepping method and in order to 

asymptotically stabilize this system, even so it is stable or 

not, introduce the controller functions 𝛽1  and 𝛽2 , as 

follows: 

𝐷𝑡
𝛼1

0
𝐶  𝑦1(𝑡) = 2𝑦2                      

𝐷𝑡
𝛼2

0
𝐶  𝑦2(𝑡) =  −𝑦1 − 3𝑦2 + 𝑢

}  …(32) 

Step 1: Suppose 𝑧1 = 𝑦1 , then the Caputo derivative of 

order 𝛼1 with respect to 𝑡 for the first equation of system 

Error! Reference source not found. will be: 

𝐷𝑡
𝛽1

0
𝐶  𝑧1(𝑡) = 2𝑦2  …(33) 

and when we suppose that 𝑧2 = 𝑦2 − 𝛽1 , then equation 

Error! Reference source not found. will be:  

𝐷𝑡
𝛼1

0
𝐶  𝑧1(𝑡) = 2𝑧2 + 2𝛽1  …(34) 

to prove that 𝑧1 𝐷𝑡
𝛼1

0
𝐶 𝑧1  is negative definite, where the 

controller function 𝛽1  is chosen as 𝛽1 = −2𝑧2 − 𝑘1𝑧1 . If 

we substitute in Error! Reference source not found. then 

equation Error! Reference source not found. will be: 

𝑧1 𝐷𝑡
𝛼1

0
𝐶 𝑧1 = −2𝑘1𝑧1

2  …(35) 

which is negative everywhere when 𝑘1  is a positive 

constant. Since 𝑧1 𝐷𝑡
𝛽1

0
𝐶 𝑧1 < 0 , the by using Theorem 2 

implies 𝑧1�̇�1 < 0 , then choosing the Lyapunov function 

𝑉1 =
1

2
𝑧1
2 with 𝑉1̇ = 𝑧1𝑧1̇ that means equation (30) will be 

asymptotically stable. The function 𝛽1 should be estimated 

while 𝑧2 = 0 is considered as a controller. 

Step 2: Suppose 𝑧2 = 𝑦2 − 𝛽1(𝑧1) or equivalently by 𝑦2 =
𝑧2 + 𝛽1(𝑧1), then the Caputo derivative of both sides of 𝑧2 

with order 𝛽2 will be: 

𝐷𝑡
𝛼2

0
𝐶 𝑦2 = 𝐷𝑡

𝛼2
0
𝐶 𝑧2 + 𝐷𝑡

𝛼2
0
𝐶 𝛽1  

then the second differential equation of the system Error! 

Reference source not found. will be: 

𝐷𝑡
𝛼2

0
𝐶 𝑧2(𝑡) =  −𝑧1 − 3𝑧2 − 3𝛽1 + 𝐷𝑡

𝛼2
0
𝐶 𝛽1 + 𝑢  

and thus: 

𝑧2 𝐷𝑡
𝛼2

0
𝐶 𝑧2 = 𝑧2(𝑧1 − 3𝑧2 − 3𝛽1(𝑧1) + 𝐷𝑡

𝛼2
0
𝐶 𝛽1 + 𝑢)  

to make 𝑧2 𝐷𝑡
𝛼2

0
𝐶 𝑧2 negative definite, choose: 

𝑢 = −𝑧1 + 3𝑧1 + 3𝛽1(𝑧1) − 𝐷𝑡
𝛼2

0
𝐶 𝛽1 − 𝑘2𝑧2  

then the equation will be as: 

𝐷𝑡
𝛼2

0
𝐶  𝑧2 = −𝑘1𝑧2  

and 

𝑧2 𝐷𝑡
𝛼2

0
𝐶  𝑧2 = −𝑘2𝑧2

2  

which is negative everywhere at 𝑘2  positive constant. By 

using Theorem 2 implies to 𝑧2𝑧2̇ < 0, that will give: 

𝑧1�̇�1 + 𝑧2�̇�2 < 0 and 𝑧1 𝐷𝑡
𝛼1

0
𝐶 𝑧1 + 𝑧2 𝐷𝑡

𝛼2
0
𝐶 𝑧2 < 0  

then we can choose a Lyapunov function V as: 

𝑉2(𝑡) = 𝑉1(𝑡) +
1

2
𝑧2
2  

 =
1

2
𝑧1
2 +

1

2
𝑧2
2  

such that: 

�̇�(𝑡) = 𝑧1�̇�1 + 𝑧2�̇�2  

is negative definite, which means that the solution of the 

system is asymptotically stable by Theorems 3 and 4. 

The new transformed system is: 

𝐷𝑡
𝛼

0
𝐶  𝑌(𝑡) = 𝐴𝑌  …(36) 

where 𝑌(𝑡) = [𝑧1(𝑡) 𝑧2(𝑡) + 𝛽1(𝑧1)]
𝑇 , 𝛽 = [𝛽1, 𝛽2], and 

𝐴 = [ 
−𝑘1 0
−𝑘1 −2 − 𝑘2

] , 𝑘1, 𝑘2 ∈ ℝ
+  
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and it is clear that A has negative eigenvalues 1 = −k1 < 0, 

2 = −2 − k2 < 0, for all k1, k2 > 0, which means that the 

solutions of system (31) are asymptoticly stable. 

Sketch of the solutions y1 and y2 with k1 = 1, k2 = 0.1, 1 

= 0.5 and 2 = 0.7 are presented in Figure 1. 
 

 
Figure 1. Asymptotic stable solutions of Example 1 with 

𝑘1 = 1, 𝑘2 = 0.1, 𝛼1 = 0.5 and 𝛼2 = 0.7. 

 

Example 2. Consider the linear system of FODEs with 

Caputo fractional derivative: 

𝐷𝑡
0.65

0
𝐶  𝑥(𝑡) = 3𝑥 − 4𝑦      

𝐷𝑡
0.8

0
𝐶  𝑦(𝑡) = 4𝑥 − 7𝑦 + 𝑢

}  …(37) 

where 𝑥(0) ≠ 0, 𝑦(0) ≠ 0, 0 < 𝛼, 𝛽 ≤ 1. 

Step1: Let 𝑧1 = 𝑥, and evaluate the Caputo derivative of 

order 0.65 with respect to 𝑡, then the first equation of the 

system Error! Reference source not found. will be as: 

𝐷𝑡
0.65

0
𝐶  𝑧1(𝑡) = 3𝑧1 − 4𝑦  …(38) 

Now, suppose that 𝑧2 = 𝑦 − 𝛽1 , such that 𝑦 = 𝑧2 + 𝛽1 , 

then the equations Error! Reference source not found.), 

will be: 

𝐷𝑡
0.65

0
𝐶  𝑧1(𝑡) = 3𝑧1 − 4𝑧2 − 4𝛽1  …(39) 

and  

𝑧1 𝐷𝑡
0.65

0
𝐶 𝑧1 = 𝑧1(3𝑧1 − 4𝑧2 − 4𝛽1)  …(40) 

To do it negative define we choose 𝛼1 as: 

𝛽1 =
3

4
𝑧1 +

𝑘1

4
𝑧1  

Then: 

𝑧1 𝐷𝑡
0.65

0
𝐶 𝑧1 = −𝑘1

2𝑧1
2 − 4𝑧1𝑧2  

which is negative everywhere when 𝑘1 is a positive constant 

and 𝑧2 = 0. The function 𝛽1 should be estimated while 𝑧2 

is considered as a controller. 

Since 𝑧1 𝐷𝑡
0.65

0
𝐶 𝑧1 < 0, then by Theorems 2, 𝑧1𝑧1̇ < 0, 

that gives 𝑧1�̇�1 will be also negative everywhere and hence 

if we chose the Lyapunov function 𝑉1 =
1

2
𝑧1
2 and thus 𝑉1̇ =

𝑧1𝑧1̇ , since 𝑧1𝑧1̇ < 0  that mean 𝑉1̇(𝑡) < 0  thus by 

Theorems 3 and 4, the solution will be asymptotically 

stable.  

Step2: Let the error between 𝑧2 and 𝛽1 be: 

 𝑧2 = 𝑦2 − 𝛽1(𝑧1)  
then  

𝐷𝑡
0.8

0
𝐶 𝑧2 = 𝐷𝑡

0.8
0
𝐶  𝑦2 − 𝐷𝑡

0.8
0
𝐶 𝛽1(𝑧1)  

which will give: 

𝐷𝑡
0.8

0
𝐶  𝑦2 = 𝐷𝑡

0.8
0
𝐶 𝑧2 + 𝐷𝑡

0.8
0
𝐶 𝛽1  

 = 4𝑧1 − 7𝑧2 − 7𝛽1(𝑧1) + 𝑢 + 𝐷𝑡
0.8

0
𝐶 𝛽1(𝑧1)  

and hence: 

𝑧2 𝐷𝑡
0.8

0
𝐶 𝑧2 = 𝑧2(4𝑧1 − 7𝑧2 − 7𝛼1(𝑧1) + 𝑢 +

𝐷𝑡
0.8

0
𝐶 𝛼1(𝑧1))  

to make it negative definite, we choose the controller 

function as: 

𝑢 = 7𝑧2 − 4𝑧1 + 7𝛼1(𝑧1) − 𝐷𝑡
0.8

0
𝐶 𝛼1(𝑧1) − 𝑘2 𝑧2  

and hence: 

𝑧2 𝐷𝑡
0.8

0
𝐶 𝑧2 = −𝑘2𝑧2

2  

which is negative everywhere, and by using by Theorem 2, 

since 𝑧2 𝐷𝑡
0.8

0
𝐶 𝑧2 < 0, then 𝑧2�̇�2 < 0. Tthus, we can choose 

a Lyapunov function 𝑉2 as: 

𝑉2 = 𝑉1 +
1

2
𝑧2
2 =

1

2
𝑧1
2 +

1

2
𝑧2
2  

such that 

𝑉2̇ = 𝑧1�̇�1 + 𝑧2�̇�2  

is negative definite and hence the system is asymptotically 

stable. 

Then the equivalence system will be: 

𝐷𝑡
𝛽

0
𝐶  𝑍(𝑡) = 𝐴𝑍  

where 𝑍(𝑡) = [𝑧1(𝑡) 𝑧2(𝑡)]
𝑇, 𝛽 = [0.65, 0.8] and 

𝐴 = [ 
−𝑘1 −4
0 −𝑘2

] , 𝑘1, 𝑘2 ∈ ℝ
+  

Taking k1 = 1 and k2 = 2, then: 

𝐴 = [ 
−1 −4
0 −2

]  

and it is clear that A has negative eigenvalues 1 = −1 < 0, 

2 = −2 < 0, which means that the solutions of system (37) 

are asymptoticly stable. 

Then the solution in terms of Mitag-Liffler form will be: 

𝑧1 = 𝐸𝛼1(−𝑘1𝑡) + 4𝐸𝛼2(−𝑘2𝑡)   

𝑧2 = 𝐸𝛼2(−𝑘2𝑡)  

and with respect to x and y is: 

𝑥(𝑡) = 𝐸𝛼1(−𝑘1𝑡) + 4𝐸𝛼2(−𝑘2𝑡)   

𝑦(𝑡) = 2𝐸𝛼1(−𝑘1𝑡) + 4𝐸𝛼2(−𝑘2𝑡)  

Sketch of the solutions x and y are presented in Figure 2. 
 

 
Figure 1. Asymptotic stable solutions of Example. 

 

5. Conclusion 
Adaptive backstepping method followed in this paper 

for Caputo FODEs give an easy approach for stabilizing and 

solving such type of equations by iteratively forming 

quadratic Lyapunov functions for each subsystem to 

evaluate one control function which stabilizes the system 

depending on the theory of fractional order stability theory. 

The fallowed approach found to be efficient and reliable. 
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