Effect of Hygromycin B Antibiotic Produced by *Streptomyces* Isolates on some Pathogenic Bacteria

Abdul Wahid B. Al-Shaibani, Rabah N. Jabbar and Zahraa Abdulmunim Sharba Department of Biotechnology, College of Science, Al-Nahrain University, Baghdad-Iraq. Biotechnology Research Center, Al-Nahrain University, Baghdad-Iraq. Department of Biotechnology Division, Applied Sciences, University of Technology, Baghdad-Iraq.

Abstract

To select the most efficient isolate in production of the antimicrobial agent Hygomycin B, 53 *Streptomyces* soil isolates were examined. DNA of these isolates was extracted and screened by Polymerase Chain Reaction (PCR) technique for the presence of Hygomycin B gene which is responsible for production of such agent. Among the 53 isolates, only three gave positive results for the existence of this gene when the three isolates were evaluated for their antimicrobial activity, an isolate symbolled *Streptomyces* "10cm/35pigment" was the superior by giving the highest activity against four of the seven test microorganisms (*Proteus mirabilis, Staph. aureus, Sal. typhi and Sacch. cerevisiae*) used in the study. Their recorded inhibition zone diameters were 70, 55, 33 and 38 mm, respectively. After subjection of the superior isolate to the cultural, microscopic and biochemical characterization, it was identified as *Streptomyces hygroscopicus*.

Keywords: Streptomyces, Hygomycin B gene, Streptomyces hygroscopicus.

Introduction

Streptomyces genus includes Gram positive, high GC-content, sporulation bacteria found predominantly found in soil. Streptomyces is characterized by its complex secondary metabolism for producing antibiotic and other compounds metabolites with properties. medicinal Genomic studies. genomic mining and biotechnological approaches have been employed in the search for new antibiotics and other drugs [1].

Hygromycin B is an unusual antibiotic in that it is active against both prokaryotic and eukaryotic cells and specifically inhibits protein synthesis at the translocation step. It is produced by Streptomyces hygroscopicus which possesses a unique hygromycin B phosphotransferase (HPH) that fully inactivates the antibiotic by phosphorylation of the 7"-hydroxyl group of the destomic acid moiety thus being a new type aminocyclitol-0-phosphotransferase. of S. hygroscopicus apparently requires only the HPH activity to provide resistance to hygromycin B [2].

Hygromycin B is a trisaccharide aminoglycoside with a terminal cyclitol, reported by researchers at Eli Lily in the early 1950s. It belongs to the destomycin family of aminoglycosides which contain a unique cyclic structure linking the terminal saccharide. Hygromycin B exhibits broad spectrum antibiotic and anthelmintic activity, and is used as a feed additive for some animal meats like poultry as anti-worming agent in a product name: Hygromix. Hygromycin B inhibits polypeptide synthesis by binding peptidyl-tRNA and preventing translocation by Elongation Factor 2 [3]. The project aimed to identify and characterize the species of *Streptomyces* producing hygromycin B antibiotic.

Materials and Methods

Streptomyces isolates: Fifty three Streptomyces isolates were obtained from Al-Nahrain Biotechnology Research Center, Baghdad, Iraq. The isolates were maintained by growing them in Inorganic Salt-Starch broth (Isp 4)[4] for 5 days at 30°C first, then by preserving on agar of this medium in the refrigerator with continuous weekly reactivation. The most efficient Streptomyces isolate was identified microscopically[5], then by cultural examinations through growing on diagnostic media ISP2 (international streptomyces project) medium, Melanin production medium, Czapeck-Dox medium, Sabaroud maltose agar, Asparagine- dextrosemeat extract agar, Bennet's Agar, Isp1, Isp 4, 2 Glycerol-asparagines agar ISP5, [4] and finally by biochemical tests.

Test organisms: Six species of pathogenic bacteria; 1 Gram +ve (*Staphylococcus aureus*) and 5 Gram –ve (*Pseudomonas aeruginosa*, *Proteus mirabilis*, *Escherichia coli*, *Klebsiella pneumoniae*, *Salmonella typhi*) in addition to one yeast (*Saccharomyces cerevisiae*) were treated by the *Streptomyces* isolates to test the antimicrobial activity of Hygromycin B produced by the later isolates. The test isolates were obtained from the same center above.

DNA extraction: It was extracted according to the manufacturing company protocol and recommendations (favorgen/USA). All DNA samples, were analyzed by Polymerase Chain Reaction (PCR) **technique** for Hygromycin B gene detection through using specific primers designed according to basic information that obtained from database of DNA sequences in Hygro1 Forward `5-NCBI TCGTATCCGCCAATGAGTCG -3' Reverse 5'- TTGCG TT CGGAGACGAAGAA -3', Forward Hygro2 '5-GATCGTGATCCTCTGCCAGG -3' Reverse '5- TGCAGTAT CAG GACCCCGTA -3 and Hvgro3 Forward '5-TGTG CGTC **GGTCATCAAGAA-3**' '5-Reverse GTAGATGGTGATCAGCCGGG-3'. PCR technique conditions were; reaction mixture (25 µl): DNA sample 10 pmol, forward and reverse primers (1pmol) and Master mix (1X). Amplification procedure was performed according the following program:

Primers	Hygro1			Hygro2			Hygro3		
Step	Temp. (oC)	Time (min)	No. of cycles	<i>Temp.</i> (oC)	Time (min)	No. of cycles	<i>Temp.</i> (oC)	Time (min)	No. of cycles
Initial denaturation	94	5	1	94	5	1	94	5	1
Denaturation	95	2	35	95	2	35	95	2	35
Annealing	64	30Sec	35	60	30Se c	35	58	30Se c	35
Extension	72	1	35	72	45sec	35	72	45sec	35
Final extension	72	7	1	72	7	1	72	7	1

The products of PCR were analyzed on agarose gel (1.5%) by using horizontal electrophoresis unit.

Detection of antimicrobial activity:

Antimicrobial activity of *Streptomyces* isolates against the seven test organisms was performed by using well agar diffusion method by using Moller-Hinton medium.

Results and Discussion

Ability of *Sreptomyces* isolates and the gene responsible for production of hygromycin B were tested using sets of primers that amplify the gene. Only 3 of the 53 isolates tested showed positive results for gene presence after analyzing on agarose gel as illustrated in Fig.(1).

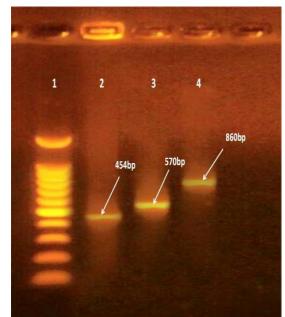


Fig.(1): Agarose gel (1.5%) electrophoresis of PCR products of hygromycin B gene in Streptomyces isolates for 1.5 h at 5v/cm.
Lane 1:- 100bp DNA ladder marker.
Lane 2:- product of Hygro1 primer.
Lane 3:- product of Hygro2 primer.
Lane 4:- product of Hygro3 primer.

	primerInhibition zone diameter (mm)							
Isolate symbol	Staph. aureus	Ps. aeruginosa	Proteus mirabilis	E. coli	K.pneumoniae	Sal. typhi	Sacch. cerevisiae	
1/2/34	10	10	30	60	12	30	31	
12/34m	22	18	25	33	9	18	23	
10cm/35pigment	55	17	70	30	10	33	38	

The superior *Streptomyces* isolate "10cm/35pigment" was first identified by cultural examination through growing on several diagnostic standard identification media proposed by the International Streptomyces Project ISP [4,6] in order to characterize their color of aerial mass and substrate mycelium, reverse-side pigment, melanin pigments, spore chain morphology and spore morphology.

Cultural characteristics were also investigated on Czapeck dox medium, Sabaroud maltose agar, Asparagine-dextrosemeat extract agar, Bennetts agar, PDA and nutrient agar after incubation for 14 days at 13°C [9]. The cultural characteristics together with certain physiologic reactions were examined and recorded. The recorded growth was moderate to abundant on some of the media used as shown in figure (2/A,B,C,D,E). Cultural results of this isolate indicate that they belong to the Streptomyces genus [4,12,13]. Results in Table (2) which represent the cultural properties of the superior Streptomyces isolate on different media show that the isolates grew well on both yeast extract-malt extract agar ISP2 and inorganic salt-starch agar ISP4 after incubation for 10 days at 30°C. The color of aerial mycelium appeared light grayish, while the substrate mycelium appeared white. The reverse side of colonies was ranged from gray to colorless. These results came in accordance with those of the ISP by Shirling and Gottlieb, 1972 [7] as referred to *Streptomyces hygroscopicus* which described the mycelium as brownish grey or light greyish reddish brown (Grey color series) on ISP media 1,2, 4, and 5. While the reverse side colors of the colonies were either colorless to greyish yellow, pale yellow, light olive brown or grey on ISP media 1, 2,4 and 5.

Color series of the aerial mycelium established in the Bergey's manual of determinatives bacteriology [8] and in the category 4 of the Bergeys manual of systemic bacteriology, could be grouped in grey and Table white the series. (2)Cultural characteristics of Streptomyces isolate 10cm/35pigment grown on different identification media.

medium	growth	Aerial mycilum	Sustrate mycilum	reverse side of colony	Diffusible pigment
ISP1	abundant	Whitish	Pale grayish	colorless	Yellow to light brown
ISP2	abundant	Whitish to brown	brown	Light yellow	non
ISP4	moderate	non	Light brown	Light yellow	non
ISP5	abundant	Whitish	Light gray	colorless	non
Czapeck dox medium	moderate	non	white	colorless	non
Sabaroud maltose agar	abundant	Whitish to brown	white	Colorless to gray	non
Asparagine- dextrose– meat extract agar	abundant	Whitish	White to gray	Colorless to gray	non
Bennetts Agar	abundant	gray	Brown to green	Light green	Light green

Ε

Fig.(2): Growth of Streptomyces isolate 10cm/35pigment on: A- Czapeck dox agar, B- Bennetts agar, C- PDA medium, D- ISP2 mediun and E- Nutrient agar.

The *Streptomyces* isolate was *also* characterized microscopically after staining by Gram staining method as G (+), while the spore chain appeared as spirals. Morphology of the spore chains varied depending on the species, showing that they were straight and flexuous forms, like hooks with open loops and coils, which are usually used, among other features, to establish the differences between the isolates.

Biochemical characteristics which are shown in Table (3) declare that *Streptomyces* isolate 10cm/35pigment gave positive results for catalase, amylase (which hydrolyze the starch as shown in Fig.(3)), gelatinase, urease and utilization of citrate as the sole carbon source. Adversely, this isolate was unable to: produce indole, to lyse red blood cells and to produce melanin pigment.

Results of carbohydrates fermentation Table (3) indicate that the isolate was able to ferment (glucose, Inositol, sucrose, fructose, Mannitol, and D-xylose) but unable to ferment L-arabinose.

Such findings are similar to those biochemical characteristics described by

researchers about *Streptomyces hygroscopicus* [12,13].

It can be concluded from the above results and findings that some species of *Streptomyces*, especially *Streptomyces* *hygroscopicus*, have the ability to produce hygromycin B antibiotic which possesses the ability to inhibite growth of several pathogenic bacteria.

		$\langle \mathbf{a} \rangle$
1	able	(3)

Biochemical characterization of Streptomyces isolate 10cm/35pigment.

Characteristic	Result			
Catalase	positive			
Indole	negative			
Urease	positive			
Starch hydrolysis	positive			
Gelatin liquification	positive			
Blood hemolysis	negative			
Citrate utilization	positive			
Melanin production	negative			
Carbohydrates fermentation				
D-glucose	positive			
Inositol	positive			
L-arabinose	negative			
Sucrose	positive			
D-xylose	positive			
Fructose	positive			
Mannitol	positive			

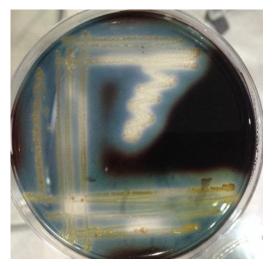


Fig.(3): Hydrolysis of starch by Streptomyces isolate10cm/35pigment grown on starch agar.

References

 Anita L., Kun Xiao D., Jennifer M., Flor A., Linda L. and Kinkel C. (Genetic and phenotypic traits of streptomycetes used to characterize antibiotic activities of fieldcollected microbes), J. Microbiol. 50, 79-89, 2004.

- [2] Zalcain M., Manuel J., and Jimenez A., "Purification and characterization of a hygromycin B phosphotransferase from *Streptomyces hygroscopicus*" Eur. J. Biochem. 162,419-422, 1987.
- [3] Burgett, Kaster, Burgett SG., Rao RN.,.and Ingolia TD., "Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing", Nucleic Acids Res. 11 (19), 6895–911,1983.
- [4] Shirling E., Gottlieb D., "Methods for characterization of *Streptomyces* species", Int. J. Syst. Bacteriol. 16, 313-334, 1966.
- [5] Riddell R.W., "Permanent stained mycological preparations obtained by slide culture", mycologia, 42:265-270, 1950.
- [6] Pridham TG., Anderson P., Foley E., Lindenfelser L.A., Hesseltine E.W and Benedict R.G., "A selection of media for maintenance and taxonomic study of Streptomyces". Antibiot., 947-953,1957.
- [7] Shirling and Gottlieb, "Cooperative description of type cultures of

Streptomyces. V. Additional descriptions" Int. J. Syst. Bacteriol., 22, 265–394, 1972.

- [8] Buchanan R. E., Gibbons N. E., "Bergey's Manual of Determinative Bacteriology", 8th ed. Williams & Wilkins Co., Baltimore, Md. 21202, eds. 1974.
- [9] Janssen HP., Yates SP., Grinton EB., Taylor MP., and Sait M., "Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia", Appl. Environ. Microbiol, 68, 2391-2396, 2002.
- [10] Tresner H. D., and Backus E. J., "A Broadened Concept of the Characteristics of *Streptomyces hygroscopicus*", Medicinal Chemical Research Section, Research Division, American Cyanamid Company, Lederle Laboratories, Pearl River, New York, 1956.
- [11] Waksman S.A., "The actinomycetes Classification identification and description of genera and species", 2. Baltimore, USA:Williams and Wilkins Company. 327-330, 1961.
- [12] Parthasarathi S., Sathya S., Bupesh G., Durai R., Mohan R., Kumar S., Manikandan M., Kim J., and Balakrishnan K., "Isolation and Characterization of Antimicrobial Compound from Marine *Streptomyces hygroscopicus* BDUS 49" World Journal of Fish and Marine Sciences 4 (3), 268-277, 2012.
- [13] Biswas M., Ajijur Rahman Md., Hajera Khatun Mst., and Anwar-Ul Islam Md., "Isolation and Characterization of *Streptomyces* sp. ANBS-15 and Antimicrobial Activities of its Secondary Metabolites" Bangladesh Pharmaceutical Journal, 14(1) ISSN 0301-4606, 2011.

الخلاصة

لأختيار اكثر عزله منتجه لمضاد الـ DNA تم اختبار 21 عزله وذلك بعزل الحامض النووي الـ DNA تم اختبار 21 عزله وذلك بعزل الحامض النووي الـ DNA والبحث عن المورث المسؤل عن انتاج المضاد بأستخدام بادءات متخصصه في تقنية الـ. PCR من هذه الـ 21 عزله، فقط ثلاث عزلات اثبتت وجود الجين وتم قياس الفعاليه عزله، فقط ثلاث عزلات اثبتت وجود الجين وتم قياس الفعاليه الحيويه لهذه العزلات، العزله بالرمز "10cm/ 35pigment" الحيويه لهذه العزلات، العزلات باعطاء اعلة فعاليه حيويه ضد تفوقت على باقي العزلات باعطاء اعلة فعاليه حيويه ضد الربعه من سبع احياء مجهريه تحت الاختبار (Proteus mirabilis, Staph. aureus, Sal. typhi اربعه من استخداع معلى العزلـه المتفوقـه لفحوصـات حيث اعطت منطقة تثبيط , 80 مع 38 mm التعاقب بعد اخضـاع العزلـه المتفوقـه لفحوصـات مظهريه ومجهريـه وكيموحيويـه شخصت على انها. Streptomycen hygroscopicus