Results Concerning the Trace of Some Biadditive Mappings of Prime and Semiprime Rings

Eqbal Jabur Harjan

Department of Mathematic, College of Education, Al-Mustansiriyah University, Baghdad-Iraq.

Abstract

The purpose of this paper is to present some results concerning the trace of symmetric (α , α)-Biderivation and symmetric left α -Bimultiplier on prime rings. In these results we investigate commutativity of rings, further some certain identities satisfying by symmetric (α , α)-Biderivation and biadditive mappings that make these mapping α -commuting.

Keywords: Prime rings, Trace of biadditive mappings, Symmetric (α , α)-Biderivation, Symmetric left α -Bimultiplier, α -commuting mappings.

1. Introduction

Throughout this discussion, unless otherwise mentioned *R* will represent an associative prime ring with center Z(R) and a, $\tau \in Aut(R)$. For $x, y \in R$, the symbol [x, y] will denote the commutator xy - yx. A ring *R* is called 2-torsion free, if 2x=0, $x \in R$, implies x=0. Recall that *R* is prime if for any $a, b \in R$, $aRb = \{0\}$ implies a=0 or b=0 and semiprime if for any $a \in R$, $aRa = \{0\}$ implies a=0.

In [1], T. K. Lee introduce the notion of α commuting mappings in the following way: A mapping $\varphi: R \to R$ is said to be α -centralizing on *R* if $[\varphi(x), \alpha(x)] \in Z(R)$, for all $x \in R$. In special case when $[\varphi(x), \alpha(x)] = 0$, for all $x \in R$, the mapping φ is called α -commuting. If $\varphi(x)$ $\alpha(x) + \alpha(x) \varphi(x) = 0$ holds for all $x \in U$, then φ is said to be skew α -commuting

A mapping $\mathcal{B}: R \times R \rightarrow R$ is called symmetric if $\mathcal{B}(x, y) = \mathcal{B}(y, x)$ for all pairs $x, y \in R$. A mapping f: $R \rightarrow R$ defined by $f(x) = \mathcal{B}(x, x)$, where \mathcal{B} is a symmetric mapping will be called the trace of \mathcal{B} . It obvious that in case \mathcal{B} is a symmetric mapping which is also biadditive (i.e., additive in both arguments), the trace of \mathcal{B} satisfies $f(x+y) = f(x) + 2 \mathcal{B}(x,y) + f(y)$, for all $x, y \in R$. The notion of symmetric Biderivation was introduced by Maksa in [2]. A symmetric biadditive mapping D(.,.): $R \times R \rightarrow R$ is called symmetric Biderivation if D(xy, z)=D(x, z)y +xD(y, z) holds all $x, y, z \in R$. If D satisfies that $D(x^2, z) = D(x, z) x + xD(x, z)$ for all $x, y \in R$, then D is said to be symmetric Jordan Biderivation. In 2007 Y. Ceven, and M. A. Öztürk in [3] introduce the concept of symmetric (α , τ)-Biderivation as follows: A symmetric biadditive mappings *F*(.,.):

 $R \times R \longrightarrow R$ is called said to be a symmetric (α, τ) -Biderivation if $F(xy, z) = F(x, z) \alpha(y) +$ $\tau(x)$ F(y, z), for all $x, y, z \in R$. Obviously, in this case the relation $F(x,yz) = F(x, y)\alpha(z) + \tau(y)$ F(x, y) is also satisfied for all $x, y, z \in R$. M. Ashraf in 2010 [4], introduced the notion of symmetric generalized (α, τ) -Biderivation follows: symmetric as Α biadditive mapping $G(.,.):R \times R \longrightarrow R$ is symmetric generalized (α, τ) -Biderivation if there exist symmetric (α, τ) -Biderivation D such that $G(xz, y)=G(x, y) \alpha(z) + \tau(x)D(z, y)$, for all x, y, $z \in R$. In case $\alpha = \tau$ the mappings F and G are said to be a symmetric (α, α) -Biderivation and symmetric generalized (α, α) -Biderivation respectively. A Symmetric biadditive mapping $\mathcal{T}: R \times R \longrightarrow R$ is called a Symmetric left (right) α -Bimultiplier where is a homomorphism of Rif:

$$\mathcal{T}(xz, y) = \mathcal{T}(x, y) (z) (\mathcal{T}(xz, y) = \alpha(x) \mathcal{T}(z, y)),$$

holds for all $x, y, z \in \mathbb{R}$.

The mapping \mathcal{T} is called a Symmetric α -Bimultiplier if it is both Symmetric left and right α - Bimultiplier (see [5]).

Over the last five decades, many authors [6, 7, 8] present several results concerning the relationship between the commutativity of prime and semiprime rings and the existence of specific types of a nonzero symmetric generalized (α , τ)-Biderivation and affiliated mappings. In this paper many results of this kind was presented. We shall also briefly discuses of the notion of α -commuting mappings.

2. Some Preliminaries

We shall do a great of calculations with commutators, routinely using the following basic identities (see [2]):

[xy, z] = [x, z]y + x[y, z] & $[x, yz] = [x, y]z + y [x, z], \text{ for all } x, y, z \in R.$

We state the following well-known results which will be useful in the sequel.

Lemma (2.1): [9]

Let *R* be a prime ring of characteristic different from 2 and \mathcal{I} be a nonzero ideal of *R*. let *a*, *b* be fixed elements of *R*. if axb+bxa=0 is fulfilled for all $x \in \mathcal{I}$, then either a=0 or b=0.

Lemma (2.2): [10]

Let *R* be semiprime ring, \mathcal{I} a right ideal of *R*. If \mathcal{I} is a commutative as a ring, then $\mathcal{I} \subset Z(R)$. In addition if *R* is a prime, then *R* must be commutative.

Lemma (2.3): [11]

Let *R* be a prime ring, and \mathcal{I} be a nonzero left ideal of *R*. If a (σ, τ) -Biderivation *D*: $R \times R \longrightarrow R$ satisfies that $D(\mathcal{I}, \mathcal{I}) = 0$, then D = 0.

Also, we need to prove the following lemma.

<u>Lemma (2.4)</u>:

Let *U* be a nonzero left ideal in a 2-torsion free prime ring *R*. If a symmetric (α, α) -Biderivation *F*: $R \times R \rightarrow R$ has a zero Trace on *U*, then *R* is commutative or *F* is zero on *R*.

Proof:

Let f be the Trace of F, then

f(u)=0, for all $u \in U$.

The linearization of above relation leads because of the 2-torsionity free of R to:

 $F(u, \omega) = 0$, for all $u, \omega \in U$.

Consequently, for any $r, s \in R$, we have:

 $F(ru, s\omega)=0$, for all $u, \omega \in U$(1)

We shall compute (1) in two different ways to get:

 $F(s, r)(\omega)\alpha(u)=0$, for $u, \omega \in U$ and $r, s \in R$. (2) $F(s, r)(u)\alpha(\omega)=0$, for $u, \omega \in U$ and $r, s \in R$. (3) Subtracting (2) from (3) implies that:

 $F(s, r)[\alpha(u), \alpha(\omega)] {=} 0, \text{ for } u, \omega \in U, r, s {\in} R. .. (4)$

Putting *st* instead of *s* in (4), using (4), we arrive at:

$$F(s, r)(t) \alpha([u, \omega]) {=} 0, \text{ for } u, \omega \in U, r, s, t \in R.$$

By primeness of *R* yields that either F(s, r) = 0, for all $r, s \in R$, that is *F* is zero on *R* or $\alpha([u, \omega]) = 0$ and consequently $[u, \omega] = 0$, for all $u, \omega \in U$.

If $[u, \omega] = 0$, for all $u, \omega \in U$ then an application of Lemma (2.2) yields that *R* is commutative.

3. The Main Results

We start our main results with following theorem which looking for the conditions that forces the prime ring R to be commutative.

Theorem (3.1):

Let *R* be a 2-torsion free prime ring and $D:R \times R \rightarrow R$ be a nonzero Symmetric Jordan Biderivation such that $xy \cdot yd(x) = yx - xd(y)$, for all $x, y \in R$, where *d* is the Trace of *D*, then *R* is commutative.

Proof:

Form our hypothesis, we see:

[x, y] = yd(x) - xd(y), for all $x, y \in \mathbb{R}$(1)

The linearization of above relation with respect x, we get:

[x, y] + [z, y] = yd(x) + yd(z) + 2yD(x, z) - xd(y) - zd(y), for all $x, y, z \in R$.

In view of (1), and 2-torsionity free of R, the above relation reduces to:

yD(x, z) = 0, for all $x, y, z \in R$(2)

Now, the substitution x^2 for x leads to:

yD(x, z)x + yxD(x, z)=0, for all $x, y, z \in \mathbb{R}$.

According to (2), we have:

yxD(x, z)=0, for all $x, y, z \in R$(3)

Also, the left multiplication of (2) by *x*, we get:

$$xyD(x, z) = 0$$
, for all $x, y, z \in R$(4)

Combining (3) and (4), implies to:

[x, y] D(x, z) = 0, for all $x, y, z \in \mathbb{R}$(5)

Replacing y by yr in (5), using (5), leads to:

$$[x, y] r D(x, z) = 0$$
, for all $x, y, r, z \in R$.

Now, define

 $\mathcal{K} = \{x \in R : D(x, z) = 0, \text{ for all } z \in R\}$ $\mathcal{H} = \{x \in R : [x, y] = 0, \text{ for all } y \in R\}$

Then \mathcal{K} and \mathcal{H} are two disjoint sub group of R satisfies that there union equal to R, which contradicts Brauer's trick. Since D is a nonzero Jordan Biderivation, we conclude that:

[x, y] = 0, for all $x, y \in \mathbb{R}$.

Hence *R* is a commutative ring.

Theorem (3.2):

Let *R* be a 2-torsion free ring and α be an automorphism on *R*. if a symmetric (α, α) -Biderivation *F*: $R \times R \longrightarrow R$ satisfies (xy)- $f(xy) = \alpha(yx)$ -f(yx), for all $x, y \in R$, where *f* is the Trace of *F*, then *R* is commutative.

Proof:

For any $x, y \in R$, we have:

$$\begin{aligned} & [\alpha(x), \, \alpha(y)] = f(xy) - f(yx) \\ &= [\alpha(x)^2, f(y)] + [f(x), \, \alpha(y)^2] + 2\alpha(x) \\ & F(x, y) \, \alpha(y) - 2\alpha(y) \, F(x, y) \, \alpha(x). \end{aligned}$$

The substitution x+y for x in (1), we get:

 $[\alpha(x), \alpha(y)] = [\alpha(x)^2, f(y)] + [\alpha(x)\alpha(y), f(y)] +$ $[\alpha(y)\alpha(x), f(y)] + [f(x), \alpha(y)^2] + 2[F(x, y), \alpha(y)^2]$ $+ 2\alpha(x)F(x, y)\alpha(y) + 2\alpha(x) f(y)\alpha(y) - 2\alpha(y) F(x, y) \alpha(x) - 2\alpha(y) f(y)\alpha(x), \text{ for all } x, y \in \mathbb{R}.$

In view of (1), the above relation reduces to:

[a(x)(y), f(y)] + [a(y)a(x), f(y)] + 2[F(x, y), $a(y)^2] + 2a(x)f(y)a(y) - 2a(y)f(y)a(x) = 0.$ (2)

Again, taking x+y instead of x in (2) and using (2) imply that:

 $2([\alpha(x)^2, f(y)] + [f(x), \alpha(y)^2] + 2\alpha(x)F(x, y)\alpha(y) - 2\alpha(y)F(x, y)\alpha(x)) = 0, \text{ for all } x, y \in \mathbb{R}.$

Using the 2-torsionity free of *R* and relation (1), we arrive at: $[\alpha(x), \alpha(y)] = \alpha([x, y]) = 0$, for all $x, y \in R$. Using the fact that α is an automorphism on R, we see:

[x, y] = 0, for all $x, y \in R$.

Hence *R* is commutative.

In similar manner we can prove the following theorem.

Theorem (3.3):

Let *R* be a 2-torsion free ring and α be an automorphism on *R*. if a symmetric (α, α) -Biderivation *F*: $R \times R \rightarrow R$ satisfies $(xy) + f(xy) = \alpha(yx) + f(yx)$, for all $x, y \in R$, where *f* is the Trace of *F*, then *R* is a commutative ring.

Theorem (3.4):

Let *R* be a non-commutative 2-torsion free prime ring and *F*: $R \times R \rightarrow R$ be a symmetric (α, α) -Biderivation. If the Trace *f* of *F* is skew α -commuting on a nonzero ideal *U* of *R*, then *R* is a commutative ring or *F* is zero on *R*.

Proof:

According to our hypothesis, we have:

$$f(x)\alpha(x) + \alpha(x) f(x) = 0$$
, for all $x \in U$(1)

The linearization of (1) with respect x, we get:

 $\begin{aligned} f(x)\alpha(\omega) + f(\omega)\alpha(x) + 2F(x, \omega)\alpha(x) + 2F(x, \omega) \\ (\omega) + \alpha(x)f(\omega) + 2\alpha(x)F(x, \omega) + (\omega)f(x) + \\ 2(\omega)F(x, \omega) = 0, \text{ for all } x, \omega \in U. \qquad (2) \end{aligned}$

Putting 2*x* instead of *x* imply that:

 $2f(x)\alpha(\omega) + 4f(\omega)\alpha(x) + 4F(x, \omega)\alpha(x) + 8F(x, \omega)$ $\alpha(\omega) + 4\alpha(x)f(\omega) + 4\alpha(x)F(x, \omega) + 2\alpha(\omega)f(x) + 8(\omega)F(x, \omega) = 0, \text{ for all } x, \omega \in U. \qquad (3)$

Comparing (2) with (3), we arrive because of the 2-torsinity free of R at:

 $f(x)\alpha(\omega) + \alpha(\omega)f(x) + 2F(x, \omega)\alpha(x)$ $+ 2\alpha(x)F(x, \omega) = 0, \text{ for all } x, \omega \in U. \quad \dots \dots \dots (4)$

Replacing ω by $x\omega$ in (4) leads to:

 $f(x)a(x)a(\omega)+a(x)a(\omega)f(x)+2f(x)a(\omega)a(x)$ $+2a(x)F(x, \omega)a(x)+2a(x)f(x)a(\omega)+2a(x^2)$ $F(x, \omega) = 0, \text{ for all } x, \omega \in U.$

Equivalently

 $\begin{aligned} \alpha(x)(f(x)\alpha(\omega) + \alpha(\omega)f(x) + 2F(x, \omega)\alpha(x) + 2\alpha(x) \\ F(x, \omega)) + (f(x)\alpha(x) + \alpha(x)f(x))\alpha(\omega) \\ + 2f(x)(\omega)(x) = 0, \text{ for all } x, \omega \in U. \quad \dots \dots \dots (5) \end{aligned}$

In view of (1) and (4), the relation (5) reduces because of the 2-torsinity free of R to:

 $f(x)\alpha(\omega)\alpha(x)=0$, for all $x, \omega \in U$.

The substitution $r\omega$ for ω in (4), we see:

 $f(x) \ \alpha(r)\alpha(\omega)\alpha(x) = 0, \text{ for all } x, \ \omega \in U, \ r \in R.$ (6)

Recall that (*U*) is a nonzero ideal of *R*, also by the primeness of *R* we can get some $\omega_0 \in U$ such that $(\omega_0 I) \neq \{0\}$, moreover, the automorphisms. It y of α leads to $\omega_0 I \neq \{0\}$. So there exist $x_0 \in U$ satisfies that $\omega_0 x_0 \neq 0$.

Now, putting ω_0 for ω and x_0 for x in (6) gives:

 $f(x_0) \ \alpha(r)\alpha(\omega_0 x_0) = 0$, for some $x_0, \ \omega_0 \in U$ and all $r \in R$.

Using the primeness of *R*, since $(\omega_0 x_0) \neq 0$, we conclude that $f(x_0) = 0$.

Therefore

f(x) = 0, for all x satisfies that $\omega_0 x \neq 0$(7)

Our next task is to prove that f(x) = 0, for all $x \in U$.

Choose $x \in U$ such that $\omega_0 x = 0$, then

 $\omega_0(x+x_0) \neq 0$ and $\omega_0(x-x_0) \neq 0$, then an application of (7), we have:

 $0 = f(x + x_0) = f(x) + f(x_0) + 2F(x, x_0)$ = $f(x) + 2F(x, x_0)$ (8)

 $\begin{array}{l} 0 = f\left(x - x_0\right) = f(x) - f(x_0) - 2F(x, x_0) \\ = f(x) - 2F(x, x_0) & \dots \end{array}$ (9)

Combining (8) with (9), we conclude because of the 2-torsinity free of *R* that f(x)=0.

Hence f(x)=0, for all $x \in U$. So an application of Lemma (2.4) we get the assertion of the theorem.

Theorem (3.5):

Let *R* be a prime ring of characteristic different from 2 and 3 and $U \neq \{0\}$ be an ideal of *R*. if D_1 , $D_2: R \times R \rightarrow R$ are nonzero symmetric (α , α)-Biderivations with trace f_1 , f_2 respectively satisfies that $f_1(u) f_2(u)=0$ for all $u \in U$, then either f_2 is α -commuting on *U* or *R* is a commutative ring. Proof:

By hypothesis, we have:

 $f_1(u) f_2(u) = 0$, for all $u, \omega \in U$(1)

The linearization of (1) leads to:

 $f_{1}(u) \quad f_{2}(\omega) + \quad f_{1}(\omega) \quad f_{2}(u) + 2f_{1}(u)D_{2}(u, \ \omega) + 2f_{1}(\omega) \quad D_{2}(u, \ \omega) + 2D_{1}(u, \ \omega) \quad f_{2}(\omega) + 2D_{1}(u, \ \omega)$ $f_{2}(u) + \quad 4D_{1}(u, \ \omega) \quad D_{2}(u, \ \omega) = 0, \text{ for all } u, \omega \in U.$

Putting -u instead of u in above relation gives:

 $f_1(u) f_2(\omega) + f_1(\omega) f_2(u) + 4D_1(u, \omega) D_2(u, \omega)$ =0, for all $u, \omega \in U$(2)

The linearization of (1) with respect to ω , we find:

 $f_{1}(u) f_{2}(\omega) + f_{1}(u) f_{2}(z) + 2f_{1}(u)D_{2}(\omega, z) + f_{1}(\omega)$ $f_{2}(u) + f_{1}(z) f_{2}(u) + 2D_{1}(\omega, z) f_{2}(u) + 4D_{1}(u, \omega)$ $D_{2}(u, \omega) + 4D_{1}(u, z)D_{2}(u, \omega) + 4D_{1}(u, \omega)D_{2}(u, \omega)$ $z) + 4D_{1}(u, z) D_{2}(u, z) = 0, \text{ for all } u, \omega \in U.$

According to (2), the last relation reduces to:

 $2f_1(u)D_2(\omega, z)+2D_1(\omega, z) f_2(u)+4D_1(u, z)$ $D_2(u, \omega)+4D_1(u, \omega) D_2(u, z) = 0, \text{ for } u, \omega \in U.$

Replacing u by ω in above relation, we find:

 $6f_1(\omega)D_2(\omega, z) + 6D_1(\omega, z)f_2(\omega) = 0.$ (3)

The substitution zv for z in (3) gives:

 $f_1(\omega)D_2(\omega, z)\alpha(v) + f_1(\omega)\alpha(z)D_2(\omega, v)$ $+D_1(\omega, z) \alpha(v)f_2(\omega) + \alpha(z)D_1(\omega, v)f_2(\omega)=0.$

In view of (3), the above relation can be written as:

 $D_1(\omega, z)[\alpha(v), f_2(\omega)] + [f_1(\omega), \alpha(z)]D_2(\omega, v)$ =0, for all v,z, $\omega \in U$.

Putting $(z)f_1(\omega)$ instead of $\alpha(z)$ yields that:

 $D_{1}(\omega, z)[\alpha(v), f_{2}(\omega)] + [f_{1}(\omega), \alpha(z)] f_{1}(\omega)$ $D_{2}(\omega, v) = 0, \text{ for all } v, z, \omega \in U.$

The substitution ω for v and using (1) leads to:

 $D_1(\omega, z)[\alpha(\omega), f_2(\omega)] = 0$, for all $z, \omega \in U$(4) Putting uz for z in (4), using (4) implies that:

 $D_{I}(\omega, u)\alpha(z) [\alpha(\omega), f_{2}(\omega)] = 0$, for all $z, u, \omega \in U$.

Again, replace z by zr in the last relation leads to:

 $D_1(\omega, u)\alpha(z) \alpha(r) [\alpha(\omega), f_2(\omega)] = 0$, for all $z, u, \omega \in U$ and $r \in R$.

Now, define

 $\mathcal{H} = \{ \omega \in U: [\alpha(\omega), f_2(\omega)] = 0 \}$ $\mathcal{K} = \{ \omega \in U: D_1(\omega, u) \alpha(z) = 0, \text{ for all } u, z \in U \}$

Since a group cannot be the set theoretic union of two it's proper subgroups, hence either $U=\mathcal{H}$ or $U=\mathcal{K}$. If $U=\mathcal{H}$, this leads that f_2 is α -commuting on U. Otherwise, $U=\mathcal{K}$, that is:

 $D_1(\omega, u) \alpha(z) = 0$, for all $z, u, \omega \in U$.

Putting *sz* instead of *z*, we find:

 $D_1(\omega, u)\alpha(s)\alpha(z)=0$, for all $z, u, \omega \in U$ and $s \in R$.

By the primeness of R, we have either f_2 is α -commuting on U or:

 $D_1(\omega, u)\alpha(s)\alpha(z)=0$, for all $z, u, \omega \in U$ and $s \in R$.

Since α is an automorphisms, then by the primeness of *R* (Recall that (*U*) is a nonzero ideal of *R*), we find that $D_1(\omega, u)=0$, for all $u, \omega \in U$. Consequently by Lemma (2.3) we conclude that *R* is commutative.

In similar manner we can prove:

<u>Theorem (3.6)</u>:

Let *R* be a non-commutative prime ring of characteristic different from 2 and 3 and $U \neq \{0\}$ be an ideal of *R*. if D_1 , $D_2: R \times R \longrightarrow R$ are nonzero symmetric (α, α) -Biderivations with trace f_1 , f_2 respectively satisfies that $f_1(u)f_2(u)=0$ for all $u \in U$, then either f_1 is α -commuting or D_2 is a zero mapping on *R*.

Theorem (3.7):

Let *R* be a semiprime ring of characteristic different from 2, 3 and α is an automorphism on *R*. if a symmetric left α -Bimultiplier *F*: $R \times R \longrightarrow R$ satisfies that $[[f(x), \alpha(x)], \alpha(x)]$ is a central, where *f* is the Trace of *F*, then *f* is α -commuting on *R*.

Proof:

For any $x \in R$, we have:

 $[[f(x), \alpha(x)], \alpha(x)] \in \mathbb{Z}(\mathbb{R}). \quad \dots \quad (1)$

The linearization of (1) leads to:

 $\begin{bmatrix} f(\omega), \ \alpha(x) \end{bmatrix}, \ \alpha(x) \end{bmatrix} + 2 \begin{bmatrix} F(x,\omega), \ \alpha(x) \end{bmatrix}, \ \alpha(x) \end{bmatrix} + \\ \begin{bmatrix} f(\omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(x) \end{bmatrix} + 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(x) \end{bmatrix} + \\ \begin{bmatrix} f(x), \ \alpha(x) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \begin{bmatrix} f(\omega), \ \alpha(x) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(x) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ \begin{bmatrix} f(x), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ \begin{bmatrix} f(x), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ \begin{bmatrix} f(x), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ \begin{bmatrix} f(x), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ \begin{bmatrix} f(x), \ \alpha(\omega) \end{bmatrix}, \ \alpha(x) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix}, \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix} F(x, \ \omega), \ \alpha(\omega) \end{bmatrix} + \\ 2 \begin{bmatrix}$

The substitution -x for x in (2), then combining the relation so obtained with (2), we arrive because of the 2-torsionity free of Rat:

 $2[[F(x, \omega), \alpha(x)], \alpha(x)] + [[f(x), \alpha(\omega)], \alpha(x)] + [[f(\omega), \alpha(\omega)], \alpha(x)] + [[f(x), \alpha(x)], \alpha(\omega)] + [[f(\omega), \alpha(x)], \alpha(\omega)] + 2[[F(x, \omega), \alpha(\omega)], (\omega)] \in Z(R), \text{ for all } x, \omega \in R. \dots (3)$

Also, putting 2x instead of x in (3), we get:

 $16[[F(x, \omega), \alpha(x)], \alpha(x)] + 8[[f(x), \alpha(\omega)], \alpha(x)]$ $+ 2[[f(\omega), \alpha(\omega)], \alpha(x)] + 8[[f(x), \alpha(x)], \alpha(\omega)]$ $+ 2[[f(\omega), \alpha(x)], \alpha(\omega)] + 4[[F(x, \omega), \alpha(\omega)],$ $(\omega)] \in Z(R), \text{ for all } x, \omega \in R. \dots (4)$

Comparing (4) with (3), leads because of the 2-torsinity free of R to:

 $2[[F(x, \omega), \alpha(x)], \alpha(x)] + [[f(x), \alpha(\omega)], \alpha(x)] + [[f(x), \alpha(x)], \alpha(\omega)] \in Z(R), \text{ for all } x, \omega \in R.$

.....(5)

Replacing ω by x^2 in (5) and using the commutator identity, we see:

 $\begin{bmatrix} [f(x), \alpha(x)], \alpha(x)] & \alpha(x) + \alpha(x) [[f(x), \alpha(x)], \alpha(x)] \\ + & \alpha(x) [[f(x), \alpha(x)], \alpha(x)] + [[f(x), \alpha(x)], \alpha(x)] \\ & \alpha(x) + [[f(x), \alpha(x)], \alpha(x)] & \alpha(x) + & \alpha(x) [[f(x), \alpha(x)], \alpha(x)] \\ & \alpha(x)], \alpha(x)] \in \mathbb{Z}(R), \text{ for all } x \in \mathbb{R}. \end{bmatrix}$

In view of (1), since R is of characteristic different from 2 and 3, we can get:

 $[[f(x), \alpha(x)], \alpha(x)]\alpha(x) \in Z(R)$, for all $x \in R$.

So for any $u \in R$, we have:

 $(u)[[f(x), \alpha(x)], \alpha(x)]\alpha(x) - [[f(x), \alpha(x)], \alpha(x)]$ $\alpha(x)(u)=0, \text{ for all } x \in R.$

According to (1), the above relation can be written as:

 $[[f(x), \alpha(x)], (x)][(u), \alpha(x)] = 0, \text{ for } x, u \in R.$(6)

Putting $(u)[f(x), \alpha(x)]$ instead of $\alpha(u)$ in (6), using (6), leads to:

 $[[f(x), \alpha(x)], \alpha(x)] (u) [[f(x), \alpha(x)], \alpha(x)] = 0,$ for all $x, u \in \mathbb{R}$.

Using the semiprimeness of R and automorphismity of α , we conclude that:

 $[[f(x), \alpha(x)], \alpha(x)] = 0, \text{ for all } x \in \mathbb{R}. \quad \dots \dots \dots \dots (7)$

Now, using a same argument on (7) as used to get (5) from (1), we can see:

 $[[f(x), (\omega)], \alpha(x)] + [[f(x), \alpha(x)], (\omega)] + 2[[F(x, \omega), \alpha(x)], \alpha(x)] = 0, \text{ for } x, \omega \in \mathbb{R}. \dots (8)$

Replacing ω by $\upsilon \omega$ in (8) gives:

 $\begin{array}{l} [(\omega)[f(x), \ \alpha(\upsilon)], \ \alpha(x)] + [[f(x), \ \alpha(\omega)] \ \alpha(\upsilon), \\ \alpha(x)] + [[f(x), \ \alpha(x)], \ \alpha(\omega)]\alpha(\upsilon) + \alpha(\omega) \ [[f(x), \ \alpha(x)], \ \alpha(\upsilon)] + 2[[F(x, \ \omega) \ \alpha(\upsilon), \ \alpha(x)], \ \alpha(x)] = 0. \end{array}$

That is for all $x, w, \omega \in R$, we have:

 $\begin{array}{l} [(\omega), \ \alpha(x)] \ [f(x), \ \alpha(v)] + (\omega)[[f(x), \ \alpha(v)], \\ \alpha(x)] + [f(x), \ \alpha(\omega)] \ [\alpha(v), \ \alpha(x)] + [[f(x), \ \alpha(\omega)], \\ \alpha(x)] \alpha(v) + [[f(x), \ \alpha(x)], \ \alpha(\omega)] \alpha(v) + \alpha(\omega)[f(x), \\ \alpha(x)], \ \alpha(v)] + 2[F(x, \ \omega), \ \alpha(x)] \ [\alpha(v), \ \alpha(x)] + \\ 2F(x, \omega)[[\alpha(v), \ \alpha(x)], \ \alpha(x)] + 2[[F(x, \ \omega), \ \alpha(x)], \\ \alpha(x)]\alpha(v) + 2[F(x, \ \omega), \ \alpha(x)] \ [\alpha(v), \ \alpha(x)] = 0, \end{array}$

An application of (8), the above relation reduces to:

The substitution *x* for v in (9) imply that:

Putting $f(x)(\omega)$ instead of $\alpha(\omega)$ in (10), then using (10) gives:

 $[f(x), \alpha(x)](\omega) [f(x), \alpha(x)] = 0$, for all $x, \omega \in \mathbb{R}$.

The semiprimeness of *R* leads to:

 $[f(x), \alpha(x)] = 0$, for all $x, \omega \in R$.

Hence f is an α -commuting mapping on R. We end this paper with the following result which gives a suitable condition on asymmetric generalized (α , α)-Biderivation G: $R \times R \rightarrow R$ that makes the ring R is a commutative.

Theorem (3.8):

Let *R* be a 2-torision free prime ring and *U* be a nonzero ideal of *R*. if a symmetric generalized (α, α) -Biderivation $G:R \times R \longrightarrow R$ with associated (α, α) -Biderivation *D* satisfies that G(d(u), v) = 0 for all $u, v \in U$ where *d* is the Trace of *D*, then *D* is a zero mapping on *R*.

Proof:

By hypothesis, we have:

G(d(u), v) = 0, for all $u, v \in U$(1)

Replacing *v* by *vz* in above relation implies that:

 $G(d(u), v)\alpha(z) + \alpha(v)D(d(u), z) = 0$, for $u, v, z \in U$.

According to (1), the above relation reduces to:

D(d(u), z) = 0, for all $u, z \in U$(2)

The substitution u+v for u in (2) give:

D(d(u), z) + D(d(v), z) + 2D(D(u, v), z) = 0, for all $u, v \in U$.

According to (2), the last relation becomes:

2D(D(u, v), z) = 0, for all $u, v, z \in U$(3)

Putting $v\omega$ instead of v in (3), we get:

 $2D(D(u, v)\alpha(\omega) + \alpha(v)D(u, \omega), z) = 0, \text{ for all } u, v, z, \omega \in U.$

Equivalently

 $2D(D(u, v), z)\alpha^{2}(\omega)+2\alpha(D(u, v)D(\alpha(\omega), z))$ +2D(\alpha(v), z)\alpha(D(u, \omega)+2\alpha^{2}(v)D(D(u, \omega), z)) =0, for all u,v,z, \omega \in U.

An application of (3) on above relation leads to:

 $D(\alpha(v), z)\alpha(D(u, \omega) + \alpha(D(u, v)) D(\alpha(\omega), z)$ =0, for all *u*, *v*, *z*, $\omega \in U$(4)

Replacing v by vk in (4) implies that:

Journal of Al-Nahrain University

 $\begin{aligned} \alpha(D(u, v)\alpha^{-2}(k)D(\alpha(\omega), z) + \alpha^{-2}(v)\alpha(D(u, k)) \\ k)D(\alpha(\omega), z) + \alpha^{2}(v)D(\alpha(k), z)\alpha(D(u, \omega)) + \\ D(\alpha(v), z)\alpha^{-2}(k)\alpha(D(u, \omega)) = 0, \text{ for } u, v, z, k, \omega \\ \in U. \end{aligned}$

In view of (4), the above relation becomes:

 $\begin{aligned} \alpha(D(u, v))\alpha^{2}(k)D(\alpha(\omega), z) + D(\alpha(v), z)\alpha^{2}(k) \\ \alpha(D(u, \omega)) = 0, \text{ for all } u, v, z, k, \omega \in U. \end{aligned}$

Putting *u* for *z* and ω for *v* in above relation, we find:

 $\alpha(D(u, \omega))\alpha^{2}(k)D(\alpha(\omega), u) + D(\alpha(\omega), u)\alpha^{2}(k)$ $\alpha(D(u, \omega)) = 0, \text{ for all } u, k, \omega \in U.$

Recall that (U) is an ideal of R, replace (ω) by ω , then an application of Lemma (2.1) on above relation yields because of automorphismity of α and symmetry of D that:

 $D(u, \omega) = 0$, for all $u, \omega \in U$.

Using Lemma (3.2), we get the requirements of the theorem. \blacksquare

References

- [1] Lee T. K., "α-commuting mappings in semiprime rings", Communications in Algebra (29), 2945-2951, (2001).
- [2] Maksa G., "Remark on symmetric biadditive functions having non-negative diagonalization", Glasnik Math. 15, 279-280, (1980).
- [3] Ceven Y., and Öztürk M. A., "Some properties of symmetric Bi- (σ, τ) -Derivations in Near-Rings", Commun. Korean Math. Soc. 22, No. 4, 487-491, (2007).
- [4] Ashraf M., "On Symmetric Generalized (α,β) -Deriavations in Rings", International Congress of mathematicians, Hyderabad, India, 19-27, August (2010).
- [5] Bell H. E. and Martindale W. S., "Centralizing mappings of Semiprime Rings", Cand. Math. Bull. 30, 92-101, (1987).
- [6] Brešar M. and Vukman J., "On the left derivations and related mappings", Proc. Amer. Math. Soc., 110, 19-27, (1990).
- [7] Brešar M., Martindale W. S. III and Miers C. R., "Centralizing maps in prime rings

with involution", J. Algebra, 161, 332-357, (1993).

- [8] Serif Y. M. and Argac N., "Ideals and Symmetric Bi-derivation of prime and Semi-prime Rings", Math J. Okayama Univ. Vol. 35, (1), 189-192, (1993).
- [9] Herestein I. N., "Rings with involution", The University of Chicago Press, Chicago, (1976).
- [10] Auday H. M., "On Generalized Bi derivations and related additive mappings", Ph.D. Thesis, University of Almustansiriya, Iraq, (2015).

الخلاصة

الهدف من هذا البحث تقديم بعض النتائج المتعلقة بالدوال ثنائية المشتقات (α, α) المتناظرة والدوال ثنائية المضروبات α المتناظرة المعرفة على الحلقات الأولية. بحثنا في هذه النتائج عن إبدالية الحلقات إضافة إلى ذلك بحثنا في بعض المتطابقات التي تحققها دوال ثنائية المشتقات (α, α) المتناظرة وبعض الدوال ثنائية الخطية التي تعطي لهذه الدوال الخاصية الإبدالية α .