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Abstract 
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1. Introduction  

Throughout this discussion, unless 

otherwise mentioned R will represent an 

associative prime ring with center Z(R) and 𝛼, 

𝜏 ∈ Aut(R). For x,y ∈R, the symbol [x, y] will 

denote the commutator xy – yx. A ring R is 

called 2-torsion free, if 2x=0, x ∈R, implies 

x=0. Recall that R is prime if for any a,b ∈R, 

aRb ={0} implies a=0 or b=0 and semiprime 

if for any a ∈R, aRa ={0} implies a=0.  

In [1], T. K. Lee introduce the notion of 𝛼-

commuting mappings in the following way: A 

mapping 𝜑: R ⟶ R is said to be 𝛼-centralizing 

on R if [𝜑(x), 𝛼(x)] ∈ Z(R), for all x ∈ R. In 

special case when [𝜑(x), 𝛼(x)] =0, for all x ∈R, 

the mapping 𝜑 is called 𝛼-commuting. If 𝜑(x) 

𝛼(x) + 𝛼(x) 𝜑(x)= 0 holds for all x ∈U, then 𝜑 

is said to be skew 𝛼-commuting  

A mapping ℬ: R×R→ R is called symmetric 

if ℬ(x, y) = ℬ(y, x) for all pairs x,y ∈ R. A 

mapping f: R ⟶ R defined by f(x) = ℬ(x, x), 

where ℬ is a symmetric mapping will be called 

the trace of ℬ. It obvious that in case ℬ is a 

symmetric mapping which is also biadditive 

(i.e., additive in both arguments), the trace of 

ℬ satisfies f(x+y)= f(x) +2 ℬ(x,y)+ f(y), for all 

x,y ∈R. The notion of symmetric Biderivation 

was introduced by Maksa in [2]. A symmetric 

biadditive mapping D(. , .): R×R⟶ R is called 

symmetric Biderivation if D(xy, z)=D(x, z) y + 

xD(y, z) holds all x,y,z ∈R. If D satisfies that 

D(x2, z) =D(x, z) x + xD(x, z) for all x,y ∈R, 

then D is said to be symmetric Jordan 

Biderivation. In 2007 Y. Ceven, and M. A. 

Öztürk in [3] introduce the concept of 

symmetric (𝛼, 𝜏)-Biderivation as follows: A 

symmetric biadditive mappings F(.,.):  

R×R⟶R is called said to be a symmetric 

(𝛼, 𝜏)-Biderivation if F(xy, z) = F(x, z) 𝛼(y)+ 

𝜏(x) F(y, z), for all x,y,z ∈ R. Obviously, in this 

case the relation F(x,yz) = F(x, y)𝛼(z)+ 𝜏(y) 

F(x, y) is also satisfied for all x,y,z ∈ R. M. 

Ashraf in 2010 [4], introduced the notion of 

symmetric generalized (𝛼, τ)-Biderivation  

as follows: A symmetric biadditive  

mapping G(.,.):R×R ⟶R is symmetric 

generalized (𝛼,𝜏)-Biderivation if there exist  

symmetric (𝛼, 𝜏)-Biderivation D such that  

G(xz, y)=G(x, y) 𝛼(z) + τ(x)D(z, y), for all x, y, 

z ∈R. In case 𝛼 = τ the mappings F and G are 

said to be a symmetric (𝛼, 𝛼)-Biderivation and 

symmetric generalized (𝛼, 𝛼)-Biderivation 

respectively. A Symmetric biadditive mapping 

𝒯: R×R⟶R is called a Symmetric left (right) 

𝛼-Bimultiplier where is a homomorphism of R 

if: 
 

𝒯(xz, y) = 𝒯(x, y) (z) ( 𝒯(xz, y) = 𝛼(x) 𝒯(z, y)), 

holds for all x,y,z ∈R. 
 

The mapping 𝒯 is called a Symmetric  

𝛼-Bimultiplier if it is both Symmetric left and 

right 𝛼- Bimultiplier (see [5]).  

Over the last five decades, many authors  

[6, 7, 8] present several results concerning the 

relationship between the commutativity of 

prime and semiprime rings and the existence 

of specific types of a nonzero symmetric 

generalized (𝛼, 𝜏)-Biderivation and affiliated 

mappings. In this paper many results of this 

kind was presented. We shall also briefly 

discuses of the notion of 𝛼-commuting 

mappings.  
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2. Some Preliminaries  
We shall do a great of calculations with 

commutators, routinely using the following 

basic identities (see [2]): 
 

[xy , z]= [x , z]y + x[y , z] &  

[x, yz]= [x , y]z + y [x , z], for all x,y,z ∈ R. 
 

We state the following well-known results 

which will be useful in the sequel. 

 

Lemma (2.1): [9] 

Let R be a prime ring of characteristic 

different from 2 and ℐ be a nonzero ideal of R. 

let a, b be fixed elements of R. if axb+bxa=0 

is fulfilled for all x ∈ ℐ, then either a=0 or 

b=0. 

 

Lemma (2.2): [10]  

Let R be semiprime ring, ℐ a right ideal of 

R. If ℐ is a commutative as a ring, then 

ℐ ⊂Z(R).In addition if R is a prime, then R 

must be commutative. 

 

Lemma (2.3): [11] 

Let R be a prime ring, and ℐ be a nonzero 

left ideal of R. If a (𝜎, 𝜏)-Biderivation  

D: R×R⟶R satisfies that D(ℐ, ℐ) =0, then  

D =0. 

Also, we need to prove the following 

lemma. 

 

Lemma (2.4): 

Let U be a nonzero left ideal in a 2-torsion 

free prime ring R. If a symmetric (𝛼, 𝛼)-

Biderivation F: R×R→R has a zero Trace on 

U, then R is commutative or F is zero on R. 

 

Proof: 

Let f be the Trace of F, then 
 

f(u)=0, for all u ∈U. 
 

The linearization of above relation leads 

because of the 2-torsionity free of R to: 
 

F(u, 𝜔)=0, for all u, 𝜔 ∈U. 
 

Consequently, for any r,s ∈R, we have: 
 

F(ru, s𝜔)=0, for all u, 𝜔 ∈U.  ...................... (1) 
 

We shall compute (1) in two different ways 

to get: 

F(s, r)(𝜔)𝛼(u)=0, for u, 𝜔 ∈U and r,s ∈R.  . (2) 

F(s, r)(u)𝛼(𝜔)=0, for u, 𝜔 ∈U and r,s ∈R.  . (3) 

Subtracting (2) from (3) implies that: 
 

F(s, r)[𝛼(u), 𝛼(𝜔)]=0, for u,𝜔 ∈U, r,s∈R.  .. (4) 
 

Putting st instead of s in (4), using (4), we 

arrive at: 
 

F(s, r)(t)𝛼 ([u, 𝜔])=0, for u, 𝜔 ∈U, r,s,t ∈R. 
 

By primeness of R yields that either  

F(s, r) =0, for all r,s ∈R, that is F is zero on  

R or 𝛼 ([u, 𝜔]) =0 and consequently [u, 𝜔]=0, 

for all u, 𝜔 ∈U.  

If [u,𝜔]=0, for all u, 𝜔 ∈U then an 

application of Lemma (2.2) yields that R is 

commutative. 

 

3. The Main Results 

We start our main results with following 

theorem which looking for the conditions that 

forces the prime ring R to be commutative. 

 

Theorem (3.1): 

Let R be a 2-torsion free prime ring and 

D:R×R⟶R be a nonzero Symmetric Jordan 

Biderivation such that xy- yd(x) = yx – xd(y), 

for all x,y ∈R, where d is the Trace of D, then 

R is commutative. 

 

Proof:  

Form our hypothesis, we see: 
 

[x, y] = yd(x) - xd(y), for all x,y ∈R.  ............ (1) 
 

The linearization of above relation with 

respect x, we get: 
 

[x, y]+ [z, y] = yd(x) + yd(z) +2yD(x, z) - xd(y) 

- zd(y), for all x,y,z ∈R. 
 

In view of (1), and 2-torsionity free of R, 

the above relation reduces to: 
 

 yD(x, z) =0, for all x,y,z ∈R.  ....................... (2) 
 

Now, the substitution x2 for x leads to: 
 

yD(x, z)x + yxD(x, z)=0, for all x,y,z ∈R. 
 

According to (2), we have: 
 

 yxD(x, z)=0, for all x,y,z ∈R.  ...................... (3) 
 

Also, the left multiplication of (2) by x, we 

get:  
 

 xyD(x, z) =0, for all x,y,z ∈R.  ..................... (4) 
 

Combining (3) and (4), implies to: 
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[x, y] D(x, z) =0, for all x,y,z ∈R.  ................. (5) 
 

Replacing y by yr in (5), using (5), leads to: 
 

[x, y] r D(x, z) =0, for all x,y,r,z ∈R. 
 

Now, define 
 

𝒦={x ∈R : D(x, z) =0, for all z ∈R} 

ℋ={x ∈R : [x, y] =0, for all y ∈R} 
 

Then 𝒦 and ℋ are two disjoint sub group 

of R satisfies that there union equal to R, 

which contradicts Brauer's trick. Since D is a 

nonzero Jordan Biderivation, we conclude 

that: 
 

[x, y] =0, for all x,y ∈R. 
 

Hence R is a commutative ring. 

 

Theorem (3.2): 

Let R be a 2-torsion free ring and 𝛼  

be an automorphism on R. if a symmetric  

(𝛼,𝛼)-Biderivation F: R×R⟶R satisfies  

(xy)-f(xy) =𝛼(yx)- f(yx), for all x,y ∈R, where f 

is the Trace of F, then R is commutative. 

 

Proof: 

For any x,y ∈R, we have: 
 

[𝛼(x), 𝛼(y)]= f(xy) - f(yx) 

 = [𝛼(x)2, f(y)] + [f(x), 𝛼(y)2] + 2𝛼(x) 

F(x, y) 𝛼(y)- 2𝛼(y) F(x, y) 𝛼(x).  .................. (1) 
 

The substitution x+y for x in (1), we get: 
 

[𝛼(x), 𝛼(y)] = [𝛼(x)2, f(y)] + [𝛼(x)𝛼(y), f(y)] + 

[𝛼(y)𝛼(x), f(y)] +[f(x), 𝛼(y)2]+ 2[F(x, y),𝛼(y)2] 

+2𝛼(x)F(x, y)𝛼(y)+2𝛼(x) f(y)𝛼(y)- 2𝛼(y) F(x, 

y) 𝛼(x)- 2𝛼(y) f(y)𝛼(x), for all x,y ∈R. 
 

In view of (1), the above relation reduces 

to: 
 

[𝛼(x)(y), f(y)] +[𝛼(y)𝛼(x), f(y)]+ 2[F(x, y), 

𝛼(y)2] + 2𝛼(x) f(y)𝛼(y)- 2𝛼(y) f(y)𝛼(x)= 0.  

 ..................................... (2) 
 

Again, taking x+y instead of x in (2) and 

using (2) imply that: 
 

2([𝛼(x)2, f(y)] +[f(x), 𝛼(y)2] +2𝛼(x)F(x, y)𝛼(y)- 

2𝛼(y)F(x, y)𝛼(x))=0, for all x,y ∈R. 
 

Using the 2-torsionity free of R and relation 

(1), we arrive at: 

[𝛼(x), 𝛼(y)]= 𝛼 ([x, y])= 0, for all x,y ∈R. 

Using the fact that 𝛼 is an automorphism on 

R, we see: 
 

[x, y]= 0, for all x,y ∈R. 
 

Hence R is commutative. 

In similar manner we can prove the 

following theorem. 

 

Theorem (3.3): 

Let R be a 2-torsion free ring and 𝛼 be an 

automorphism on R. if a symmetric (𝛼, 𝛼)-

Biderivation F: R×R→R satisfies (xy)+ f(xy) = 

𝛼(yx)+ f(yx), for all x,y ∈R, where f is the 

Trace of F, then R is a commutative ring. 

 

Theorem (3.4): 

Let R be a non-commutative 2-torsion free 

prime ring and F: R×R⟶R be a symmetric  

(𝛼, 𝛼)-Biderivation. If the Trace f of F is skew 

𝛼-commuting on a nonzero ideal U of R, then 

R is a commutative ring or F is zero on R. 

 

Proof: 

According to our hypothesis, we have:  
 

f(x)𝛼(x) + 𝛼(x) f(x)= 0, for all x ∈U.  ........... (1) 
 

The linearization of (1) with respect x, we 

get: 
 

f(x)𝛼(𝜔) + f(𝜔)𝛼(x) +2F(x, 𝜔)𝛼(x) +2F(x, 𝜔) 

(𝜔) + 𝛼(x)f(𝜔) +2𝛼(x)F(x, 𝜔) +(𝜔)f(x) + 

2(𝜔)F(x, 𝜔) = 0, for all x, 𝜔 ∈U.  ................ (2) 
 

Putting 2x instead of x imply that: 
 

2f(x)𝛼(𝜔) + 4f(𝜔)𝛼(x)+ 4F(x, 𝜔)𝛼(x)+8F(x, 𝜔) 

𝛼(𝜔)+4𝛼(x)f(𝜔) +4𝛼(x)F(x, 𝜔)+ 2𝛼(𝜔)f(x) + 

8(𝜔)F(x, 𝜔) = 0, for all x, 𝜔 ∈U.  ................ (3) 
 

Comparing (2) with (3), we arrive because 

of the 2-torsinity free of R at: 
 

f(x)𝛼(𝜔) +𝛼(𝜔)f(x) +2F(x, 𝜔)𝛼(x) 

+2𝛼(x)F(x, 𝜔) = 0, for all x, 𝜔 ∈U.  ............ (4) 
 

Replacing 𝜔 by x𝜔 in (4) leads to: 
 

f(x)𝛼(x)𝛼(𝜔)+𝛼(x)𝛼(𝜔)f(x)+2f(x)𝛼(𝜔)𝛼(x) 

+2𝛼(x)F(x, 𝜔)𝛼(x)+2𝛼(x)f(x)𝛼(𝜔)+2𝛼(x2) 

F(x, 𝜔) = 0, for all x, 𝜔 ∈U. 
 

Equivalently 
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𝛼(x)( f(x)𝛼(𝜔) +𝛼(𝜔)f(x)+2F(x, 𝜔)𝛼(x)+ 2𝛼(x) 

F(x, 𝜔)) + (f(x)𝛼(x) +𝛼(x)f(x))𝛼(𝜔) 

+2 f(x) (𝜔)(x)= 0, for all x, 𝜔 ∈U.  .............. (5) 
 

In view of (1) and (4), the relation (5) 

reduces because of the 2-torsinity free of R to: 
 

f(x)𝛼(𝜔)𝛼(x)= 0, for all x, 𝜔 ∈U. 
 

The substitution r𝜔 for 𝜔 in (4), we see: 
 

f(x) 𝛼(r)𝛼(𝜔)𝛼(x)= 0, for all x, 𝜔 ∈U, r ∈R.  

  .................................... (6) 
 

Recall that (U) is a nonzero ideal of R, also 

by the primeness of R we can get some 𝜔0∈U 

such that (𝜔0I)≠{0}, moreover, the 

automorphisms. It y of 𝛼 leads to 𝜔0I≠{0}. So 

there exist x0 ∈U satisfies that 𝜔0x0 ≠0. 

Now, putting 𝜔0 for 𝜔 and x0 for x in (6) 

gives: 
 

f(x0) 𝛼(r)𝛼(𝜔0x0)= 0, for some x0, 𝜔0 ∈U and 

all r ∈R. 

Using the primeness of R, since (𝜔0x0) ≠0, 

we conclude that f(x0)= 0.  

Therefore 
 

f(x)= 0, for all x satisfies that 𝜔0x ≠0.  ........ (7) 
 

Our next task is to prove that f(x)= 0, for all 

x ∈U.  

Choose x ∈U such that 𝜔0x=0, then 

𝜔0(x+ x0) ≠0 and 𝜔0(x - x0) ≠0, then an 

application of (7), we have: 
 

0=f (x + x0)= f(x)+ f(x0)+2F(x, x0)  

  = f(x) + 2F(x, x0) ........................................ (8) 
 

0=f (x - x0) = f(x) - f(x0)- 2F(x, x0) 

  = f(x) - 2F(x, x0)  ........................................ (9) 
 

Combining (8) with (9), we conclude 

because of the 2-torsinity free of R that f(x)=0.  

Hence f(x)=0, for all x ∈U. So an 

application of Lemma (2.4) we get the 

assertion of the theorem. 

 

Theorem (3.5): 

Let R be a prime ring of characteristic 

different from 2 and 3 and U≠ {0} be an ideal 

of R. if D1, D2:R×R⟶R are nonzero 

symmetric (𝛼, 𝛼)-Biderivations with trace f1, f2 

respectively satisfies that f1(u) f2(u)=0 for all u 

∈U, then either f2 is 𝛼-commuting on U or R is 

a commutative ring. 

Proof: 

By hypothesis, we have: 
 

f1(u) f2(u)=0, for all u,𝜔 ∈U.  ....................... (1) 
 

The linearization of (1) leads to: 
 

f1(u) f2(𝜔)+ f1(𝜔) f2(u)+2f1(u)D2(u, 𝜔) + 

2f1(𝜔) D2(u, 𝜔)+2D1(u, 𝜔) f2(𝜔)+2D1(u, 𝜔) 

f2(u)+ 4D1(u, 𝜔) D2(u, 𝜔) =0, for all u,𝜔 ∈U. 
 

Putting -u instead of u in above relation 

gives: 
 

f1(u) f2(𝜔)+ f1(𝜔) f2(u)+ 4D1(u, 𝜔) D2(u, 𝜔) 

 =0, for all u,𝜔 ∈U.  ..................................... (2) 
 

The linearization of (1) with respect to 𝜔, 

we find: 
 

f1(u) f2(𝜔)+ f1(u) f2(z)+ 2f1(u)D2(𝜔, z)+f1(𝜔) 

f2(u)+ f1(z) f2(u)+ 2D1(𝜔, z) f2(u)+4D1(u, 𝜔) 

D2(u, 𝜔)+4D1(u, z)D2(u, 𝜔)+4D1(u, 𝜔)D2(u, 

z) +4D1(u, z) D2(u, z)=0, for all u,𝜔 ∈U. 
 

According to (2), the last relation reduces 

to:  
 

2f1(u)D2(𝜔, z)+2D1(𝜔, z) f2(u)+4D1(u, z) 

D2(u, 𝜔)+4D1(u, 𝜔) D2(u, z) =0, for u,𝜔 ∈U. 
 

Replacing u by 𝜔 in above relation, we 

find: 
 

6f1(𝜔)D2(𝜔, z)+6D1(𝜔, z)f2(𝜔)=0.  ............. (3) 
 

The substitution zv for z in (3) gives: 
 

f1(𝜔)D2(𝜔, z)𝛼(v)+ f1(𝜔)𝛼(z)D2(𝜔, v) 

+D1(𝜔, z) 𝛼(v)f2(𝜔) + 𝛼(z)D1(𝜔, v) f2(𝜔)=0. 
 

In view of (3), the above relation can be 

written as: 
 

D1(𝜔, z)[𝛼(v), f2(𝜔)]+ [f1(𝜔), 𝛼(z)]D2(𝜔, v) 

=0, for all v,z, 𝜔 ∈U. 
 

Putting (z)f1(𝜔) instead of 𝛼(z) yields that: 
 

D1(𝜔, z)[𝛼(v), f2(𝜔)]+[f1(𝜔), 𝛼(z)] f1(𝜔) 

D2(𝜔, v) =0, for all v,z, 𝜔 ∈U. 
 

The substitution 𝜔 for v and using (1) leads 

to: 
 

D1(𝜔, z)[𝛼(𝜔), f2(𝜔)] =0, for all z,𝜔 ∈U.  

 .................................... (4) 
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Putting uz for z in (4), using (4) implies 

that: 
 

D1(𝜔, u)𝛼(z) [𝛼(𝜔), f2(𝜔)] =0, for all z,u,𝜔 

∈U. 
 

Again, replace z by zr in the last relation 

leads to: 
 

D1(𝜔, u)𝛼(z) 𝛼(r) [𝛼(𝜔), f2(𝜔)] =0, for all 

z,u,𝜔 ∈U and r ∈R. 
 

Now, define 
 

ℋ={𝜔 ∈U: [𝛼(𝜔), f2(𝜔)] = 0} 

𝒦={𝜔 ∈U: D1(𝜔, u)𝛼(z) = 0, for all u, z ∈U} 
 

Since a group cannot be the set theoretic 

union of two it's proper subgroups, hence 

either U= ℋ or U= 𝒦. If U= ℋ, this leads that 

f2 is 𝛼-commuting on U. Otherwise, U= 𝒦, 

that is: 
 

D1(𝜔, u) 𝛼(z) =0, for all z,u,𝜔 ∈U. 
 

Putting sz instead of z, we find: 
 

D1(𝜔, u)𝛼(s)𝛼(z)=0, for all z,u,𝜔 ∈U and s ∈R. 
 

By the primeness of R, we have either f2 is 

𝛼-commuting on U or:  
 

D1(𝜔, u)𝛼(s)𝛼(z)=0, for all z,u,𝜔 ∈U and s ∈R.  
 

Since 𝛼 is an automorphisms, then by the 

primeness of R (Recall that (U) is a nonzero 

ideal of R), we find that D1(𝜔, u)=0, for all 

u,𝜔 ∈U. Consequently by Lemma (2.3) we 

conclude that R is commutative.  

In similar manner we can prove: 

 

Theorem (3.6): 

Let R be a non-commutative prime ring of 

characteristic different from 2 and 3 and 

U≠{0} be an ideal of R. if D1, D2: R×R⟶R 

are nonzero symmetric (𝛼, 𝛼)-Biderivations 

with trace f1, f2 respectively satisfies that 

f1(u)f2(u)=0 for all u ∈U, then either f1 is 𝛼-

commuting or D2 is a zero mapping on R. 

 

Theorem (3.7): 

Let R be a semiprime ring of characteristic 

different from 2, 3 and 𝛼 is an automorphism 

on R. if a symmetric left 𝛼-Bimultiplier F: 

R×R⟶R satisfies that [[f(x), 𝛼(x)], 𝛼(x)] is a 

central, where f is the Trace of F, then f is 𝛼-

commuting on R. 

Proof: 

For any x ∈R, we have: 
 

[[f(x), 𝛼(x)], 𝛼(x)] ∈Z(R).  ............................ (1) 
 

The linearization of (1) leads to: 
 

[[f(𝜔), 𝛼(x)], 𝛼(x)]+2[[F(x,𝜔), 𝛼(x)], 𝛼(x)]+ 

[[f(𝜔), 𝛼(𝜔)], 𝛼(x)]+ 2[[F(x, 𝜔), 𝛼(𝜔)], 𝛼(x)] + 

[[f(x), 𝛼(x)], 𝛼 (𝜔)]+ [[f(𝜔), 𝛼(x)], 𝛼(𝜔)]+ 

2[[F(x, 𝜔), 𝛼(x)], 𝛼(𝜔)] + [[f(x), 𝛼(𝜔)], 𝛼(𝜔)]+ 

[[f(x), (𝜔)], 𝛼(x)] +2[[F(x, 𝜔), 𝛼(𝜔)],  

(𝜔)] ∈Z(R), for all x, 𝜔 ∈R. ......................... (2) 
 

The substitution -x for x in (2), then 

combining the relation so obtained with (2), 

we arrive because of the 2-torsionity free of R 

at: 
 

2[[F(x, 𝜔), 𝛼(x)], 𝛼(x)] + [[f(x), 𝛼(𝜔)], 𝛼(x)] + 

[[f(𝜔), 𝛼(𝜔)], 𝛼(x)] + [[f(x), 𝛼(x)], 𝛼(𝜔)] + 

[[f(𝜔), 𝛼(x)], 𝛼(𝜔)] + 2[[F(x, 𝜔), 𝛼(𝜔)], 

(𝜔)] ∈Z(R), for all x, 𝜔 ∈R. ......................... (3) 
 

Also, putting 2x instead of x in (3), we get: 
 

16[[F(x, 𝜔), 𝛼(x)], 𝛼(x)]+ 8[[f(x), 𝛼(𝜔)], 𝛼(x)] 

+ 2[[f(𝜔), 𝛼(𝜔)], 𝛼(x)] +8[[f(x), 𝛼(x)], 𝛼(𝜔)] 

+ 2[[f(𝜔), 𝛼(x)], 𝛼(𝜔)] + 4[[F(x, 𝜔), 𝛼(𝜔)],  

(𝜔)] ∈Z(R), for all x, 𝜔 ∈R. ......................... (4) 
 

Comparing (4) with (3), leads because of 

the 2-torsinity free of R to: 
 

2[[F(x, 𝜔), 𝛼(x)], 𝛼(x)] +[[f(x), 𝛼(𝜔)], 𝛼(x)]+ 

[[f(x), 𝛼(x)], 𝛼(𝜔)] ∈Z(R), for all x, 𝜔 ∈R.  

  ................................... (5) 
 

Replacing 𝜔 by x2 in (5) and using the 

commutator identity, we see: 
 

[[f(x), 𝛼(x)], 𝛼(x)] 𝛼(x)+ 𝛼(x)[[f(x), 𝛼(x)], 𝛼(x)] 

+ 𝛼(x)[[f(x), 𝛼(x)], 𝛼(x)]+ [[f(x), 𝛼(x)], 𝛼(x)] 

𝛼(x) + [[f(x), 𝛼(x)], 𝛼(x)] 𝛼(x) + 𝛼(x)[[f(x), 

𝛼(x)], 𝛼(x)] ∈Z(R), for all x ∈R. 
 

In view of (1), since R is of characteristic 

different from 2 and 3, we can get: 
 

[[f(x), 𝛼(x)], 𝛼(x)]𝛼(x) ∈Z(R), for all x ∈R. 
 

So for any u∈R, we have: 
 

(u)[[f(x), 𝛼(x)], 𝛼(x)]𝛼(x) - [[f(x), 𝛼(x)], 𝛼(x)] 

𝛼(x)(u)= 0, for all x ∈R. 
 

According to (1), the above relation can be 

written as: 
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[[f(x), 𝛼(x)],(x)][(u), 𝛼(x)]= 0, for x,u ∈R.  

  .................................... (6) 
 

Putting (u)[f(x), 𝛼(x)] instead of 𝛼(u) in (6), 

using (6), leads to: 
 

[[f(x), 𝛼(x)], 𝛼(x)] (u) [[f(x), 𝛼(x)], 𝛼(x)]= 0, 

for all x,u ∈R. 

Using the semiprimeness of R and 

automorphismity of 𝛼, we conclude that: 
 

[[f(x), 𝛼(x)], 𝛼(x)]= 0, for all x ∈R.  ............. (7) 
 

Now, using a same argument on (7) as used 

to get (5) from (1), we can see: 
 

[[f(x), (𝜔)], 𝛼(x)]+ [[f(x), 𝛼(x)], (𝜔)] + 

2[[F(x, 𝜔), 𝛼(x)], 𝛼(x)] =0, for x, 𝜔 ∈R.  ..... (8) 
 

Replacing 𝜔 by 𝓋𝜔 in (8) gives: 
 

[(𝜔)[f(x), 𝛼(𝓋)], 𝛼(x)]+[[f(x), 𝛼(𝜔)] 𝛼(𝓋), 

𝛼(x)] +[[f(x), 𝛼(x)], 𝛼(𝜔)]𝛼(𝓋) +𝛼(𝜔) [[f(x), 

𝛼(x)], 𝛼(𝓋)] + 2[[F(x, 𝜔) 𝛼(𝓋), 𝛼(x)], 𝛼(x)]=0. 
 

That is for all x,𝓋,𝜔 ∈R, we have: 
 

[(𝜔), 𝛼(x)] [f(x), 𝛼(𝓋)]+(𝜔)[[f(x), 𝛼(𝓋)], 

𝛼(x)]+[f(x), 𝛼(𝜔)] [𝛼(𝓋), 𝛼(x)]+ [[f(x), 𝛼(𝜔)], 

𝛼(x)]𝛼(𝓋)+[[f(x), 𝛼(x)], 𝛼(𝜔)]𝛼(𝓋)+𝛼(𝜔)[f(x), 

𝛼(x)], 𝛼(𝓋)]+2[F(x, 𝜔), 𝛼(x)] [𝛼(𝓋), 𝛼(x)] + 

2F(x,𝜔)[[𝛼(𝓋), 𝛼(x)], 𝛼(x)]+ 2[[F(x, 𝜔), 𝛼(x)], 

𝛼(x)]𝛼(𝓋) +2[F(x, 𝜔), 𝛼(x)] [𝛼(𝓋), 𝛼(x)]=0, 
 

An application of (8), the above relation 

reduces to: 
 

[f(x), 𝛼(𝜔)] [(𝓋), 𝛼(x)]+ [(𝜔), 𝛼(x)] [f(x), (𝓋)] 

+ 4[F(x,𝜔), 𝛼(x)] [(𝓋), 𝛼(x)] +2F(x, 𝜔) 

[[𝛼(𝓋), 𝛼(x)], 𝛼(x)] =0, for all x,𝓋,𝜔 ∈R.  

  .................................... (9) 
 

The substitution x for 𝓋 in (9) imply that: 
 

[(𝜔), 𝛼(x)] [f(x), 𝛼(x)] =0, for all x,𝜔 ∈R.  

  .................................. (10) 
 

Putting f(x)(𝜔) instead of 𝛼(𝜔) in (10), then 

using (10) gives: 
 

[f(x), 𝛼(x)] (𝜔) [f(x), 𝛼(x)] =0, for all x,𝜔 ∈R. 
 

The semiprimeness of R leads to: 
 

[f(x), 𝛼(x)] =0, for all x,𝜔 ∈R. 
 

Hence f is an 𝛼-commuting mapping on R.  

We end this paper with the following result 

which gives a suitable condition on 

asymmetric generalized (𝛼, 𝛼)-Biderivation G: 

R×R→R that makes the ring R is a 

commutative.  

 

Theorem (3.8): 

Let R be a 2-torision free prime ring and U 

be a nonzero ideal of R. if a symmetric 

generalized (𝛼, 𝛼)-Biderivation G:R×R⟶R 

with associated (𝛼, 𝛼)-Biderivation D satisfies 

that G(d(u), v) =0 for all u,v ∈U where d is the 

Trace of D, then D is a zero mapping on R. 

 

Proof:  

By hypothesis, we have: 
 

G(d(u), v) =0, for all u,v ∈U. ....................... (1) 
 

Replacing v by vz in above relation implies 

that: 
 

G(d(u), v)𝛼(z)+ 𝛼(v)D(d(u), z) =0, for u,v,z 

∈U.  
 

According to (1), the above relation reduces 

to: 
 

D(d(u), z) =0, for all u,z ∈U.  ....................... (2) 
 

The substitution u+v for u in (2) give: 
 

D(d(u), z)+ D(d(v), z)+ 2D(D(u, v), z) =0, for 

all u,v ∈U. 
 

According to (2), the last relation becomes: 
 

2D(D(u, v), z) =0, for all u,v,z ∈U.  ............. (3) 
 

Putting v𝜔 instead of v in (3), we get: 
 

2D(D(u, v)𝛼(𝜔)+ 𝛼(v)D(u, 𝜔), z) =0, for all 

u,v,z, 𝜔 ∈U. 
 

Equivalently  
 

2D(D(u, v), z)𝛼 2(𝜔)+2𝛼(D(u, v)D(𝛼(𝜔), z) 

+2D(𝛼(v), z)𝛼(D(u, 𝜔)+2𝛼 2(v)D(D(u, 𝜔), z) 

=0, for all u,v,z, 𝜔 ∈U. 
 

An application of (3) on above relation 

leads to:  
 

D(𝛼(v), z)𝛼(D(u, 𝜔)+ 𝛼(D(u, v)) D(𝛼(𝜔), z) 

   =0, for all u,v,z, 𝜔 ∈U.  ............................. (4)  

 

Replacing v by vk in (4) implies that: 
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𝛼(D(u, v)𝛼 2(k)D(𝛼(𝜔), z)+ 𝛼 2(v)𝛼(D(u, 

k)D(𝛼(𝜔), z)+ 𝛼 2(v)D(𝛼(k), z)𝛼(D(u, 𝜔))+ 

D(𝛼(v), z)𝛼 2(k)𝛼(D(u, 𝜔) =0, for u,v,z,k, 𝜔 

∈U. 
 

In view of (4), the above relation becomes: 
 

𝛼(D(u, v))𝛼 2(k)D(𝛼(𝜔), z)+ D(𝛼(v), z)𝛼 2(k) 

𝛼(D(u, 𝜔)) =0, for all u,v,z,k, 𝜔 ∈U.  
 

Putting u for z and 𝜔 for v in above relation, 

we find: 
 

𝛼(D(u, 𝜔))𝛼 2(k)D(𝛼(𝜔), u)+ D(𝛼(𝜔), u)𝛼 2(k) 

𝛼(D(u, 𝜔)) =0, for all u,k,𝜔 ∈U. 
 

Recall that (U) is an ideal of R, replace (𝜔) 

by 𝜔, then an application of Lemma (2.1) on 

above relation yields because of 

automorphismity of 𝛼 and symmetry of D that: 
 

D(u, 𝜔) =0, for all u,𝜔 ∈U. 
 

Using Lemma (3.2), we get the requirements 

of the theorem.  .............................................. ∎ 
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 الخلاصة
البحث تقديم بعض النتائج المتعلقة بالدوال  الهدف من هذا

ة ـــــدوال ثنائيـــــرة والــــــالمتناظ (𝛼,𝛼)-اتــــــــــــة المشتقــــــثنائي
المتناظرة المعرفة على الحلقات الأولية. بحثنا  -𝛼المضروبات

في هذه النتائج عن إبدالية الحلقات إضافة إلى ذلك بحثنا في 
 (𝛼, 𝛼)-بعض المتطابقات التي تحققها دوال ثنائية المشتقات

المتناظرة وبعض الدوال ثنائية الخطية التي تعطي لهذه الدوال 
 .-𝛼الخاصية الإبدالية

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


