Results Concerning the Trace of Some Biadditive Mappings of Prime and Semiprime Rings

Eqbal Jabur Harjan
Department of Mathematic, College of Education, Al-Mustansiriyah University, Baghdad-Iraq.

Abstract

The purpose of this paper is to present some results concerning the trace of symmetric (α, α) Biderivation and symmetric left α-Bimultiplier on prime rings. In these results we investigate commutativity of rings, further some certain identities satisfying by symmetric (α, α)-Biderivation and biadditive mappings that make these mapping α-commuting.

Keywords: Prime rings, Trace of biadditive mappings, Symmetric (α, α)-Biderivation, Symmetric left α-Bimultiplier, α-commuting mappings.

1. Introduction

Throughout this discussion, unless otherwise mentioned R will represent an associative prime ring with center $Z(R)$ and α, $\tau \in \operatorname{Aut}(R)$. For $x, y \in R$, the symbol $[x, y]$ will denote the commutator $x y-y x$. A ring R is called 2-torsion free, if $2 x=0, x \in R$, implies $x=0$. Recall that R is prime if for any $a, b \in R$, $a R b=\{0\}$ implies $a=0$ or $b=0$ and semiprime if for any $a \in R, a R a=\{0\}$ implies $a=0$.

In [1], T. K. Lee introduce the notion of α commuting mappings in the following way: A mapping $\varphi: R \rightarrow R$ is said to be α-centralizing on R if $[\varphi(x), \alpha(x)] \in Z(R)$, for all $x \in R$. In special case when $[\varphi(x), \alpha(x)]=0$, for all $x \in R$, the mapping φ is called α-commuting. If $\varphi(x)$ $\alpha(x)+\alpha(x) \varphi(x)=0$ holds for all $x \in U$, then φ is said to be skew α-commuting

A mapping $\mathcal{B}: R \times R \rightarrow R$ is called symmetric if $\mathcal{B}(x, y)=\mathcal{B}(y, x)$ for all pairs $x, y \in R$. A mapping $f: R \rightarrow R$ defined by $f(x)=\mathcal{B}(x, x)$, where \mathcal{B} is a symmetric mapping will be called the trace of \mathcal{B}. It obvious that in case \mathcal{B} is a symmetric mapping which is also biadditive (i.e., additive in both arguments), the trace of \mathcal{B} satisfies $f(x+y)=f(x)+2 \mathcal{B}(x, y)+f(y)$, for all $x, y \in R$. The notion of symmetric Biderivation was introduced by Maksa in [2]. A symmetric biadditive mapping $D(.,):. R \times R \rightarrow R$ is called symmetric Biderivation if $D(x y, z)=D(x, z) y+$ $x D(y, z)$ holds all $x, y, z \in R$. If D satisfies that $D\left(x^{2}, z\right)=D(x, z) x+x D(x, z)$ for all $x, y \in R$, then D is said to be symmetric Jordan Biderivation. In 2007 Y. Ceven, and M. A. Öztürk in [3] introduce the concept of symmetric (α, τ)-Biderivation as follows: A symmetric biadditive mappings $F(.,$.$) :$
$R \times R \rightarrow R$ is called said to be a symmetric (a, τ)-Biderivation if $F(x y, z)=F(x, z) a(y)+$ $\tau(x) F(y, z)$, for all $x, y, z \in R$. Obviously, in this case the relation $F(x, y z)=F(x, y) d(z)+\tau(y)$ $F(x, y)$ is also satisfied for all $x, y, z \in R$. M. Ashraf in 2010 [4], introduced the notion of symmetric generalized (a, τ)-Biderivation as follows: A symmetric biadditive mapping $\quad G(.,):. R \times R \rightarrow R$ is symmetric generalized (α, τ)-Biderivation if there exist symmetric (α, τ)-Biderivation D such that $G(x z, y)=G(x, y) a(z)+\tau(x) D(z, y)$, for all x, y, $z \in R$. In case $\alpha=\tau$ the mappings F and G are said to be a symmetric (α, α)-Biderivation and symmetric generalized ($\alpha, \alpha)$-Biderivation respectively. A Symmetric biadditive mapping $\mathcal{T}: R \times R \rightarrow R$ is called a Symmetric left (right) α-Bimultiplier where is a homomorphism of R if:

$$
\begin{aligned}
\mathcal{T}(x z, y) & =\mathcal{T}(x, y)(z)(\mathcal{T}(x z, y)=\alpha(x) \mathcal{T}(z, y)), \\
& \text { holds for all } x, y, z \in R .
\end{aligned}
$$

The mapping \mathcal{T} is called a Symmetric α-Bimultiplier if it is both Symmetric left and right α - Bimultiplier (see [5]).

Over the last five decades, many authors [6, 7, 8] present several results concerning the relationship between the commutativity of prime and semiprime rings and the existence of specific types of a nonzero symmetric generalized (α, τ)-Biderivation and affiliated mappings. In this paper many results of this kind was presented. We shall also briefly discuses of the notion of a-commuting mappings.

2. Some Preliminaries

We shall do a great of calculations with commutators, routinely using the following basic identities (see [2]):
$[x y, z]=[x, z] y+x[y, z] \&$
$[x, y z]=[x, y] z+y[x, z]$, for all $x, y, z \in R$.
We state the following well-known results which will be useful in the sequel.

Lemma (2.1): [9]

Let R be a prime ring of characteristic different from 2 and \mathcal{J} be a nonzero ideal of R. let a, b be fixed elements of R. if $a x b+b x a=0$ is fulfilled for all $x \in \mathcal{J}$, then either $a=0$ or $b=0$.

Lemma (2.2): [10]

Let R be semiprime ring, \mathcal{J} a right ideal of R. If \mathcal{J} is a commutative as a ring, then $\mathcal{J} \subset Z(R)$.In addition if R is a prime, then R must be commutative.

Lemma (2.3): [11]

Let R be a prime ring, and \mathcal{J} be a nonzero left ideal of R. If a (σ, τ)-Biderivation $D: R \times R \rightarrow R$ satisfies that $D(\mathcal{J}, \mathcal{J})=0$, then $D=0$.

Also, we need to prove the following lemma.

Lemma (2.4):

Let U be a nonzero left ideal in a 2 -torsion free prime ring R. If a symmetric (α, α)Biderivation $F: R \times R \rightarrow R$ has a zero Trace on U, then R is commutative or F is zero on R.

Proof:

Let f be the Trace of F, then
$f(u)=0$, for all $u \in U$.
The linearization of above relation leads because of the 2-torsionity free of R to:
$F(u, \omega)=0$, for all $u, \omega \in U$.
Consequently, for any $r, s \in R$, we have:
$F(r u, s \omega)=0$, for all $u, \omega \in U$.
We shall compute (1) in two different ways to get:
$F(s, r)(\omega) \alpha(u)=0$, for $u, \omega \in U$ and $r, s \in R$. . (2)
$F(s, r)(u) \propto(\omega)=0$, for $u, \omega \in U$ and $r, s \in R$. . (3)

Subtracting (2) from (3) implies that:
$F(s, r)[\alpha(u), \alpha(\omega)]=0$, for $u, \omega \in U, r, s \in R$. .. (4)
Putting $s t$ instead of s in (4), using (4), we arrive at:
$F(s, r)(t) \alpha([u, \omega])=0$, for $u, \omega \in U, r, s, t \in R$.
By primeness of R yields that either $F(s, r)=0$, for all $r, s \in R$, that is F is zero on R or $\alpha([u, \omega])=0$ and consequently $[u, \omega]=0$, for all $u, \omega \in U$.

If $[u, \omega]=0$, for all $u, \omega \in U$ then an application of Lemma (2.2) yields that R is commutative.

3. The Main Results

We start our main results with following theorem which looking for the conditions that forces the prime ring R to be commutative.

Theorem (3.1):

Let R be a 2 -torsion free prime ring and $D: R \times R \rightarrow R$ be a nonzero Symmetric Jordan Biderivation such that $x y-y d(x)=y x-x d(y)$, for all $x, y \in R$, where d is the Trace of D, then R is commutative.

Proof:

Form our hypothesis, we see:
$[x, y]=y d(x)-x d(y)$, for all $x, y \in R$.
The linearization of above relation with respect x, we get:
$[x, y]+[z, y]=y d(x)+y d(z)+2 y D(x, z)-x d(y)$ $-z d(y)$, for all $x, y, z \in R$.

In view of (1), and 2-torsionity free of R, the above relation reduces to:
$y D(x, z)=0$, for all $x, y, z \in R$.
Now, the substitution x^{2} for x leads to:
$y D(x, z) x+y x D(x, z)=0$, for all $x, y, z \in R$.
According to (2), we have:
$y x D(x, z)=0$, for all $x, y, z \in R$.
Also, the left multiplication of (2) by x, we get:
$x y D(x, z)=0$, for all $x, y, z \in R$.
Combining (3) and (4), implies to:
$[x, y] D(x, z)=0$, for all $x, y, z \in R$.
Replacing y by $y r$ in (5), using (5), leads to: $[x, y] r D(x, z)=0$, for all $x, y, r, z \in R$.

Now, define
$\mathcal{K}=\{x \in R: D(x, z)=0$, for all $z \in R\}$
$\mathcal{H}=\{x \in R:[x, y]=0$, for all $y \in R\}$
Then \mathcal{K} and \mathcal{H} are two disjoint sub group of R satisfies that there union equal to R, which contradicts Brauer's trick. Since D is a nonzero Jordan Biderivation, we conclude that:
$[x, y]=0$, for all $x, y \in R$.
Hence R is a commutative ring.

Theorem (3.2):

Let R be a 2 -torsion free ring and α be an automorphism on R. if a symmetric (α, α)-Biderivation $\quad F: \quad R \times R \rightarrow R \quad$ satisfies $(x y)-f(x y)=\alpha(y x)-f(y x)$, for all $x, y \in R$, where f is the Trace of F, then R is commutative.

Proof:

For any $x, y \in R$, we have:
$[a(x), \alpha(y)]=f(x y)-f(y x)$
$\quad=\left[a(x)^{2}, f(y)\right]+\left[f(x), \alpha(y)^{2}\right]+2 a(x)$
$F(x, y) \alpha(y)-2 \alpha(y) F(x, y) \alpha(x)$.
The substitution $x+y$ for x in (1), we get:
$[\alpha(x), \alpha(y)]=\left[\alpha(x)^{2}, f(y)\right]+[\alpha(x) \alpha(y), f(y)]+$ $[\alpha(y) \alpha(x), f(y)]+\left[f(x), \alpha(y)^{2}\right]+2\left[F(x, y), \alpha(y)^{2}\right]$ $+2 \alpha(x) F(x, y) \alpha(y)+2 \alpha(x) f(y) \alpha(y)-2 \alpha(y) F(x$, y) $\alpha(x)-2 a(y) f(y) a(x)$, for all $x, y \in R$.

In view of (1), the above relation reduces to:
$[\alpha(x)(y), f(y)]+[\alpha(y) \alpha(x), f(y)]+2[F(x, y)$, $\left.\alpha(y)^{2}\right]+2 a(x) f(y) \alpha(y)-2 a(y) f(y) a(x)=0$.

Again, taking $x+y$ instead of x in (2) and using (2) imply that:
$2\left(\left[a(x)^{2}, f(y)\right]+\left[f(x), \alpha(y)^{2}\right]+2 a(x) F(x, y) a(y)-\right.$ $2 a(y) F(x, y) a(x))=0$, for all $x, y \in R$.

Using the 2-torsionity free of R and relation (1), we arrive at:
$[\alpha(x), \alpha(y)]=\alpha([x, y])=0$, for all $x, y \in R$.

Using the fact that α is an automorphism on R, we see:
$[x, y]=0$, for all $x, y \in R$.
Hence R is commutative.
In similar manner we can prove the following theorem.

Theorem (3.3):

Let R be a 2 -torsion free ring and α be an automorphism on R. if a symmetric (α, a) Biderivation $F: R \times R \rightarrow R$ satisfies $(x y)+f(x y)=$ $a(y x)+f(y x)$, for all $x, y \in R$, where f is the Trace of F, then R is a commutative ring.

Theorem (3.4):

Let R be a non-commutative 2-torsion free prime ring and $F: R \times R \rightarrow R$ be a symmetric (a, a)-Biderivation. If the Trace f of F is skew α-commuting on a nonzero ideal U of R, then R is a commutative ring or F is zero on R.

Proof:

According to our hypothesis, we have:
$f(x) \alpha(x)+\alpha(x) f(x)=0$, for all $x \in U$.
The linearization of (1) with respect x, we get:
$f(x) \alpha(\omega)+f(\omega) \alpha(x)+2 F(x, \omega) \alpha(x)+2 F(x, \omega)$
$(\omega)+\alpha(x) f(\omega)+2 \alpha(x) F(x, \omega)+(\omega) f(x)+$ $2(\omega) F(x, \omega)=0$, for all $x, \omega \in U$.

Putting $2 x$ instead of x imply that:
$2 f(x) d(\omega)+4 f(\omega) a(x)+4 F(x, \omega) \alpha(x)+8 F(x, \omega)$ $a(\omega)+4 a(x) f(\omega)+4 a(x) F(x, \omega)+2 a(\omega) f(x)+$ $8(\omega) F(x, \omega)=0$, for all $x, \omega \in U$.

Comparing (2) with (3), we arrive because of the 2-torsinity free of R at:
$f(x) \alpha(\omega)+\alpha(\omega) f(x)+2 F(x, \omega) \alpha(x)$
$+2 a(x) F(x, \omega)=0$, for all $x, \omega \in U$.
Replacing ω by $x \omega$ in (4) leads to:
$f(x) \alpha(x) \alpha(\omega)+\alpha(x) \alpha(\omega) f(x)+2 f(x) \alpha(\omega) \alpha(x)$
$+2 a(x) F(x, \omega) \alpha(x)+2 \alpha(x) f(x) a(\omega)+2 \alpha\left(x^{2}\right)$
$F(x, \omega)=0$, for all $x, \omega \in U$.
Equivalently

```
\(a(x)(f(x) a(\omega)+a(\omega) f(x)+2 F(x, \omega) \alpha(x)+2 a(x)\)
\(F(x, \omega))+(f(x) \alpha(x)+\alpha(x) f(x)) \alpha(\omega)\)
\(+2 f(x)(\omega)(x)=0\), for all \(x, \omega \in U\).

In view of (1) and (4), the relation (5) reduces because of the 2-torsinity free of \(R\) to:
\(f(x) \propto(\omega) \alpha(x)=0\), for all \(x, \omega \in U\).
The substitution \(r \omega\) for \(\omega\) in (4), we see:
\(f(x) \alpha(r) \alpha(\omega) a(x)=0\), for all \(x, \omega \in U, r \in R\).

Recall that \((U)\) is a nonzero ideal of \(R\), also by the primeness of \(R\) we can get some \(\omega_{0} \in U\) such that \(\left(\omega_{0} I\right) \neq\{0\}\), moreover, the automorphisms. It y of \(\alpha\) leads to \(\omega_{0} I \neq\{0\}\). So there exist \(x_{0} \in U\) satisfies that \(\omega_{0} x_{0} \neq 0\).

Now, putting \(\omega_{0}\) for \(\omega\) and \(x_{0}\) for \(x\) in (6) gives:
\(f\left(x_{0}\right) \alpha(r) \alpha\left(\omega_{0} x_{0}\right)=0\), for some \(x_{0}, \omega_{0} \in U\) and all \(r \in R\).

Using the primeness of \(R\), since \(\left(\omega_{0} x_{0}\right) \neq 0\), we conclude that \(f\left(x_{0}\right)=0\).

Therefore
\(f(x)=0\), for all \(x\) satisfies that \(\omega_{0} x \neq 0\).
Our next task is to prove that \(f(x)=0\), for all \(x \in U\).

Choose \(x \in U\) such that \(\omega_{0} x=0\), then
\(\omega_{0}\left(x+x_{0}\right) \neq 0\) and \(\omega_{0}\left(x-x_{0}\right) \neq 0\), then an application of (7), we have:
\[
\begin{align*}
& 0=f\left(x+x_{0}\right)=f(x)+f\left(x_{0}\right)+2 F\left(x, x_{0}\right) \\
& =f(x)+2 F\left(x, x_{0}\right) \text {. }  \tag{8}\\
& 0=f\left(x-x_{0}\right)=f(x)-f\left(x_{0}\right)-2 F\left(x, x_{0}\right) \\
& =f(x)-2 F\left(x, x_{0}\right) \tag{9}
\end{align*}
\]

Combining (8) with (9), we conclude because of the 2 -torsinity free of \(R\) that \(f(x)=0\).

Hence \(f(x)=0\), for all \(x \in U\). So an application of Lemma (2.4) we get the assertion of the theorem.

\section*{Theorem (3.5):}

Let \(R\) be a prime ring of characteristic different from 2 and 3 and \(U \neq\{0\}\) be an ideal of \(\quad R\). if \(D_{1}, \quad D_{2}: R \times R \rightarrow R\) are nonzero symmetric ( \(\alpha, \alpha\) ) -Biderivations with trace \(f_{1}, f_{2}\) respectively satisfies that \(f_{1}(u) f_{2}(u)=0\) for all \(u\) \(\in U\), then either \(f_{2}\) is \(\alpha\)-commuting on \(U\) or \(R\) is a commutative ring.

\section*{Proof:}

By hypothesis, we have:
\(f_{1}(u) f_{2}(u)=0\), for all \(u, \omega \in U\).
The linearization of (1) leads to:
\(f_{1}(u) f_{2}(\omega)+f_{1}(\omega) f_{2}(u)+2 f_{1}(u) D_{2}(u, \omega)+\) \(2 f_{l}(\omega) D_{2}(u, \omega)+2 D_{l}(u, \omega) f_{2}(\omega)+2 D_{l}(u, \omega)\) \(f_{2}(u)+4 D_{1}(u, \omega) D_{2}(u, \omega)=0\), for all \(u, \omega \in U\).

Putting \(-u\) instead of \(u\) in above relation gives:
\[
\begin{align*}
& f_{1}(u) f_{2}(\omega)+f_{l}(\omega) f_{2}(u)+4 D_{l}(u, \omega) D_{2}(u, \omega) \\
& =0, \text { for all } u, \omega \in U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ \tag{2}
\end{align*}
\]

The linearization of (1) with respect to \(\omega\), we find:
\(f_{1}(u) f_{2}(\omega)+f_{1}(u) f_{2}(z)+2 f_{1}(u) D_{2}(\omega, z)+f_{1}(\omega)\) \(f_{2}(u)+f_{1}(z) f_{2}(u)+2 D_{1}(\omega, z) f_{2}(u)+4 D_{1}(u, \omega)\) \(D_{2}(u, \omega)+4 D_{1}(u, z) D_{2}(u, \omega)+4 D_{1}(u, \omega) D_{2}(u\), z) \(+4 D_{1}(u, z) D_{2}(u, z)=0\), for all \(u, \omega \in U\).

According to (2), the last relation reduces to:
\(2 f_{l}(u) D_{2}(\omega, z)+2 D_{l}(\omega, z) f_{2}(u)+4 D_{l}(u, z)\)
\(D_{2}(u, \omega)+4 D_{l}(u, \omega) D_{2}(u, z)=0\), for \(u, \omega \in U\).
Replacing \(u\) by \(\omega\) in above relation, we find:
\(\sigma f_{1}(\omega) D_{2}(\omega, z)+6 D_{l}(\omega, z) f_{2}(\omega)=0\).
The substitution \(z v\) for \(z\) in (3) gives:
\(f_{1}(\omega) D_{2}(\omega, z) \alpha(v)+f_{1}(\omega) \alpha(z) D_{2}(\omega, v)\)
\(+D_{l}(\omega, z) \alpha(v) f_{2}(\omega)+\alpha(z) D_{l}(\omega, v) f_{2}(\omega)=0\).
In view of (3), the above relation can be written as:
\(D_{l}(\omega, z)\left[\alpha(v), f_{2}(\omega)\right]+\left[f_{l}(\omega), \alpha(z)\right] D_{2}(\omega, v)\) \(=0\), for all \(v, z, \omega \in U\).

Putting \((z) f_{1}(\omega)\) instead of \(\alpha(z)\) yields that:
\(D_{l}(\omega, z)\left[a(v), f_{2}(\omega)\right]+\left[f_{1}(\omega), \alpha(z)\right] f_{l}(\omega)\)
\(D_{2}(\omega, v)=0\), for all \(v, z, \omega \in U\).
The substitution \(\omega\) for \(v\) and using (1) leads to:
\(D_{l}(\omega, z)\left[\alpha(\omega), f_{2}(\omega)\right]=0\), for all \(z, \omega \in U\).

Putting \(u z\) for \(z\) in (4), using (4) implies that:
\(D_{l}(\omega, u) \alpha(z)\left[\alpha(\omega), f_{2}(\omega)\right]=0\), for all \(z, u, \omega\) \(\in U\).

Again, replace \(z\) by \(z r\) in the last relation leads to:
\(D_{l}(\omega, u) \alpha(z) \quad \alpha(r)\left[\alpha(\omega), f_{2}(\omega)\right]=0\), for all \(z, u, \omega \in U\) and \(r \in R\).

Now, define
\(\mathcal{H}=\left\{\omega \in U:\left[\alpha(\omega), f_{2}(\omega)\right]=0\right\}\)
\(\mathcal{K}=\left\{\omega \in U: D_{l}(\omega, u) \alpha(z)=0\right.\), for all \(\left.u, z \in U\right\}\)
Since a group cannot be the set theoretic union of two it's proper subgroups, hence either \(U=\mathcal{H}\) or \(U=\mathcal{K}\). If \(U=\mathcal{H}\), this leads that \(f_{2}\) is \(\alpha\)-commuting on \(U\). Otherwise, \(U=\mathcal{K}\), that is:
\(D_{l}(\omega, u) a(z)=0\), for all \(z, u, \omega \in U\).
Putting \(s z\) instead of \(z\), we find:
\(D_{l}(\omega, u) \alpha(s) \alpha(z)=0\), for all \(z, u, \omega \in U\) and \(s \in R\).
By the primeness of \(R\), we have either \(f_{2}\) is \(\alpha\)-commuting on \(U\) or:
\(D_{l}(\omega, u) \alpha(s) \alpha(z)=0\), for all \(z, u, \omega \in U\) and \(s \in R\).
Since \(\alpha\) is an automorphisms, then by the primeness of \(R\) (Recall that ( \(U\) ) is a nonzero ideal of \(R\) ), we find that \(D_{l}(\omega, u)=0\), for all \(u, \omega \in U\). Consequently by Lemma (2.3) we conclude that \(R\) is commutative.

In similar manner we can prove:

\section*{Theorem (3.6):}

Let \(R\) be a non-commutative prime ring of characteristic different from 2 and 3 and \(U \neq\{0\}\) be an ideal of \(R\). if \(D_{1}, D_{2}: R \times R \rightarrow R\) are nonzero symmetric ( \(\alpha, \alpha\) )-Biderivations with trace \(f_{1}, f_{2}\) respectively satisfies that \(f_{1}(u) f_{2}(u)=0\) for all \(u \in U\), then either \(f_{1}\) is \(\alpha\) commuting or \(D_{2}\) is a zero mapping on \(R\).

\section*{Theorem (3.7):}

Let \(R\) be a semiprime ring of characteristic different from 2, 3 and \(\alpha\) is an automorphism on \(R\). if a symmetric left \(\alpha\)-Bimultiplier \(F\) : \(R \times R \rightarrow R\) satisfies that \([[f(x), \alpha(x)], \alpha(x)]\) is a central, where \(f\) is the Trace of \(F\), then \(f\) is \(\alpha\) commuting on \(R\).

\section*{Proof:}

For any \(x \in R\), we have:
\([[f(x), \alpha(x)], \alpha(x)] \in Z(R)\).
The linearization of (1) leads to:
\([[f(\omega), \alpha(x)], \quad \alpha(x)]+2[[F(x, \omega), \alpha(x)], \quad \alpha(x)]+\) \([[f(\omega), \alpha(\omega)], \alpha(x)]+2[[F(x, \omega), \alpha(\omega)], \alpha(x)]+\) \([[f(x), a(x)], a(\omega)]+[[f(\omega), a(x)], a(\omega)]+\) \(2[[F(x, \omega), \alpha(x)], \alpha(\omega)]+[[f(x), \alpha(\omega)], \alpha(\omega)]+\) \([[f(x),(\omega)], \alpha(x)]+2[[F(x, \omega), \alpha(\omega)]\), \((\omega)] \in Z(R)\), for all \(x, \omega \in R\).

The substitution \(-x\) for \(x\) in (2), then combining the relation so obtained with (2), we arrive because of the 2-torsionity free of \(R\) at:
\(2[[F(x, \omega), \alpha(x)], \alpha(x)]+[[f(x), \alpha(\omega)], \alpha(x)]+\) \([[f(\omega), \alpha(\omega)], \alpha(x)]+[[f(x), \alpha(x)], \alpha(\omega)]+\) \([[f(\omega), \alpha(x)], \alpha(\omega)]+2[[F(x, \omega), \alpha(\omega)]\),
\((\omega)] \in Z(R)\), for all \(x, \omega \in R\).
Also, putting \(2 x\) instead of \(x\) in (3), we get:
\(16[[F(x, \omega), \alpha(x)], \alpha(x)]+8[[f(x), \alpha(\omega)], \alpha(x)]\)
\(+2[[f(\omega), \alpha(\omega)], \alpha(x)]+8[[f(x), \alpha(x)], \alpha(\omega)]\)
\(+2[[f(\omega), \alpha(x)], \alpha(\omega)]+4[[F(x, \omega), \alpha(\omega)]\),
\((\omega)] \in Z(R)\), for all \(x, \omega \in R\).
Comparing (4) with (3), leads because of the 2 -torsinity free of \(R\) to:
\(2[[F(x, \omega), \alpha(x)], \alpha(x)]+[[f(x), \alpha(\omega)], \alpha(x)]+\) \([[f(x), \alpha(x)], \alpha(\omega)] \in Z(R)\), for all \(x, \omega \in R\).

Replacing \(\omega\) by \(x^{2}\) in (5) and using the commutator identity, we see:
\([[f(x), \alpha(x)], \alpha(x)] \alpha(x)+\alpha(x)[[f(x), \alpha(x)], \alpha(x)]\) \(+\alpha(x)[[f(x), \alpha(x)], \alpha(x)]+[[f(x), \alpha(x)], \alpha(x)]\) \(\alpha(x)+[[f(x), \alpha(x)], \alpha(x)] \alpha(x)+\alpha(x)[[f(x)\), \(\alpha(x)], \alpha(x)] \in Z(R)\), for all \(x \in R\).

In view of (1), since \(R\) is of characteristic different from 2 and 3 , we can get:
\([[f(x), \alpha(x)], \alpha(x)] \alpha(x) \in Z(R)\), for all \(x \in R\).
So for any \(u \in R\), we have:
\((u)[[f(x), \alpha(x)], \alpha(x)] \alpha(x)-[[f(x), \alpha(x)], \alpha(x)]\) \(a(x)(u)=0\), for all \(x \in R\).

According to (1), the above relation can be written as:
\([[f(x), \alpha(x)],(x)][(u), \alpha(x)]=0\), for \(x, u \in R\).

Putting \((u)[f(x), \alpha(x)]\) instead of \(\alpha(u)\) in (6), using (6), leads to:
\([[f(x), \alpha(x)], \alpha(x)](u)[[f(x), \alpha(x)], \alpha(x)]=0\), for all \(x, u \in R\).

Using the semiprimeness of \(R\) and automorphismity of \(\alpha\), we conclude that:
\([[f(x), \alpha(x)], \alpha(x)]=0\), for all \(x \in R\).
Now, using a same argument on (7) as used to get (5) from (1), we can see:
\[
\begin{align*}
& {[[f(x),(\omega)], \alpha(x)]+[[f(x), \alpha(x)],(\omega)]+} \\
& 2[[F(x, \omega), \alpha(x)], a(x)]=0 \text {, for } x, \omega \in R . \tag{8}
\end{align*}
\]

Replacing \(\omega\) by \(v \omega\) in (8) gives:
\([(\omega)[f(x), a(v)], \quad a(x)]+[[f(x), a(\omega)] \quad a(v)\), \(\alpha(x)]+[[f(x), \alpha(x)], \alpha(\omega)] \alpha(v)+\alpha(\omega)[[f(x)\), \(\alpha(x)], \alpha(v)]+2[[F(x, \omega) \alpha(v), \alpha(x)], \alpha(x)]=0\).

That is for all \(x, v, \omega \in R\), we have:
\([(\omega), \quad \alpha(x)] \quad[f(x), \alpha(v)]+(\omega)[[f(x), \alpha(v)]\), \(\alpha(x)]+[f(x), \alpha(\omega)][\alpha(v), \alpha(x)]+[[f(x), \alpha(\omega)]\), \(\alpha(x)] \alpha(v)+[[f(x), \alpha(x)], \alpha(\omega)] \alpha(v)+\alpha(\omega)[f(x)\), \(\alpha(x)], \alpha(v)]+2[F(x, \omega), \alpha(x)][\alpha(v), \alpha(x)]+\) \(2 F(x, \omega)[[\alpha(v), \alpha(x)], \alpha(x)]+2[[F(x, \omega), \alpha(x)]\), \(\alpha(x)] \alpha(v)+2[F(x, \omega), \alpha(x)][\alpha(v), \alpha(x)]=0\),

An application of (8), the above relation reduces to:
\([f(x), \alpha(\omega)][(v), \alpha(x)]+[(\omega), \alpha(x)][f(x),(v)]\) \(+4[F(x, \omega), \alpha(x)][(v), \alpha(x)]+2 F(x, \omega)\) \([[a(v), \alpha(x)], \alpha(x)]=0\), for all \(x, v, \omega \in R\).

The substitution \(x\) for \(v\) in (9) imply that:
\([(\omega), \alpha(x)][f(x), \alpha(x)]=0\), for all \(x, \omega \in R\).

Putting \(f(x)(\omega)\) instead of \(a(\omega)\) in (10), then using (10) gives:
\([f(x), \alpha(x)](\omega)[f(x), \alpha(x)]=0\), for all \(x, \omega \in R\).
The semiprimeness of \(R\) leads to:
\[
[f(x), \alpha(x)]=0, \text { for all } x, \omega \in R .
\]

Hence \(f\) is an \(\alpha\)-commuting mapping on \(R\).
We end this paper with the following result which gives a suitable condition on
asymmetric generalized ( \(\alpha, \alpha\) )-Biderivation G : \(R \times R \rightarrow R\) that makes the ring \(R\) is a commutative.

\section*{Theorem (3.8):}

Let \(R\) be a 2 -torision free prime ring and \(U\) be a nonzero ideal of \(R\). if a symmetric generalized ( \(\alpha, \alpha\) ) -Biderivation \(G: R \times R \rightarrow R\) with associated ( \(\alpha, \alpha\) )-Biderivation \(D\) satisfies that \(G(d(u), v)=0\) for all \(u, v \in U\) where \(d\) is the Trace of \(D\), then \(D\) is a zero mapping on \(R\).

\section*{Proof:}

By hypothesis, we have:
\(G(d(u), v)=0\), for all \(u, v \in U\).
Replacing \(v\) by \(v z\) in above relation implies that:
\(G(d(u), v) \alpha(z)+\alpha(v) D(d(u), z)=0\), for \(u, v, z\) \(\in U\).

According to (1), the above relation reduces to:
\(D(d(u), z)=0\), for all \(u, z \in U\).
The substitution \(u+v\) for \(u\) in (2) give:
\(D(d(u), z)+D(d(v), z)+2 D(D(u, v), z)=0\), for all \(u, v \in U\).

According to (2), the last relation becomes:
\(2 D(D(u, v), z)=0\), for all \(u, v, z \in U\).
Putting \(v \omega\) instead of \(v\) in (3), we get:
\(2 D(D(u, v) a(\omega)+\alpha(v) D(u, \omega), z)=0\), for all \(u, v, z, \omega \in U\).

Equivalently
\(2 D(D(u, v), z) \alpha^{2}(\omega)+2 \alpha(D(u, v) D(\alpha(\omega), z)\) \(+2 D(\alpha(v), z) \alpha\left(D(u, \omega)+2 \alpha^{2}(v) D(D(u, \omega), z)\right.\) \(=0\), for all \(u, v, z, \omega \in U\).

An application of (3) on above relation leads to:
\(D(\alpha(v), z) \alpha(D(u, \omega)+\alpha(D(u, v)) D(\alpha(\omega), z)\)
\(=0\), for all \(u, v, z, \omega \in U . \ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . ~\)

Replacing \(v\) by \(v k\) in (4) implies that:
\(\alpha\left(D(u, v) \alpha^{2}(k) D(\alpha(\omega), z)+\alpha^{2}(v) \alpha(D(u\right.\), k) \(D(\alpha(\omega), z)+\alpha^{2}(v) D(\alpha(k), z) \alpha(D(u, \omega))+\) \(D(a(v), z) \alpha^{2}(k) \alpha(D(u, \omega)=0\), for \(u, v, z, k, \omega\) \(\in U\).

In view of (4), the above relation becomes:
\(\alpha(D(u, v)) \alpha^{2}(k) D(\alpha(\omega), z)+D(\alpha(v), z) \alpha^{2}(k)\) \(\alpha(D(u, \omega))=0\), for all \(u, v, z, k, \omega \in U\).

Putting \(u\) for \(z\) and \(\omega\) for \(v\) in above relation, we find:
\(\alpha(D(u, \omega)) \alpha^{2}(k) D(\alpha(\omega), u)+D(\alpha(\omega), u) \alpha^{2}(k)\) \(\alpha(D(u, \omega))=0\), for all \(u, k, \omega \in U\).

Recall that \((U)\) is an ideal of \(R\), replace ( \(\omega\) ) by \(\omega\), then an application of Lemma (2.1) on above relation yields because of automorphismity of \(\alpha\) and symmetry of \(D\) that:
\(D(u, \omega)=0\), for all \(u, \omega \in U\).
Using Lemma (3.2), we get the requirements of the theorem. \(\qquad\) ..■

\section*{References}
[1] Lee T. K., " \(\alpha\)-commuting mappings in semiprime rings", Communications in Algebra (29), 2945-2951, (2001).
[2] Maksa G., "Remark on symmetric biadditive functions having non-negative diagonalization", Glasnik Math. 15, 279280, (1980).
[3] Ceven Y., and Öztürk M. A., "Some properties of symmetric \(\mathrm{Bi}-(\sigma, \tau)-\) Derivations in Near-Rings", Commun. Korean Math. Soc. 22, No. 4, 487-491, (2007).
[4] Ashraf M., "On Symmetric Generalized ( \(\alpha, \beta\) )-Deriavations in Rings", International Congress of mathematicians, Hyderabad, India, 19-27, August (2010).
[5] Bell H. E. and Martindale W. S., "Centralizing mappings of Semiprime Rings", Cand. Math. Bull. 30, 92-101, (1987).
[6] Bres̆ar M. and Vukman J., "On the left derivations and related mappings", Proc. Amer. Math. Soc., 110, 19-27, (1990).
[7] Brešar M., Martindale W. S. III and Miers C. R., "Centralizing maps in prime rings
with involution", J. Algebra, 161, 332-357, (1993).
[8] Serif Y. M. and Argac N., "Ideals and Symmetric Bi-derivation of prime and Semi-prime Rings", Math J. Okayama Univ. Vol. 35, (1), 189-192, (1993).
[9] Herestein I. N., "Rings with involution", The University of Chicago Press, Chicago, (1976).
[10] Auday H. M., "On Generalized Bi derivations and related additive mappings", Ph.D. Thesis, University of Almustansiriya, Iraq, (2015).

\section*{الخلاصة}

الهـف من هذا البحث نقديم بعض النتائج المتعلقة بالدوال
ثثائيــة المشنقـــات -( \(a, \alpha\) ) المتتاظـرة والـدوال ثـائيــة المضروبات-a المتتاظرة المعرفة على الحلقات الأولية. بحثثا في هذه النتائج عن إبدالية الحقات إضافة إلى ذلك بحثنا في بعض المنطابقات التي تحققها دوال ثنائية المشنقات-(a, a) المتتاظرة وبعض الدوال ثثائية الخطية التي تعطي لهذه الدوال الخاصية الإبدالية- \(\alpha\).```

