Weak Soft (1,2)*- \widetilde{D}_{ω} -Sets and Weak Soft (1,2)*- \widetilde{D}_{ω} -Separation Axioms in Soft Bitopological Spaces

Sabiha I. Mahmood and Asaad Adel Abdul-Hady
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad-Iraq.
Corresponding Author: ssabihaa@uomustansiriyah.edu.iq.

Abstract

In this article we introduce and characterize new types of soft sets in soft bitopological spaces, namely, soft $(1,2)^*$ -omega difference sets (briefly soft $(1,2)^*$ - \tilde{D}_{ω} -sets) and weak forms of soft $(1,2)^*$ -omega difference sets. Moreover we use these soft sets to study new types of soft separation axioms, namely, soft $(1,2)^*$ - ω - \tilde{D}_j -spaces, soft $(1,2)^*$ - ω - \tilde{D}_j -spaces, soft $(1,2)^*$ - ω - \tilde{D}_j -spaces and soft $(1,2)^*$ - ω - \tilde{D}_j -spaces, for j=0,1,2. Furthermore we investigate the characterizations and the relations between these types of soft separation axioms and other soft separation axioms. [DOI: 10.22401/ANJS.22.2.07]

Keywords: soft $(1,2)^*$ - \widetilde{D}_{ω} -set, soft $(1,2)^*$ - $\widetilde{D}_{\alpha-\omega}$ -set, soft $(1,2)^*$ - $\widetilde{D}_{pre-\omega}$ -set, soft $(1,2)^*$ - $\widetilde{D}_{b-\omega}$ - set and soft $(1,2)^*$ - $\widetilde{D}_{\beta-\omega}$ -set.

Introduction

Shabir and Naz [1] introduced and studied the concept of soft topological spaces by using the notion of soft sets which is introduced by Molodtsov [2]. Senel and Cagman [3] investigated the concept of soft bitopological spaces over an initial universe set with a fixed set of parameters. Mahmood and Abdul-Hady [4,5] introduced and studied new types of soft sets in soft bitopological spaces called soft (1,2)*-omega open sets and weak forms of soft $(1,2)^*$ -omega open sets such as soft $(1,2)^*$ - α - ω -open sets, soft $(1,2)^*$ -pre- ω -open sets, soft $(1,2)^*$ -b- ω -open sets and soft $(1,2)^*$ - β - ω -open sets and we use them to define and study new classes of soft separation axioms called soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms in bitopological spaces. The purpose of this paper is to define and study new types of soft separation axioms called weak soft $(1,2)^*$ - \tilde{D}_{ω} -separation axioms in soft bitopological spaces by using weak soft $(1,2)^*$ - \tilde{D}_{ω} -sets such as soft $(1,2)^*-\omega$ - \tilde{D}_j -spaces, soft $(1,2)^*-\alpha$ - ω - \tilde{D}_j spaces, soft $(1,2)^*$ -pre- ω - \widetilde{D}_j -spaces, soft (1,2)*-b-ω- \widetilde{D}_j -spaces, and soft (1,2)*-β-ω- \widetilde{D}_j -spaces, for j=0,1,2. Moreover we study the basic properties and the relationships between

these types of soft separation axioms and other soft separation axioms.

1. Preliminaries:

Throughout this paper X is an initial universe set, P(X) is the power set of X, P is the set of parameters and $A \subseteq P$.

Definition (1.1)[2]: A soft set over X is a pair (U,A), where U is a function defined by $U:A \rightarrow P(X)$ and A is a non-empty subset of P.

Definition (1.2)[6]: A soft set (U, A) over X is called a soft point if there is exactly $a \in A$ such that $U(a) = \{x\}$ for some $x \in X$ and $U(a') = \varphi, \forall a' \in A \setminus \{a\}$ and is denoted by $\widetilde{x} = (a, \{x\})$.

Definition (1.3)[6]: A soft point $\widetilde{x} = (a, \{x\})$ is called soft belongs to a soft set (U, A) if $a \in A$ and $x \in U(a)$, and is denoted by $\widetilde{x} \in (U, A)$.

Definition (1.4)[6]: A soft set (U, A) over X is called countable (finite) if the set U(a) is countable (finite) $\forall a \in A$.

Definition (1.5)[1]: A soft topology on X is a family $\tilde{\tau}$ of soft subsets of \tilde{X} having the following properties:

- (i) $\widetilde{\varphi} \in \widetilde{\tau}$ and $\widetilde{X} \in \widetilde{\tau}$.
- (ii) If $(U_1,P),(U_2,P) \in \tilde{\tau}$, then $(U_1,P) \cap (U_2,P) \in \tilde{\tau}$
- (iii) If $(U_j, P) \widetilde{\in} \widetilde{\tau}$, $\forall j \in \Lambda$, then $\bigcup_{j \in \Lambda} (U_j, P) \widetilde{\in} \widetilde{\tau}$.

The triple $(X, \tilde{\tau}, P)$ is called a soft topological space over X. The elements of $\tilde{\tau}$ are called soft open sets in \tilde{X} . The complement of a soft open set is called soft closed.

Definition (1.6)[3]: Let X be a non-empty set and let $\tilde{\tau}_1$ and $\tilde{\tau}_2$ be soft topologies over X. Then $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft bitopological space over X.

Definition (1.7)[3]: A soft subset (U,P) of a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open if $(U,P) = (U_1,P) \tilde{\bigcup} (U_2,P)$ such that $(U_1,P) \in \tilde{\tau}_1$ and $(U_2,P) \in \tilde{\tau}_2$. The complement of a soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set in \tilde{X} is called soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed.

Definition (1.8)[4]: A soft subset (A,P) of a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called soft $(1,2)^*$ -omega open (briefly soft $(1,2)^*$ -open) if for each $\tilde{x} \in (A,P)$, there exists a soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set (U,P) in \tilde{X} such that $\tilde{x} \in (U,P)$ and (U,P)-(A,P) is countable. The complement of a soft $(1,2)^*$ -open set is called soft $(1,2)^*$ -omega closed (briefly soft $(1,2)^*$ -o-closed).

Definitions (1.9)[4]: A soft subset (A, P) of a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called:

- (i) A soft $(1,2)^*$ - α - ω -open set if $(A,P) \subseteq (1,2)^*$ - ω int $(\widetilde{\tau}_1 \widetilde{\tau}_2 cl((1,2)^*$ - ω int(A,P))).
- (ii) A soft $(1,2)^*$ -pre- ω -open set if $(A,P) \subseteq (1,2)^*$ - ω int $(\tilde{\tau}_1 \tilde{\tau}_2 cl(A,P))$.

- (iii) A soft $(1,2)^*$ -b- ω -open set if $(A, P) \subseteq (1,2)^*$ - ω int $(\widetilde{\tau}_1 \widetilde{\tau}_2 cl(A, P)) \widetilde{\cup} \widetilde{\tau}_1 \widetilde{\tau}_2 cl((1,2)^*$ - ω int(A, P)).
- (iv) A soft $(1,2)^*$ - β - ω -open set if $(A,P) \cong \widetilde{\tau}_1 \widetilde{\tau}_2 \text{cl}((1,2)^*$ - $\omega \text{int}(\widetilde{\tau}_1 \widetilde{\tau}_2 \text{cl}(A,P)))$.

Proposition (1.10)[4]: If $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft bitopological space. Then:

- (i) Every soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set is soft $(1,2)^*$ - ω -open.
- (ii) Every soft $(1,2)^*$ - ω -open set is soft $(1,2)^*$ - α - ω -open.
- (iii) Every soft $(1,2)^*$ - α - ω -open set is soft $(1,2)^*$ -pre- ω -open.
- (iv) Every soft $(1,2)^*$ -pre- ω -open set is soft $(1,2)^*$ -b- ω -open.
- (v) Every soft $(1,2)^*$ -b- ω -open set is soft $(1,2)^*$ - β - ω -open.

Definitions (1.11)[5],[7]: A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*$ - \tilde{T}_0 -space (resp. soft $(1,2)^*$ - ω - \tilde{T}_0 -space, soft $(1,2)^*$ - ω - \tilde{T}_0 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_0 -space, soft $(1,2)^*$ -β- ω - \tilde{T}_0 -space) if for any two distinct soft points \tilde{X} and \tilde{Y} of \tilde{X} , there exists a soft $\tilde{\tau}_1\tilde{\tau}_2$ -open (resp. soft $(1,2)^*$ - ω -open, soft $(1,2)^*$ -b- ω -open, soft $(1,2)^*$ -β- ω -open) set in \tilde{X} containing one of the soft points but not the other.

Definition (1.12)[5],[7]: A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*$ - \tilde{T}_1 -space (resp. soft $(1,2)^*$ - ω - \tilde{T}_1 -space, soft $(1,2)^*$ - α - ω - \tilde{T}_1 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_1 -space, soft $(1,2)^*$ -β- ω - \tilde{T}_1 -space) if for any two distinct soft points \tilde{X} and \tilde{Y} of \tilde{X} , there are two soft $\tilde{\tau}_1\tilde{\tau}_2$ -open (resp. soft $(1,2)^*$ - ω -open, soft $(1,2)^*$ - ω -open, soft $(1,2)^*$ - ω -open, soft $(1,2)^*$ -b- ω -open, soft $(1,2)^*$ -β- ω -open, soft $(1,2)^*$ -β- ω -open sets (U,P) and (V,P) in \tilde{X} such that $\tilde{X} \in (U,P), \tilde{Y} \notin (U,P)$ and $\tilde{Y} \in (V,P), \tilde{X} \notin (V,P)$.

Definition (1.13)[5],[7]: A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*$ - \tilde{T}_2 - space (resp. soft $(1,2)^*$ - ω - \tilde{T}_2 -space, soft $(1,2)^*$ - α - ω - \tilde{T}_2 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_2 -space, soft $(1,2)^*$ - β - ω - \tilde{T}_2 -space) if for any two distinct soft points \tilde{X} and \tilde{Y} of \tilde{X} , there are two soft $\tilde{\tau}_1\tilde{\tau}_2$ -open (resp. soft $(1,2)^*$ - ω -open, soft $(1,2)^*$ - ω -open, soft $(1,2)^*$ - ω -open, soft $(1,2)^*$ -pre- ω -open, soft $(1,2)^*$ -b- ω -open, soft $(1,2)^*$ - β - ω -open) sets (U,P) and (V,P) in \tilde{X} such that $\tilde{X} \in (U,P)$, $\tilde{Y} \in (V,P)$ and $(U,P) \cap (V,P) = \tilde{\varphi}$.

Definition (1.15)[5]: A soft function $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is called strongly soft $(1,2)^*$ -ω-continuous (resp. strongly soft $(1,2)^*$ -ω-continuous, strongly soft $(1,2)^*$ -pre-ω-continuous, strongly soft $(1,2)^*$ -b-ω-continuous, strongly soft $(1,2)^*$ -β-ω-continuous) if $f^{-1}((U,P))$ is a soft $\tilde{\tau}_1\tilde{\tau}_2$ -open set in \tilde{X} for each soft $(1,2)^*$ -ω-open (resp. soft $(1,2)^*$ -ω-open, soft $(1,2)^*$ -pre-ω-open, soft $(1,2)^*$ -b-ω-open, soft $(1,2)^*$ -β-ω-open) set (U,P) in \tilde{Y} .

Definition (1.16)[5]: A soft function $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is called strongly soft $(1,2)^*$ -ω-open (resp. strongly soft $(1,2)^*$ -ω-open, strongly soft $(1,2)^*$ -pre-ω-open, strongly soft $(1,2)^*$ -b-ω-open, strongly soft $(1,2)^*$ -β-ω-open) if f((U,P)) is a soft $\tilde{\sigma}_1\tilde{\sigma}_2$ -open set in \tilde{Y} for each soft $(1,2)^*$ -ω-open (resp. soft $(1,2)^*$ -ω-open, soft $(1,2)^*$ -pre-ω-open, soft $(1,2)^*$ -β-ω-open) set (U,P) in \tilde{X} .

2. Weak Soft $(1,2)^*$ - \tilde{D}_{ω} -Sets

In this section, we introduce and study new concepts called soft (1,2)*- \tilde{D}_{ω} -sets, soft

 $(1,2)^*$ - $\tilde{D}_{\alpha-\omega}$ -sets, soft $(1,2)^*$ - $\tilde{D}_{pre-\omega}$ -sets, soft $(1,2)^*$ - $\tilde{D}_{b-\omega}$ -sets and soft $(1,2)^*$ - $\tilde{D}_{\beta-\omega}$ -sets in soft bitopological spaces. Further we investigate the relationships between these types of soft sets and other soft sets.

Definition (**2.1**): A soft subset (A, P) of a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*-\tilde{D}_{\omega}$ -set (resp. soft $(1,2)^*-\tilde{D}_{\alpha-\omega}$ -set, soft $(1,2)^*-\tilde{D}_{\text{pre}-\omega}$ -set, soft $(1,2)^*-\tilde{D}_{\text{b}-\omega}$ -set, soft $(1,2)^*-\tilde{D}_{\beta-\omega}$ -set, soft $(1,2)^*-\tilde{D}_{\beta-\omega}$ -set) if there exists two soft $(1,2)^*-\omega$ -open (resp. soft $(1,2)^*-\omega$ -open, soft $(1,2)^*$ -b-ω-open, soft $(1,2)^*$ -pre-ω-open, soft $(1,2)^*$ -b-ω-open, soft $(1,2)^*-\beta$ -ω-open) sets (A_1,P) and (A_2,P) in \tilde{X} such that $(A_1,P) \neq \tilde{X}$ and $(A,P) = (A_1,P) \setminus (A_2,P)$.

Example (2.2): Let $X = \Re$, $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\varphi}, (U, P)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\varphi}\}$ be soft topologies over X, where $(U, P) = \{(p_1, \{4\}), (p_2, \{4\})\}$. The soft sets in $\{\tilde{X}, \tilde{\varphi}, (U, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{X} . Then $(A, P) = \{(p_1, \{3\}), (p_2, \{3\})\}$ is a soft $(1, 2)^* - \tilde{D}_{\omega}$ -set, since $\exists (A_1, P) = \{(p_1, \Re - \{2\}), (p_2, \Re - \{2\})\}$ and $(A_2, P) = \{(p_1, \Re - \{3\}), (p_2, \Re - \{3\})\}$ are soft $(1, 2)^* - \omega$ -open sets in \tilde{X} such that $(A_1, P) \neq \tilde{\Re}$ and $(A, P) = (A_1, P) \setminus (A_2, P)$.

Remark (2.3): In definition (2.1), if $(A_1, P) \neq \widetilde{X}$ and $(A_2, P) = \widetilde{\varphi}$, then each proper soft $(1,2)^*$ - ω -open (resp. soft $(1,2)^*$ - α - ω -open, soft $(1,2)^*$ -pre- ω -open, soft $(1,2)^*$ -b- ω -open, soft $(1,2)^*$ - \widetilde{D}_{ω} -set (resp. soft $(1,2)^*$ - $\widetilde{D}_{\alpha-\omega}$ -set, soft $(1,2)^*$ - $\widetilde{D}_{\beta-\omega}$ -set).

The converse of Remark (2.3) is not true in general as shown in the following examples. **Example** (2.4): Let $X = \Re$, $P = \{p_1, p_2, p_3, p_4\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\varphi}, (U, P)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\varphi}\}$ be soft topologies over X, where

$$\begin{split} &(U,P) = \{(p_1,\{1\}),(p_2,\{1\}),(p_3,\{1\}),\,(p_4,\{1\})\}. \\ &\text{The soft sets in } \{\widetilde{X},\widetilde{\phi},(U,P)\} \text{ are soft } \widetilde{\tau}_1\widetilde{\tau}_2\text{-}\\ &\text{open sets in } \widetilde{X} \text{. Then } (A,P) = \\ &\{(p_1,\{2\}),(p_2,\{2\}),(p_3,\{2\}),(p_4,\{2\})\} \text{ is a}\\ &\text{soft } (1,2)^*\text{-}\widetilde{D}_{\alpha-\omega}\text{-set and a soft } (1,2)^*\text{-}\widetilde{D}_{\omega}\text{-set,}\\ &\text{but is not soft } (1,2)^*\text{-}\alpha\text{-}\omega\text{-open set.} \end{split}$$

Example (2.5): Let $X = \mathfrak{R}$, $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\varphi}, (U, P)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\varphi}\}$ be soft topologies over X, where $(U, P) = \{(p_1, \mathfrak{R} - \{1\}), (p_2, \mathfrak{R} - \{1\})\}$. The soft sets in $\{\tilde{X}, \tilde{\varphi}, (U, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{X} . Then $(A, P) = \{(p_1, \{1\}), (p_2, \{1\})\}$ is a soft $(1,2)^* - \tilde{D}_{pre-\omega}$ -set (resp. soft $(1,2)^* - \tilde{D}_{b-\omega}$ -set, soft $(1,2)^* - \tilde{D}_{\beta-\omega}$ -set), but is not soft $(1,2)^* - \beta$ - ω -open set.

Proposition (2.6): If $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft bitopological space. Then:

- (i) Every soft $(1,2)^*$ \tilde{D} -set is a soft $(1,2)^*$ \tilde{D}_{ω} -set.
- (ii) Every soft $(1,2)^*$ \widetilde{D}_{ω} -set is a soft $(1,2)^*$ $\widetilde{D}_{\alpha-\omega}$ -set.
- (iii) Every soft $(1,2)^*$ $\tilde{D}_{\alpha-\omega}$ -set is a soft $(1,2)^*$ $\tilde{D}_{pre-\omega}$ -set.
- (iv) Every soft $(1,2)^*$ $\widetilde{D}_{pre-\omega}$ -set is a soft $(1,2)^*$ $\widetilde{D}_{b-\omega}$ -set.
- (v) Every soft $(1,2)^*$ - $\widetilde{D}_{b-\omega}$ -set is a soft $(1,2)^*$ - $\widetilde{D}_{\beta-\omega}$ -set.

Proof: Follows from proposition (1.10).

Remark (2.7): The converse of proposition (2.6) number (i),(ii) and (iii) in general may not be true. We see that in the following examples:

Example (2.8): Let $X = \mathfrak{R}$, $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\varphi}, (U, P)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\varphi}\}$ be soft topologies over X, where $(U, P) = \{(p_1, \{2\}), \{2\}\}$

 $(p_2,\{2\})$ }. The soft sets in $\{\widetilde{X},\widetilde{\varphi},(U,P)\}$ are soft $\widetilde{\tau}_1\widetilde{\tau}_2$ -open sets in \widetilde{X} . Then $(A,P)=\{(p_1,\{1\}),(p_2,\{1\})\}$ is a soft $(1,2)^*-\widetilde{D}_{\omega}$ -set, since $\exists (A_1,P)=\{(p_1,\Re-\{2\}),(p_2,\Re-\{2\})\}$ and $(A_2,P)=\{(p_1,\Re-\{1\}),(p_2,\Re-\{1\})\}$ are soft $(1,2)^*-\omega$ -open sets in \widetilde{X} such that $(A_1,P)\neq\widetilde{\Re}$ and $(A,P)=(A_1,P)\setminus (A_2,P)$, but (A,P) is not soft $(1,2)^*-\widetilde{D}$ -set.

Example (2.9): Let $X = \mathfrak{R}$, $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\varphi}, (U, P)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\varphi}\}$ be soft topologies over X, where $(U, P) = \{(p_1, \{3\}), (p_2, \{3\})\}$. The soft sets in $\{\tilde{X}, \tilde{\varphi}, (U, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{X} . Then $(A, P) = \{(p_1, (0,3]), (p_2, (0,3])\}$ is a soft $(1,2)^* - \tilde{D}_{\alpha-\omega}$ -set, since (A, P) is a soft $(1,2)^* - \alpha$ - ω -open set, but (A, P) is not soft $(1,2)^* - \tilde{D}_{\omega}$ -set.

Example (2.10): Let $X = \Re$, $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\varphi}, (U_1, P)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\varphi}, (U_2, P)\}$ be soft topologies over X, where $(U_1, P) = \{(p_1, \{4\}), (p_2, \{4\})\}$ and $(U_2, P) = \{(p_1, \Re - \{4\}), (p_2, \Re - \{4\})\}$. The soft sets in $\{\tilde{X}, \tilde{\varphi}, (U_1, P), (U_2, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{X} . Then $(A, P) = \{(p_1, (0, 4)), (p_2, (0, 4))\}$ is a soft $(1, 2)^*$ - $\tilde{D}_{pre-\omega}$ -set, since (A, P) is a soft $(1, 2)^*$ -pre-ω-open set, but (A, P) is not soft $(1, 2)^*$ - $\tilde{D}_{\alpha-\omega}$ -set.

The following diagram shows the relation between the types of soft open sets and each of weak soft $(1,2)^*$ - ω -open sets and weak soft $(1,2)^*$ - $\widetilde{\mathbf{D}}_{\omega}$ -sets.

Theorem (2.11):

If $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is a strongly soft $(1,2)^*$ - ω -continuous (resp. strongly soft $(1,2)^*$ - α - ω -continuous, strongly soft $(1,2)^*$ -pre- ω -continuous, strongly soft $(1,2)^*$ -b- ω -continuous, strongly soft $(1,2)^*$ - β - ω -continuous) surjective function and (A,P) is a soft $(1,2)^*$ - \tilde{D}_{ω} -set (resp. soft $(1,2)^*$ - \tilde{D}_{ω} -set, soft $(1,2)^*$ - $\tilde{D}_{\beta-\omega}$ -set, soft $(1,2)^*$ - $\tilde{D}_{\beta-\omega}$ -set, soft $(1,2)^*$ - $\tilde{D}_{\beta-\omega}$ -set in \tilde{Y} , then the inverse image of (A,P) is a soft $(1,2)^*$ - \tilde{D} -set in \tilde{X} .

Proof: Let (A,P) be a soft $(1,2)^*-\widetilde{D}_{\omega}$ -set in \widetilde{Y} , then there are two soft $(1,2)^*-\omega$ -open sets (A_1,P) and (A_2,P) in \widetilde{Y} such that $(A_1,P)\neq\widetilde{Y}$ and $(A,P)=(A_1,P)\setminus(A_2,P)$. Since f is strongly soft $(1,2)^*-\omega$ -continuous, then by definition (1.15), $f^{-1}((A_1,P))$ and $f^{-1}((A_2,P))$ are soft $\widetilde{\tau}_1\widetilde{\tau}_2$ -open sets in \widetilde{X} .

Since $(A_1, P) \neq \widetilde{Y}$ and f is surjective, then $f^{-1}((A_1, P)) \neq \widetilde{X}$. Hence $f^{-1}((A, P)) = f^{-1}((A_1, P)) \setminus f^{-1}((A_2, P))$ is a soft $(1, 2)^* - \widetilde{D}$ -set in \widetilde{X} . By the same way we can prove other cases.

Theorem (2.12):

If $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is a strongly soft $(1,2)^*$ - ω -open (resp. strongly soft $(1,2)^*$ - ω -open, strongly soft $(1,2)^*$ -pre- ω -open, strongly soft $(1,2)^*$ -b- ω -open, strongly soft $(1,2)^*$ - β - ω -open) bijective function and (A,P) is a soft $(1,2)^*$ - \tilde{D}_{ω} -set (resp. soft $(1,2)^*$ - $\tilde{D}_{\alpha-\omega}$ -set, soft $(1,2)^*$ - $\tilde{D}_{\beta-\omega}$ -set, soft $(1,2)^*$ - $\tilde{D}_{\beta-\omega}$ -set) in \tilde{X} , then f((A,P)) is a soft $(1,2)^*$ - \tilde{D} -set in \tilde{Y} .

Proof: Let (A,P) be a soft $(1,2)^*-\widetilde{D}_{\omega}$ -set in \widetilde{X} , then there are two soft $(1,2)^*-\omega$ -open sets (A_1,P) and (A_2,P) in \widetilde{X} such that

 $(A_1,P) \neq \widetilde{X}$ and $(A,P) = (A_1,P) \setminus (A_2,P)$. Since f is strongly soft $(1,2)^*$ - ω -open, then by definition (1.16), $f((A_1,P))$ and $f((A_2,P))$ are soft $\widetilde{\sigma}_1\widetilde{\sigma}_2$ -open sets in \widetilde{Y} . Since $(A_1,P) \neq \widetilde{X}$ and f is injective, then $f((A_1,P)) \neq \widetilde{Y}$. Since f is bijective, then $f((A,P)) = f((A_1,P)) \setminus f((A_2,P))$ is a soft $(1,2)^*$ - \widetilde{D} -set in \widetilde{Y} . By the same way we can prove other cases.

3. Weak Soft $(1,2)^*$ - \widetilde{D}_{ω} -Separation Axioms

Now, we define and study new types of soft separation axioms in soft bitopological spaces, namely, soft $(1,2)^*-\omega$ - \tilde{D}_j -spaces, soft $(1,2)^*-\alpha$ - ω - \tilde{D}_j -spaces, soft $(1,2)^*$ -pre- ω - \tilde{D}_j -spaces, soft $(1,2)^*$ -pre- ω - \tilde{D}_j -spaces, and soft $(1,2)^*$ - β - ω - \tilde{D}_j -spaces, for j=0,1,2. Further we study the relations between these types of soft separation axioms and other types of soft separation axioms.

Definitions (3.1): A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*$ -ω- \tilde{D}_0 -space (resp. soft $(1,2)^*$ -α-ω- \tilde{D}_0 -space, soft $(1,2)^*$ -pre-ω- \tilde{D}_0 -space, soft $(1,2)^*$ -b-ω- \tilde{D}_0 -space, soft $(1,2)^*$ -β-ω- \tilde{D}_0 -space) if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{X} , there exists a soft $(1,2)^*$ - \tilde{D}_{ω} -set (resp. soft $(1,2)^*$ - \tilde{D}_{ω} -set, soft $(1,2)^*$ - $\tilde{D}_{b-\omega}$ -set, soft $(1,2)^*$ - $\tilde{D}_{b-\omega}$ -set, soft $(1,2)^*$ - $\tilde{D}_{b-\omega}$ -set, soft the soft points but not the other.

Definitions (3.2): A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*$ -ω- \tilde{D}_1 -space (resp. soft $(1,2)^*$ -α-ω- \tilde{D}_1 -space, soft $(1,2)^*$ -pre-ω- \tilde{D}_1 -space, soft $(1,2)^*$ -b-ω- \tilde{D}_1 -space, soft $(1,2)^*$ -β-ω- \tilde{D}_1 -space) if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{X} , there are two soft $(1,2)^*$ - \tilde{D}_{ω} -sets (resp. soft $(1,2)^*$ - \tilde{D}_{ω} -sets, soft $(1,2)^*$ - \tilde{D}_{ω} -sets, soft

$$\begin{split} &(1,2)^*\text{-}\,\widetilde{D}_{b-\omega}\text{-sets}, \quad \text{soft} \quad (1,2)^*\text{-}\,\widetilde{D}_{\beta-\omega}\text{-sets}) \\ &(U,P) \text{ and } (V,P) \text{ in } \widetilde{X} \text{ such that } \widetilde{x} \ \widetilde{\in} \ (U,P), \\ &\widetilde{y} \ \widetilde{\not\in} \ (U,P) \text{ and } \widetilde{y} \ \widetilde{\in} \ (V,P), \ \widetilde{x} \ \widetilde{\not\in} \ (V,P). \end{split}$$

Definitions (3.3): A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*$ -ω- \tilde{D}_2 -space (resp. soft $(1,2)^*$ -α-ω- \tilde{D}_2 -space, soft $(1,2)^*$ -pre-ω- \tilde{D}_2 -space, soft $(1,2)^*$ -b-ω- \tilde{D}_2 -space, soft $(1,2)^*$ -β-ω- \tilde{D}_2 -space) if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{X} , there are two soft $(1,2)^*$ - \tilde{D}_{ω} -sets (resp. soft $(1,2)^*$ - $\tilde{D}_{\alpha-\omega}$ -sets, soft $(1,2)^*$ - $\tilde{D}_{pre-\omega}$ -sets, soft $(1,2)^*$ - $\tilde{D}_{b-\omega}$ -sets, soft $(1,2)^*$ - $\tilde{D}_{b-\omega}$ -sets) (U,P) and (V,P) in \tilde{X} such that $\tilde{x} \in (U,P)$, $\tilde{y} \in (V,P)$ and $(U,P) \cap (V,P) = \varphi$.

Theorem (3.4):

- (i) Every soft $(1,2)^*$ - \tilde{T}_j -space (resp. soft $(1,2)^*$ - ω - \tilde{T}_j -space, soft $(1,2)^*$ - α - ω - \tilde{T}_j -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_j -space, soft $(1,2)^*$ -b- ω - \tilde{T}_j -space, soft $(1,2)^*$ - β - ω - \tilde{T}_j -space) is a soft $(1,2)^*$ - \tilde{D}_j -space (resp. soft $(1,2)^*$ - ω - \tilde{D}_j -space, soft $(1,2)^*$ - α - ω - \tilde{D}_j -space, soft $(1,2)^*$ -pre- ω - \tilde{D}_j -space, soft $(1,2)^*$ -b- ω - \tilde{D}_j -space, soft $(1,2)^*$ - β - ω - \tilde{D}_j -space), j=0,1,2.
- (ii) Every soft $(1,2)^*$ - ω - \widetilde{D}_j -space (resp. soft $(1,2)^*$ - α - ω - \widetilde{D}_j -space, soft $(1,2)^*$ -pre- ω - \widetilde{D}_j -space, soft $(1,2)^*$ -b- ω - \widetilde{D}_j -space, soft $(1,2)^*$ - β - ω - \widetilde{D}_j -space) is a soft $(1,2)^*$ - ω - \widetilde{D}_{j-1} -space (resp. soft $(1,2)^*$ - α - ω - \widetilde{D}_{j-1} -space, soft $(1,2)^*$ -pre- ω - \widetilde{D}_{j-1} -space, soft $(1,2)^*$ -b- ω - \widetilde{D}_{j-1} -space, soft $(1,2)^*$ - β - ω - \widetilde{D}_{j-1} -space), j=1,2.
- (iii) Every soft $(1,2)^*$ - \widetilde{D}_j -space is a soft $(1,2)^*$ - ω - \widetilde{D}_i -space, j=0,1,2.

Al-Nahrain Journal of Science

- (iv) Every soft $(1,2)^*$ - ω - \widetilde{D}_j -space is a soft $(1,2)^*$ - α - ω - \widetilde{D}_j -space, j = 0,1,2.
- (v) Every soft $(1,2)^*$ - α - ω - \widetilde{D}_j -space is a soft $(1,2)^*$ -pre- ω - \widetilde{D}_j -space, j=0,1,2.
- (vi) Every soft $(1,2)^*$ -pre- ω - \widetilde{D}_j -space is a soft $(1,2)^*$ -b- ω - \widetilde{D}_j -space, j = 0,1,2.
- (vii) Every soft $(1,2)^*$ -b- ω - \widetilde{D}_j -space is a soft $(1,2)^*$ - β - ω - \widetilde{D}_i -space, j = 0,1,2.

Proof:

- (i) Follows from Remark (2.3).
- (ii) It is obvious.
- (iii),(iv),(v),(vi),(vii) Follows from proposition (2.6).

Remark (3.5): The converse of theorem (3.4), no. (i) in general may not be true. We see that by the following examples:

Example (3.6): Let $X = \{a, b, c\}$ and $P = \{p\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\varphi}, (U_1, P), (U_2, P)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\varphi}, (U_3, P)\}$ be soft topologies over X, where $(U_1, P) = \{(p, \{a\})\}, (U_2, P) = \{(p, \{a, b\})\}$ and $(U_3, P) = \{(p, \{a, c\})\}$. The soft sets in $\{\tilde{X}, \tilde{\varphi}, (U_1, P), (U_2, P), (U_3, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets. Thus $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1, 2)^*$ - \tilde{D}_j -space, but is not soft $(1, 2)^*$ - \tilde{T}_j -space, j = 1, 2.

Example (3.7): Let $X = \Re$ and $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{(U, P) \subseteq \tilde{X} : (U, P)^c \text{ is finite}\} \tilde{U}$ $\{\tilde{\phi}\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\phi}\}$ be soft topologies over X. Thus $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{D}_2$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{D}_2$ -space, soft $(1,2)^* - pre - \omega - \tilde{D}_2$ -space, soft $(1,2)^* - pre - \omega - \tilde{D}_2$ -space, soft $(1,2)^* - pre - \omega - \tilde{D}_2$ -space, soft $(1,2)^* - pre - \omega - \tilde{D}_2$ -space, but is not soft $(1,2)^* - pre - \omega - \tilde{T}_2$ -space.

Remark (3.8): The converse of theorem (3.4), no. (iii) in general may not be true. We see that by the following examples:

Example (3.9): Let $X = \{a, b\}$ and $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\varphi}, (U_1, P)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\varphi}, (U_2, P)\}$ be soft topologies over X, where $(U_1, P) = \{(p_1, \{a\}), (p_2, \{a\})\}$ and $(U_2, P) = \{(p_1, \{b\}), (p_2, \{b\})\}$. The soft sets in $\{\tilde{X}, \tilde{\varphi}, (U_1, P), (U_2, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open. Thus $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1, 2)^* - \omega - \tilde{D}_j$ -space, but is not soft $(1, 2)^* - \tilde{D}_j$ -space, j = 0, 1, 2.

Theorem (3.10): A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*$ -ω- \tilde{D}_j -space (resp. soft $(1,2)^*$ -α-ω- \tilde{D}_j -space, soft $(1,2)^*$ -pre-ω- \tilde{D}_j -space, soft $(1,2)^*$ -b-ω- \tilde{D}_j -space, soft $(1,2)^*$ -β-ω- \tilde{D}_j -space) if and only if it is a soft $(1,2)^*$ -ω- \tilde{T}_j -space (resp. soft $(1,2)^*$ -α-ω- \tilde{T}_j -space, soft $(1,2)^*$ -pre-ω- \tilde{T}_j -space, soft $(1,2)^*$ -β-ω- \tilde{T}_j -space, soft $(1,2)^*$ -β-ω- \tilde{T}_j -space), for j=0,1.

Proof: Follows from proposition (1.14) and theorem (3.4), no. (i).

Theorem (3.11): A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*$ -ω- \tilde{D}_1 -space (resp. soft $(1,2)^*$ -α-ω- \tilde{D}_1 -space, soft $(1,2)^*$ -pre-ω- \tilde{D}_1 -space, soft $(1,2)^*$ -β-ω- \tilde{D}_1 -space, soft $(1,2)^*$ -β-ω- \tilde{D}_1 -space) if and only if it is a soft $(1,2)^*$ -ω- \tilde{D}_2 -space (resp. soft $(1,2)^*$ -α-ω- \tilde{D}_2 -space, soft $(1,2)^*$ -pre-ω- \tilde{D}_2 -space, soft $(1,2)^*$ -β-ω- \tilde{D}_2 -space, soft $(1,2)^*$ -β-ω- \tilde{D}_2 -space).

Proof: Sufficiency. Follows from theorem (3.4), no. (ii).

Necessity. Let $\widetilde{x}, \widetilde{y} \in \widetilde{X}$ such that $\widetilde{x} \neq \widetilde{y}$. Since $(X, \widetilde{\tau}_1, \widetilde{\tau}_2, P)$ is a soft $(1,2)^*$ - ω - \widetilde{D}_1 -space, then there exists soft $(1,2)^*$ - \widetilde{D}_{ω} -sets (U,P) and (V,P) in \widetilde{X} such that $\widetilde{x} \in (U,P)$, $\widetilde{y} \notin (U,P)$ and $\widetilde{y} \in (V,P)$, $\widetilde{x} \notin (V,P)$. Let $(U,P) = (U_1,P) \setminus (U_2,P)$ and $(V,P) = (V,P) \in (V,P)$ $(U_3,P)\setminus (U_4,P)$, where $(U_1,P),(U_2,P)$, $(U_3,P),(U_4,P)$ are soft $(1,2)^*$ - ω -open sets in \widetilde{X} and $(U_1,P)\neq \widetilde{X}$, $(U_3,P)\neq \widetilde{X}$. By $\widetilde{x} \notin (V,P)$ we have two cases:

- (i) $\widetilde{x} \notin (U_3, P)$
- (ii) $\tilde{x} \in (U_3, P)$ and $\tilde{x} \in (U_4, P)$.

In case (i): $\widetilde{x} \notin (U_3, P)$. By $\widetilde{y} \notin (U, P)$ we have two subcases:

- (a) $\tilde{y} \in (U_1, P)$ and $\tilde{y} \in (U_2, P)$
- **(b)** $\widetilde{y} \in (U_1, P)$.

Subcase (a): $\widetilde{y} \in (U_1, P)$ and $\widetilde{y} \in (U_2, P)$. We have $\widetilde{x} \in (U_1, P) \setminus (U_2, P)$, $\widetilde{y} \in (U_2, P)$ and $((U_1, P) \setminus (U_2, P)) \cap (U_2, P) = \widetilde{\varphi}$. Observe that $(U_2, P) \neq \widetilde{X}$ since $(U, P) \neq \widetilde{\varphi}$, thus by Remarks (2.3), (U_2, P) is a soft $(1, 2)^* - \widetilde{D}_{\omega}$ -set.

Subcase (b): $\widetilde{y} \not\in (U_1, P)$. Since $\widetilde{x} \in (U_1, P) \setminus (U_2, P)$ and $\widetilde{x} \notin (U_3, P)$, then $\widetilde{x} \in (U_1, P) \setminus ((U_2, P) \widetilde{\bigcup} (U_3, P))$. Since $\widetilde{y} \in (U_3, P) \setminus (U_4, P)$ and $\widetilde{y} \notin (U_1, P)$, then $\widetilde{y} \in (U_3, P) \setminus ((U_4, P) \widetilde{\bigcup} (U_1, P))$. Observe $(U_2,P)\widetilde{\bigcup}(U_3,P)$ and $(U_4,P)\widetilde{\bigcup}(U_1,P)$ are soft $(1,2)^*$ - ω -open $\tilde{\mathbf{X}}$. sets Hence $\widetilde{\mathbf{x}} \in (\mathbf{U}_1, \mathbf{P}) \setminus ((\mathbf{U}_2, \mathbf{P}) \widetilde{\bigcup} (\mathbf{U}_3, \mathbf{P})),$ $\widetilde{y} \in (U_3, P) \setminus ((U_4, P) \widetilde{\bigcup} (U_1, P))$ and $(U_1,P)\setminus((U_2,P)\widetilde{\bigcup}(U_3,P))$ ñ $(U_3,P)\setminus((U_4,P)\widetilde{\bigcup}(U_1,P))=\widetilde{\varphi}.$

In case (ii): $\tilde{x} \in (U_3, P)$ and $\tilde{x} \in (U_4, P)$. We have $\tilde{y} \in (U_3, P) \setminus (U_4, P), \tilde{x} \in (U_4, P)$ and $((U_3, P) \setminus (U_4, P)) \cap (U_4, P) = \tilde{\varphi}$. Observe that $(U_4, P) \neq \tilde{X}$ since $(V, P) \neq \tilde{\varphi}$, thus by Remarks (2.3), (U_4, P) is a soft $(1,2)^* - \tilde{D}_{\omega}$ -set. Hence $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{D}_2$ -space. Similarly, we can prove other cases.

Proposition (3.12):

(i) Every soft $(1,2)^*-\alpha-\omega-\widetilde{D}_j$ -space is a soft $(1,2)^*-\omega-\widetilde{D}_j$ -space, j=0,1,2.

- (ii) Every soft $(1,2)^*$ -pre- ω - \widetilde{D}_j -space is a soft $(1,2)^*$ - α - ω - \widetilde{D}_j -space, j = 0,1,2.
- (iii) Every soft $(1,2)^*$ -b- ω - \widetilde{D}_j -space is a soft $(1,2)^*$ -pre- ω - \widetilde{D}_j -space, j=0,1,2.
- (iv) Every soft $(1,2)^*$ - β - ω - \tilde{D}_j -space is a soft $(1,2)^*$ -b- ω - \tilde{D}_j -space, j=0,1,2.

Proof: (i) If j=0, then let $\tilde{x}, \tilde{y} \in \tilde{X}$ such that $\tilde{x} \neq \tilde{y}$. Since $\tilde{X} - {\tilde{x}}$ is a soft $(1,2)^* - \omega$ -open set in \tilde{X} , then by Remark (2.3), $\tilde{X} - {\tilde{x}}$ is a soft $(1,2)^*$ - \widetilde{D}_{ω} -set in \widetilde{X} which contains \widetilde{v} , but not \tilde{x} . Hence $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*$ - ω - \widetilde{D}_0 -space. If j=1, then let $\widetilde{x}, \widetilde{y} \in \widetilde{X}$ such that $\tilde{x} \neq \tilde{y}$. Since $\tilde{X} - {\tilde{x}}$ and $\tilde{X} - {\tilde{y}}$ are soft $(1,2)^*$ - ω -open sets in \widetilde{X} , then by Remark (2.3), $\widetilde{X} - {\widetilde{x}}$ and $\widetilde{X} - {\widetilde{y}}$ are soft $(1,2)^* - \widetilde{D}_{\omega}$ -sets in \widetilde{X} such that $\widetilde{X} - {\{\widetilde{y}\}}$ containing \widetilde{x} , but not \widetilde{y} and $\widetilde{X}\!-\!\{\widetilde{x}\}$ containing \widetilde{y} , but not \tilde{x} . Therefore $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*$ - ω - \widetilde{D}_1 -space. If j=2, then let $\widetilde{x}, \widetilde{y} \in \widetilde{X}$ such that $\widetilde{\mathbf{x}} \neq \widetilde{\mathbf{y}}$. Since $\{\widetilde{\mathbf{x}}\} = (\widetilde{\mathbf{X}} - \{\widetilde{\mathbf{y}}\}) \setminus (\widetilde{\mathbf{X}} - \{\widetilde{\mathbf{x}}\})$ and $\{\widetilde{y}\} = (\widetilde{X} - \{\widetilde{x}\}) \setminus (\widetilde{X} - \{\widetilde{y}\})$ are disjoint soft $(1,2)^*$ - \widetilde{D}_{ω} -sets in \widetilde{X} containing \widetilde{X} and \widetilde{Y} respectively, therefore $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)*-\omega-\widetilde{D}_2$ -space.

(ii),(iii), and (iv) similar to (i).

The following diagram show the relations between the soft $(1,2)^*$ - $\tilde{\mathbf{T}}_{\mathbf{j}}$ -spaces and each of soft $(1,2)^*$ - $\tilde{\mathbf{D}}_{\mathbf{j}}$ -spaces, soft $(1,2)^*$ - ω - $\tilde{\mathbf{D}}_{\mathbf{j}}$ -spaces, soft $(1,2)^*$ - ω - $\tilde{\mathbf{D}}_{\mathbf{j}}$ -spaces, soft $(1,2)^*$ -pre- ω - $\tilde{\mathbf{D}}_{\mathbf{j}}$ -spaces, soft $(1,2)^*$ -b- ω - $\tilde{\mathbf{D}}_{\mathbf{j}}$ -spaces, and soft $(1,2)^*$ - β - ω - $\tilde{\mathbf{D}}_{\mathbf{j}}$ -spaces, for \mathbf{j} = 0,1,2.

Definition (3.13): Let $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be a soft bitopological space. A soft point $\tilde{x} \in \tilde{X}$ which has \tilde{X} as the only soft $(1,2)^*$ - ω -neighborhood (resp. soft $(1,2)^*$ - α - ω -neighborhood, soft $(1,2)^*$ -b- ω -neighborhood, soft $(1,2)^*$ -b- ω -neighborhood, soft $(1,2)^*$ - ω -neighborhood) is called a soft $(1,2)^*$ - ω -neat (resp. soft $(1,2)^*$ - ω -neat, soft $(1,2)^*$ -b- ω -neat, soft $(1,2)^*$ - β - ω -neat) point.

Theorem (3.14): Let $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be a soft bitopological space, then the following are equivalent:

- (i) $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*-\omega$ - \tilde{D}_1 -space (resp. soft $(1,2)^*-\alpha$ - ω - \tilde{D}_1 -space, soft $(1,2)^*$ -pre- ω - \tilde{D}_1 -space, soft $(1,2)^*$ -b- ω - \tilde{D}_1 -space, soft $(1,2)^*$ - β - ω - \tilde{D}_1 -space).
- (ii) $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ has no soft $(1,2)^*$ - ω -neat (resp. soft $(1,2)^*$ - α - ω -neat, soft $(1,2)^*$ -pre- ω -neat, soft $(1,2)^*$ - β - ω -neat) point.

Proof:

- (i) \Rightarrow (ii). Since $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*-\omega-\widetilde{D}_1$ -space, then each soft point $\widetilde{x} \in \widetilde{X}$ is contained in a soft $(1,2)^*-\widetilde{D}_{\omega}$ -set $(U,P)=(U_1,P)\setminus (U_2,P)$, where (U_1,P) and (U_2,P) are soft $(1,2)^*-\omega$ -open sets and thus in (U_1,P) . By definition (2.1), $(U_1,P)\neq \widetilde{X}$. This implies that \widetilde{x} is not a soft $(1,2)^*-\omega$ -neat point.
- (ii) \Rightarrow (i). Follows from proposition (1.14) and theorem (3.4), no. (i).

Theorem (3.15):

Let $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ be a strongly soft $(1,2)^*$ - ω -continuous (resp. strongly soft $(1,2)^*$ - ω -continuous, strongly soft $(1,2)^*$ -pre- ω -continuous, strongly soft $(1,2)^*$ - ω -continuous, strongly soft $(1,2)^*$ - ω -continuous) bijective function. If \tilde{Y} is a soft $(1,2)^*$ - ω - \tilde{D}_j -space (resp. soft $(1,2)^*$ - ω - \tilde{D}_j -space, soft $(1,2)^*$ -pre- ω - \tilde{D}_j -space, soft $(1,2)^*$ -pre- ω - \tilde{D}_j -space, soft $(1,2)^*$ -

b- ω - \widetilde{D}_{j} -space, soft $(1,2)^*$ - β - ω - \widetilde{D}_{j} -space), then \widetilde{X} is a soft $(1,2)^*$ - \widetilde{D}_{j} -space, j=0,1,2.

Proof: Suppose that $(Y, \widetilde{\sigma}_1, \widetilde{\sigma}_2, P)$ is a soft $(1,2)^*-\omega$ - \widetilde{D}_2 -space. Let $\widetilde{x}_1, \widetilde{x}_2 \in \widetilde{X}$ such that $\widetilde{x}_1 \neq \widetilde{x}_2$. Since f is injective and $(Y, \widetilde{\sigma}_1, \widetilde{\sigma}_2, P)$ is a soft $(1,2)^*-\omega$ - \widetilde{D}_2 -space, then there exists disjoint soft $(1,2)^*-D_{\omega}$ -sets (A_1,P) and (A_2,P) in \widetilde{Y} such that $f(\widetilde{x}_1) \in (A_1,P)$ and $f(\widetilde{x}_2) \in (A_2,P)$. By theorem (2.11), $f^{-1}((A_1,P))$ and $f^{-1}((A_2,P))$ are soft $(1,2)^*-\widetilde{D}$ -sets in \widetilde{X} . Since $\widetilde{x}_1 \in f^{-1}((A_1,P))$, $\widetilde{x}_2 \in f^{-1}((A_2,P))$ and $f^{-1}((A_2,P)) \in \widetilde{\Phi}$. Thus $(X,\widetilde{\tau}_1,\widetilde{\tau}_2,P)$ is a soft $(1,2)^*-\widetilde{D}_2$ -space. Similarly, we can prove other cases.

Theorem (3.16):

Let $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ be a strongly soft $(1,2)^*$ - ω -open (resp. strongly soft $(1,2)^*$ -pre- ω -open, strongly soft $(1,2)^*$ -pre- ω -open, strongly soft $(1,2)^*$ - β - ω -open) bijective function. If \tilde{X} is a soft $(1,2)^*$ - ω - \tilde{D}_j -space (resp. soft $(1,2)^*$ - α - ω - \tilde{D}_j -space, soft $(1,2)^*$ -pre- ω - \tilde{D}_j -space, soft $(1,2)^*$ - β - ω - \tilde{D}_j -space), then \tilde{Y} is a soft $(1,2)^*$ - \tilde{D}_j -space, j=0,1,2.

Proof: Suppose that $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*$ - ω - \tilde{D}_2 -space. Let $\tilde{y}_1, \tilde{y}_2 \in \tilde{Y}$ such that $\tilde{y}_1 \neq \tilde{y}_2$. Since f is surjective, then there exists $\tilde{x}_1, \tilde{x}_2 \in \tilde{X}$ such that $f(\tilde{x}_1) = \tilde{y}_1$ and $f(\tilde{x}_2) = \tilde{y}_2$. But f is a soft function, then $\tilde{x}_1 \neq \tilde{x}_2$, since $(X, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*$ - ω - \tilde{D}_2 -space, then there exists disjoint soft $(1,2)^*$ - \tilde{D}_{ω} -sets (A_1,P) and (A_2,P) in \tilde{X} such that $\tilde{x}_1 \in (A_1,P)$ and $\tilde{x}_2 \in (A_2,P)$. By theorem (2.12), $f((A_1,P))$ and $f((A_2,P))$ are soft $(1,2)^*$ - \tilde{D} -sets in \tilde{Y} such that

 $f(\widetilde{x}_1) = \widetilde{y}_1 \in f((A_1, P))$ and $f(\widetilde{x}_2) = \widetilde{y}_2 \in f((A_2, P))$. Since f is injective, then $f((A_1, P)) \cap f((A_2, P)) = \widetilde{\phi}$. Hence $(Y, \widetilde{\sigma}_1, \widetilde{\sigma}_2, P)$ is a soft $(1, 2)^* - \widetilde{D}_2$ -space. Similarly, we can prove other cases.

References

- [1]. Shabir M. and Naz M., "On soft topological spaces", Computers and Mathematics with Applications, 61(7), 1786-1799, 2011.
- [2]. Molodtsov D., "Soft set theory-First results", Computers and Mathematics with Applications, 37 (4-5), 19-31, 1999.
- [3]. Senel G. and Çagman N., "Soft closed sets on soft bitopological space", Journal of new results in science, 5, 57-66, 2014.
- [4]. Mahmood S. I. and Abdul-Hady A. A., "Weak Forms of Soft (1,2)*-Omega open sets in Soft Bitopological Spaces", Iraqi Journal of Science, 59 (1C), 572-580, 2018.
- [5]. Mahmood S. I. and Abdul-Hady A. A., "Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces", Ibn Al-Haitham Journal for Pure and Applied Science, 31(2), 137-150, 2018.
- [6]. Das S. and Samanta S. K., "Soft metric", Annals of Fuzzy Mathematics and Informatics, 6(1), 77-94, 2013.
- [7]. Mahmood S. I., "Weak Soft Separation Axioms and Weak Soft (1,2)*- \tilde{D} Separation Axioms in Soft Bitopological Spaces", Journal of Al-Nahrain University, 20 (3), 137-148, 2017.