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Abstract

The interpretation of the g-deformed 1-D quantum harmonic oscillator is investigated for two
definitions of g-deformation. This investigation is achieved by using Zaslavskii’s method to
obtain the Heisenberg equations of motion (quantum Liouville equations) in the undeformed
phase space. These quantum Liouville equations exhibit a non-commutative geometry produce
from the existence of the dilatation operator which is inherent in the g-deformation process.
The classical limits of these equations are obtained by applying a special classical limiting
condition to produce the classical Liouville equations of the g-deformed oscillator. These
classical Liouville equations are solved by using the method of characteristics in order to obtain
the classical probability distribution functions for this system. The 2-D and 3-D behaviors of
these functions were then investigated using a computer visualization method. The results of
the mathematical derivations together with the computer visualization method show that the
classical limit of the quantum Liouville equations for the g-deformed 1-D quantum harmonic
oscillator are statistical in nature where the nonlinearity parameter for the q-deformed oscillator
is connected with £ . This result conforms to that obtained by Ghosh et al. for the undeformed
1-D quantum harmonic oscillator.

The obtained classical probability distribution functions exhibit whorl shapes that evolve with
time in phase space that are similar to the shapes obtained for the 1-D classical g-deformed
oscillator. These whorl shapes in phase space are similar to those introduced by Milburn for
the 1-D classical anharmonic oscillator. This similarity results from the fact that the
anharmonicity itself represents a kind of deformation with a frequency that is a function of
amplitude.

Keywords: quantum g-deformed oscillator, classical limit, classical Liouville equation,
method of characteristics, classical probability distribution function.

Introduction Shabanov [2] studied also the meaning and
the interpretation of the same oscillator
used by Buzek [1] but in a different manner.
In 1992, Shabanov [2] obtained the
g-deformed variables by using the standard
Heisenberg commutation relations, and
defined the g-deformation parameter, g, to

be a function of the Planck constant and

There have been many attempts performed
to reveal the meaning and the interpretation
of g-deformation [1-9]. In this context, the
g-deformed quantum harmonic oscillator
was used as a good model example. In
1991, Buzek [1] evaluated the time-
evolution of the mean values of the

g-position and the g-momentum for the some dimensional parameter, quhere
g-oscillator in order to obtain the periodic 2

. : : —h/ﬂ ) . _ _
classical behavior. In this treatment, the q=e 9™ To interpret this oscillator,

non- periodic behavior of this oscillator was
interpreted as the interaction of the
quantum oscillator with another system.

he applied the classical limit z—0, q—>1
for the canonical variables to arrive at the
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classical theory. The second attempt by
Shabanov [3] was more rigorous than the
first one, where he introduced in 1993 the
path integral in his approach. Hence, the
classical theory was obtained by applying
the semi classical approximation. It turns
out that the g-oscillator can be interpreted
as a particle with a friction force acting on
the particle, and this force is proportional to
the particle velocity. Man’ko et al. [4]
studied both the quantum and classical
g-oscillator via the Dirac dequantization
method to construct the classical
g-oscillator  from the corresponding
quantum g-oscillator and interpreted the
g-oscillator as a classical non-linear
oscillator with a special type of
nonlinearity, where the frequency of the
oscillator is a function of the energy which
is a constant of the motion. Man’ko has also
dealt with the f-oscillator in the same
context in 1997 and 1998 [5, 6].

Furthermore Gruver [7] studied the
dynamical properties of the g-deformed
oscillator and found that this oscillator can
be interpreted as an anharmonic oscillator
with a g-deformation parameter which can
be interpreted as a measure of
anharmonicity. Another attempt to interpret
the g-deformation can be found in the work
of Batouli and El Baz [8] who studied the
g-deformation for the quantum harmonic
oscillator in a way similar to that of Buzek
[1], but with some modifications. These
modifications led to a different
interpretation for the g-deformation where
the g-deformed quantum harmonic
oscillator can be considered as the quantum
version of a classical forced oscillator with
a modified g-dependent frequency, such
that in the limit g —1, the driving force

disappears. From another point of view, the
g-deformation can be interpreted in terms
of the non-commutative quantum
mechanics. In this context, Lavagno et al.
[9] investigated the meaning of
g-deformation by  applying  non-
commutative g-calculus. Then, they were
able to obtain the generalized g-classical
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theory in terms of the g-deformed Poisson
bracket [9].

Eftekharzadeh et al. and Benatti et al.
[10-12] also investigated the interpretation
of the non-commutative quantum
mechanics by applying the classical limit.
In spite of all the attempts to interpret
g-deformation mentioned above, there is
still a problem facing the understanding of
the physics behind this kind of deformation.
The present paper is an attempt to
investigate the nature of g-deformation for
the g-deformed quantum oscillator by using
Zaslavskii’s method [13] to obtain the
Heisenberg equation of motion (quantum
Liouville equation), then approach the
classical limit to recover the classical
Liouville equation of the g-deformed
oscillator.

The rest of the paper is organized as
follows. First, the g-deformed quantum
harmonic oscillator is discussed where its
Hamiltonian is introduced for both types of
g-deformation. Then, the equations of
motion and the Liouville equations are
derived by using Zaslavskii’s method [13].
The solutions for these Liouville equations
are obtained by using the method of
characteristics, then used to simulate the
behavior in two and three dimensions and
finally the conclusions are presented.

g-Deformed 1-D Quantum Harmonic
Oscillator

In general, there are different versions of
the g-deformed quantum  harmonic
oscillator according to the g—commutator
that is adopted for each version as well as
to the definitions of the bosonic operators
that satisfy these g-commutators [14-19].
An example of the g-deformed quantum
oscillator is given in ref. [15] in which
Biedenharn introduced the following
g—commutator:

s all —4.af —g¥lafa = ot
[aq,aq}q_aqaq 4" a48q=d (1)

However, according to Man’ko [4], the
g-deformed oscillator represents a special
type of nonlinearity where the frequency of
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the oscillator depends on the energy of the
oscillator (i.e.,|a|2). In this context, an

f-deformed  oscillator, which is a
generalization of the g-oscillator, was
introduced by Man’ko [5]. The realization
of the f-deformed boson operators éf and

é:ﬁ in terms of the undeformed boson

operators & and a'was achieved via the
transformation [4-6]:

a="f(N)a =f(N+1)a

aJ]E=an(r\‘|)=an(|\‘|+1) @

where f(N) represents a non-negative

real operator-valued function of the number
operator. It should be noted that the
subscript “f” used here refers to the “f-
deformation” case. Also, whenever a q-
deformation process is used instead of the
f-deformation process, then the subscript
“f” is interchanged by “q” and vice versa.
The transformation from the f-deformed
oscillator to the g-deformed oscillator or to
the undeformed oscillator involves
substituting specific values for the function

f(N) in the transformation of eqgn. (2) in
the form [4-6]:

f(N)=

1 for undeformed oscillator

[N]

A

q

for g-deformed oscillator

Otherwise for f-deformed oscillator

(3)
where,
. sinh AN
N =>—"
4 sinh A
N —N
for N =9 —9 4a

9 gq-q*t
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and,
N _eiN—l
q ei—l
N
for N =3 —1
4 g-1

(4b)

Furthermore, the Hamiltonian operators of
the deformed quantum harmonic oscillators
for these two types of deformation are
defined as [4-6, 20, 21]:

v (hw ) (4 st L ata
Hq = (7) (aqaq +aqaq) (5)

respectively.

Egn. (5) represents the Hamiltonian
operator of the g-deformed quantum
harmonic oscillator in the g-deformed Fock
space while eqn. (6) represents the
Hamiltonian operator of the f-deformed
qguantum harmonic oscillator in the
undeformed Fock space.

The g-deformed number operator, Nq , In

terms of g-deformed boson operators is
defined as [1,15,19]:

Nq:[N]qza a (7

q

o —-

[N +1]g =4, aa )
Substituting eqns. (7) and (8) in egn. (6),
one gets [15]:

Hq{%‘”j ([ +IN +1]g) ©)
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Zaslavskii’s Method for Deriving the
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eqn. (9). And according to Sudarshan et al.

Quantum Liouville Equation for the [22], one have the  following
g-Deformed Oscillator in the correspondence:
a -Representation at = o
Accoro_lmg to Zaslavskii [13],_the equation 5 for T a*,i (12)
of motion of an averaged physical quantity a — q oa*
& a,a”;t isdefined as [13]: Ja
9e @il iReaatt  (10) and,
ot a — «a 5
where, o for H, o— (13)
2 a' —— q oa
K:[%] e—|0£| oa
) Substituting eqns. (12) and (13) into the
| a*,ﬁ —H a,ﬁ e|“| 11 expressions  for N and  N+1
q oa” q o q g
appearing in ]ﬁIq at, i* (see eqgn. (9)),
The Hamiltonian of the g-deformed o
quantum harmonic oscillator is given by leads to:
sinh 4 a” a*
N = oa N K
sinh A4 A —a 14
5 for N =3 q_l (14)
sinhla*é—*+l =19
N+1,= 4
g sinh 2
and,
/la* a
. oa” _
N = N
© for N =9 —1 (15)
~ o —
N+1g=y !
a e —1
where, N gand N +1¢ given by eqns.(7) and (8). The same method can be used for N q
and N +1 appearing in I a,i . Now, substitution of N , and N+1 ., from egns.
q a7 sa q q
(14) and (15) into eqn. (9), gives:
5 " sinh 1 a*i* sinh a*i*+1
il o, :[ “’] __oa __da (169)
q oa* 2 sinh 2 sinh 2

Science
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hence,
~ o _ (94 —
oa 2 e” —1 e —1
and,
. 0 . 0
sinh Ala— sinh 1 a—+1
[ g2 =|P __Oa __Oa (17a)
497 ba 2 sinh A sinh A
hence,
za(j ) aaaﬂ
. A a _1q a 1
. a2 :[ w] ¢ + 2 (17b)
47" da 2 et 1 et 1
respectively.
Using egns. (16) and (17) inegn. (11), leads Then, using the definition of the sine
to: hyperbolic function and re-arranging terms,
. ) 1 —|a|2 eqn. (18a) can be cast in the form:
K=w 2sinh A e X . 2
K= 4sinh 1 el
. « O : « 0
- 4sinh ia—*—l—smhia—*—l—l 0 P
_ 0 _ 0 d1tet | 0d" _e  Oa
—sinh La— —sinh A a—+1
oa oa
2 « O 0 2
el [ —da |l
(18a) —1+4e e —e

Similarly, eqn. (18b) becomes:

0 0 K=w 2 e’l—l - e_|0‘|2
e oo + e oo /105* 6* ﬂai )
J11etle 0a" _g oa e|0‘|
0 0
la— A a—+1 2
e da _ e oa | (19b)
Egns. (19a) and (19b) can be substituted in
(18b) egn. (10), and after replacing & a,a™;t

respectively. by éq a,a’;t | one obtains:
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o0&, a,a’;t B 2
g —w 4sinh 2 el
ot
10{* 5* lai
1+et [ 0d —¢ Oa
A _/10[* a* —ﬂai
—1+e " |e da” ¢  Oa
'elalzf a, ot
q 1 )
(20a)
and,
o0&, a,a’;t -1 2
q —w2et-1 el
ot
ra® a* iai
1+et le Oa _e¢ Oa

af, e
-e ‘fq a,a ;t
(20b)

respectively,  where  the  function

.fq a,a”;t represents the g-analog of the

averaged physical quantity & o,a™;t
appearing in ref. [13]. Also, it is noted that
the function éq a,a”;t reduces to

£ a,a’;t inthe limit g >1.

Action of the Dilatation (Shift)
:tla*i j:).ai
Operators e oa” and e O

on the Function ¢, a,a’;t
Since the action of the dilatation (shift)

0
Bx—
operator € OX on a function F X is

given by [23, 24]:

. 19. September.2016 pp 53-69 Science
0
Bx—
e X F(x)=F(xe?) (21)

for any arbitrary constant S=+4, and
replacing F X by F(a,a"), eqn. (21)
gives:

iia*i
e oa” F(a,a*):F(a,eila*)
(22)
and,
+1 i
e aaa F(a,a*):F(eiia,a*)
(23)

Egns. (22) and (23) can be generalized to
the case where the shift operator acts on the
product of two functions

F(a,a")G(a,a") (see Appendix).
Using this result, leads to:

*

0&" F (a,a*)G (e, a*) =

+ia
e

*

Gl (a,a”)
(24)

and,

iiai

e 02 F(a,a")G(a,a)=

respectively.

Therefore, egns. (20) can be simplified by
using egns. (24) and (25) with

2
F(a,a") = e‘a‘ ,G(a,a”) = fq (a,a*; t)

and re-arranging to get:
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Q& a,a;t 3 2
a4 —iw 4sinh 1 le_la|
ot
« O 0
1+e/1 ee |0{| e 80{ —e 8a
—A .2
—1+e_’1 e° ]
e oa _g oa §q a,a’;t
(26a)
and,
& a,a’;t 1 2
q — iw 2¢et-1 e
ot
0
» o]
1+ e* e e Oa _g Oa
-fq a,at
(26b)

respectively.

Eqns. (26) represent the quantum Liouville
equations for the g-deformed 1-D quantum
harmonic oscillator in the
o -representation.

Classical Limit of the Liouville Equation
for§q a,a";t inthe -Representation

Expanding all functions appearing in
egn. (26a) as power series in A, and
simplifying the result, one obtains:

0&y(a.a’;t) lw
: ot =_( 4 )((1+sll(z)))

2 A% 2
2o+l +j

(2+S,(2)) e(
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ERCRED
(27)
where,
$1(4)= /13_? /15_:1 /;_6,
82(/1)=/1+/12—2!+ﬁ3—?+-~ (28)
S3(4) =~ /12_2, - /;_?

Applying the conditions for classical
2
limiting namely; ﬁ—>0,‘0!‘ — % such

2 L
thatl‘a‘ — finite, to eqn. (28), where
A=(const) i (ie, A—>0 as fast as

h—0) and letting

Eqlana; t)ﬁ@&(a,a*;t) in this limit,
then eqgn. (27) reduces to:



Journal of Al-Nahrain University

8(ch|_ (a,a*;t)__ (iw j
ot - L4

{{2/1|a|2(* 0 aj
. e (94 - —
oa* oa

+2e a -—a—
ﬁa* ou

(29)
where Q’g,_(a,a*;t) represents  the

classical probability distribution function.
It should be noticed that the fact that in this

limit  S;(2)=S,(4) =S3(4)=0 has
been used. Re-arranging the terms in
eqn. (29), this equation becomes:

5@&(0"0‘*”) _

ot
—Ia)&) (a por —aaj Pey (a,a7;1)
(30)
where,
w&“) =w cosh(i|a|2) (31)

Eqgn. (30) represents a classical Liouville
equation for a classical harmonic oscillator

having frequencya)él). By expanding the

frequency of this oscillator @ up to A2,
eqn. (30) becomes:
6(PCL (a,a"t)

e

2% uf . 0 0 q
+E|a| (a aa*_ 8—)]}@@(0:0: 1)

(32)
Eqgn. (32) can be interpreted as a classical
Liouville equation for a classical harmonic
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oscillator with frequency:

2
w&z) - w {1+%|a|4J (33)

Similarly egn. (26b) gives:

8(PCL (a,a”it) i

ot q
« O q *
.(a o — 805] Pey (a,a™;t)  (34)
2
w&”) =w e/”a| (35)

Also, by expanding the frequency, <(1 ), of
this oscillator up toA, and applying the

same  previous mentioned limiting
conditions, eqn. (34) becomes:

q *
6 .

Fer(@a™t) . ()
ot 9

« 0 0 q X,

. (a ol aaj@a (a,a™;t)
(36)

where,
o) = w(1+2]af ) @37)

By using the same technique that was
introduced in Ref. [25], egns. (30), (34) and
(36) can be solved by the method of
characteristics, and the time—evolution of

the classical probability distribution
function can be investigated in the non-
rotating frame in phase space via a
computer visualization method [25]. The
results can then be shown in a
2-dimensional time-evolution contours of
the probability distribution functions

(Pg_(a,a*;t) in phase space. These

probability distributions functions exhibit
whorl shapes and it is obvious that these
whorl shapes become finer as t > as in

Figs. (1) - (3).

Science
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P P
1.
-1 1 7 -1 1 7
=1 =1.
a b.
P P
1 K

-1 =1
C.

Fig. (1): The 2-D time-evolution contours of the classical probability distribution function

@gL(a,a*;r)for the g-deformed harmonic oscillator with frequency a)g) given by

eqgn. (31) and ¢ =0.5 in phase space, for different values of time (7): () 7 =7/2, (b)r =7,
(c) 7=3x/2,and (d) r=2x.
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e P
1 1
—. 1 7 —1. 1 ?
=1 =1
a b.
P P
1 1
—1. 1 7 —‘1. 1 7
-1. -1.
C. d.

Fig. (2): The 2-D time-evolution contours of the classical probability distribution function
(P(?L(a,a*;t) for the g-deformed harmonic oscillator with frequency a)g) given by

eqgn. (35) and ¢ =0.5 in phase space, for different values of time (7): (a)r=7/2, (b)7 =7,
(c) r=37/2,and (d) 7 =27.

10



Journal of Al-Nahrain University Vol. 19. September.2016 pp 53-69 Science

P P

: —

1. ? I.K /\ 1. ?
N

-1. T
C. d.

Fig. (3): The 2-D time-evolution contours of the classical probability distribution function

Q)gL(a,a*;t) for the g-deformed harmonic oscillator with frequency a)((;) given by

egn. (37) and ¢ =0.5 in phase space, for different values of time (7): ()7 =7/2, (b)r =7,
(c) r=3x/2,and (d) r=2r.
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Also, in Figs (4) - (6), the results of the 3-D
time-evolution of the classical probability
distribution functions Q)qu_(a,a*;t) are

presented in phase space. From these
figures, it can be seen that these probability
distributions appear as q-deformed

Vol. 19. September.2016 pp 53-69
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Gaussians do not change with time. These
peaks follow the classical trajectories for
the probability distribution functions
shown in Figs. (1)-(3). Another observation
is that the Gaussian shapes of these
distributions become more convoluted

around themselves as t — .

Gaussians. It is also clear from all these
figures that the peaks of these g-deformed

Fig.(4): The 3-D time-evolution of the classical probability distribution function

@gL (a,a”;t) for the g-deformed harmonic oscillator with frequency wg) given by egn. (31)

and ¢=0.5 in phase space, for different values of time (7): (@)r=x/2, (b)r=m,
(c) 7=37z/2,and (d) 7 =27.

12
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Fig.(5): The 3-D time-evolution of the classical probability distribution function

(PgL(a,a*;t) for the g-deformed harmonic oscillator with frequency a)g) given by

eqn. (35) and ¢ = 0.5 in phase space, for different values of time (7): (@) r=7/2, (b) 7 =7,
(c) z=37/2,and (d) r=2x.

13
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Fig. (6): The 3-D time-evolution of the classical probability distribution function

Q’gL(a,a*;t) for the g-deformed harmonic oscillator with frequency wg') given by

eqgn. (37) and ¢ =0.5 in phase space, for different values of time (7): (a) 7 =7/2, (b)r =7,
(c) r=3x/2,and (d) r=2r.

14
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Conclusions

A number of conclusions can be drawn
from the present investigation as follows:

1. The classical limit of the 1-D g-deformed
quantum harmonic oscillator is statistical in
nature. This is clear from egns. (32) and
(36) where the classical Liouville equations
are obtained for the 1-D q-deformed
classical harmonic oscillator in the
a -representation. This is in conformity
with the work of Ghosh et al. [26], where
the classical Liouville equation was
obtained for the 1-D classical simple
harmonic oscillator by applying the
classical limiting conditions 7#—0,

\a\z — ©, such that h‘a‘z — finite,

2. The g-deformed 1-D quantum harmonic
oscillator can be interpreted as a nonlinear
quantum oscillator where the nonlinearity
parameter A depends on the & such that

A=(const.)- k. This dependence is

required for the classical limit to exist.
Based on the more detailed approach to the
classical limit adopted in this work, this
interpretation seems to be more accurate
than that introduced by Man’ko [4] where
this oscillator was interpreted as a nonlinear
quantum oscillator with a special type of
nonlinearity with an energy dependent
frequency.

3. The g-deformation of the 1-D quantum
harmonic oscillator induces a
non-commutative geometry. This can be
understood in the light of Vitiello’s work
[27], where the q-deformation of the
coherent states was studied to find that the

fractal self-similarity obtained by defining
d

a
a fractal operatorq 9« leads to a
non-commutative geometry. The

expression of this fractal operator is similar
to those appearing in the present work as a

J_r,wi

dilatation (shift) operators e 9 and

15
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iﬂa*i*
e da | These dilatation (shift)

operators are inherent in the g-deformation
and arise naturally in the quantum Liouville
equations given in egns. (26), for the
g-deformed 1-D quantum  harmonic
oscillator in the « -representation.

4. The behavior of the classical limit of the
quantum Liouville equation for the
g-deformed 1-D quantum  harmonic
oscillator in phase space shows whorl
shapes evolving with time as in
Figs. (1)-(3). These figures are similar to
those introduced by Milburn [28] for the
1-D classical anharmonic oscillator. This
similarity results from the fact that the
anharmonicity itself represents a kind of
deformation with a frequency which is a
function of. The significance of this
observation lies in the assumption that the
whorl shapes in phase space can be
considered as a generalized phenomenon
whenever the g-deformation is used for any
quantum system with arbitrary potential.
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Appendix

The action of the dilatation (shift)
operators

eilaa F (a,a*)G (a,a*) and

™ i

e oa" F(a,a*)G(a,a*)

Assume two functions F (x) and G(x)that
have power series expressions of the form:

Science
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ag x™ (A1)

B X™ (A.2)
Using the::
F(x)G(x)
F(x)G(x)=

se expressions, the product

can be written as:
(ao +a1X+a.2X2 + a3X3 +)
: (b0+blx+b2x2 +b3x3+-~-)
(A.3)

Multiplying both sides of egn. (A.3) from

px

left by the dilatation (shift) operator e X
where £ and x are given in egns. (21),

the result is:
0 0

ﬂxa— —
e XF(x)G(x)=e X
: {(aob0 +aghy X +aghy X2
+aghs x3+---)

+(a1b0 X+ by X%+ b, X3+
+ayby x4+-~-)

+(a2b0 X% + aby xS+ ah, x4
+aphs x5+---)

+(a3b0 X3 + azby x* + agh, x° + azbs x® +) }

(A.4)

Applying egn. (21) to egn. (A.4) and
simplifying, the result becomes:
0

Px—
e aXF(X)G(X):

ay (bo +bl(eﬂx)+b2 (eﬂx)2

+b3(eﬂx)3+...j
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=
S—
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@D
i
>
S~
w
N\
o
—+
i<
—
@D
=
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o
N
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@D
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~—~——

(A5)

Collecting similar terms, this gives:

pr s
O (x)6(x)-

(ao +3 (eﬂx) +a, (e/”x)z +ay (eﬂx)3 . j

. (bo by (%) +b, (eﬂx)2+b3(eﬂx)3+...j

(A.6)
But since,
F(eﬁx): i an (eﬂx)m (A7)
m=0
G(eﬂx): i B (eﬁx)m (A.8)
m=0

then, substituting eqns. (A.7) and (A.8) into
eqn. (A.6), one obtains:
0

e XF(x)G(x)= F(eﬂx) G(eﬁx)
(A.9)
Using F(x)— F(a,a*)as given in
eqn. (22) and similarly G(x) —>G(a,a*)
in eqn. (A.9), substituting the definition of
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S from eqn. (21) then applying eqns. (22), and,
0

(23) for F(a,a*) and G(a,a*) tla— i

) e oa F(a,a )G(a,a )=
respectively to eqgn. (A.9), the results
become:

tia—

+ia*i F(ei'la,a*)e aO‘G(oc,oz*)

- *

e da F(a,a*)G(a,a*)= (A.11)
4 +la" 8*
F(a,e_ a*)e O G(a,a*)
(A.10)
References

[1] BuzekV.,, [6] Man’ko V. 1. and Mendes R. V.,
“Dynamics of a g-Analogue of the “On the Nonlinearity
Quantum Harmonic Oscillator”, Interpretation of g- and f-
J. Mod. Opt., 38 (4), 801-812, Deformation and some
1991. Applications”,

[2] ShabanovS. V., J. Phys. A: Math. Gen., 31 (28),
“The Poisson Bracket for q- 6037-6044, 1998.

Deformed Systems”, [7] Gruverl. L.,
J. Phys. A: Math. Gen., 25 (22), “q-Deformed ~ Dynamics  of
L1245-1.1250, 1992. g-Deformed Oscillators”,

[3] ShabanovS. V., Phys. Lett. A, 254 (1-2), 1-6, 1999.
“Quantum  and  Classical [8] Batouli J. and El Baz M.,
Mechanics ~ of  g-Deformed “Classical Interpretation of a
Systems”, Deformed Quantum Oscillator”,

J. Phys. A: Math. Gen,, 26 (11), Found. Phys., 44 (2), 105-113,
2583-2606, 1993. 2014.

[4] Man’ko V. L, Mamo G, [9] Lavagno A., Scarfone A. M.,
Solimeno S. and Zaccaria F., Swany P. N.,

“Physical Nonlinear Aspects of “Classical and Quantum g-
Classical ~and ~ Quantum  g- Deformed Physical Systems”,
Oscillator”, Eur. Phys. J. C, 47 (1), 253-261,
Int. J. Mod. Phys. A, 8 (20), 121- 2006.

167, 1993. [10] Eftekharzadeh A. and Hu B. L.,

[5] Manko V. I, Mammo G, “The Classical and Commutative
Sudarshan E. C. G. and Zaccaria Limit of  Non-commutative
F, . Quantum Mechanics: A super *
“f-Oscillators and  Nonlinear Wigner-Moyal Equation”,
Coherent States”, Braz. J. Phys., 35 (2A), 333-341,
Phys. Scr., 55 (5), 528-541, 1997. 2005.

17



Journal of Al-Nahrain University

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Benatti F. and Gouba L.,
“Classical Limits of Quantum
Mechanics on a Non-Commutative
Configuration Space”,

J. Math. Phys., 54 (6), 2013.
Benatti F. and Gouba L.,
“Interpretation of the Classical
Limits of Quantum Mechanics on
a Non-Commutative
Configuration Space”,

ArXiv: 1409.5255v1 [quant-
ph] 18 Sep 2014 available at:
http://arxiv.org/abs/1409.5255
Zaslavskii O. B., Sinitsyn Y. A.
and Tsukernik V. M.,

“Time Evolution of a Quantized
Anharmonic Oscillator and Its
Spin Analogue”,

Sov. Phys. JETP, 64 (1), 90-95,
1986.

Arik M. and Coon D. D.,

“Hilbert Space of Analytic
Functions and Generalized
Coherent States”,

J. Math. Phys., 17 (4), 524-527,
1976.

Biedenharn L.C.,

“The Quantum Group SUg(2)

and a g-Analogue of the Boson
Operators”,

J. Phys. A: Math. Gen., 22 (11),
L873-L878, 1989.

Macfarlane A.J.,

“On g-Analogues of the Quantum
Harmonic Oscillator and the

Quantum Group SU(Z)q”,

J. Phys. A: Math. Gen., 22 (1),
4581-4588, 1989.

Quesne C.,

“New q-Deformed Coherent States
with an  Explicitly  Known
Resolution of Unity”,

J. Phys. A: Math. Gen., 35 (43)
9213-9226, 2002.

18

Vol. 19. September.2016 pp 53-69

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Quesne C., Penson K. A. and
Tkachuk V. M.,

“Maths. Type q-Deformed
Coherent States for q >1",

Phys. Lett. A, 313 (1-2), 29-36
2003.

Chaichian M. and Demichev A.,
“Introduction to Quantum
Groups”,

World Scientific Publishing Co.
Pte. Ltd., Singapore, pp. 111-151,
1996.

Isar A. and Scheid W.,
“Deformation of Quantum
Oscillator and of its Interaction
with Environment”,

Physica A: Statistical Mechanics
and its Applications, 335 (1-2), 79-
93, 2004.
Isar A.,
“Deformed
Systems”,
Proceedings of the International
Workshop, Bucharest, Romania,
7-12, Sep. 2003.

Klauder J. R. and Sudarshan E. C.
G.,

“Fundamentals  of
Optics”,

W. A. BENJAMIN, INC., New
York, pp. 105-135, 1968.

Barnett S. M. and Radmore P. M.,
“Methods in Theoretical Quantum
Optics”,

Clarendon Press. , Oxford, pp.
265-268, 1997.
PuriR. R,
“Mathematical
Quantum Optics”,
Springer, Berlin, pp. 48-50, 2001.
Ahmed S. Mahmood and M. A. Z.
Habeeb,

“The Classical Liouville
Dynamics of the g-Deformed 1-D
Classical Harmonic Oscillator”,
Submitted for Publication in
Journal of Al-Nahrain University,
Science.

Open quantum

Quantum

Methods of

Science


http://arxiv.org/abs/1409.5255

Journal of Al-Nahrain University

[26]

[27]

[28]

Ghosh G., Roy B. D. and Dey M.,
“On the Single-Particle
Schrodinger Fluid”,

J. Phys. G: Nucl. Phys., 3 (8),
1077-1084, 1977.

Vitiello G,

“Fractals, Coherent States and
Self-Similarity  Induced Non-
commutative Geometry”,

Phys. Lett. A, 376 (37), 2527-
2532, 2012.

Milburn G. J.,

“Quantum and Classical Liouville
Dynamics of the Anharmonic
Oscillator”,

Phys. Rev. A, 33 (1), 674-685,
1986.

Vol

. 19. September.2016 pp 53-69

19

Science

Al

@07 g5 O ol (Sl i) (ol o
Se Ol aal gl el (53 aSh) gl Cadyall
A,k abainly dlead) o2 Cad ol (gl
Yl e Jpanll (=3l (Zaslavskii’s)
AVa (s Jigl E¥alaa) @ il A4S )
Ji gl cWalaa i jelal | ghall cliadl 6 giiadl e il
Sisa dsag oo Aail Al el Cld daia 228 Sl
&b dealie oS 35 (Dilatation Operator) sl
SIS Al e Jgaal) Lad &5 g7 o sl
Lagan Loy yd gubat Aol o A0Sl J8 gl ¥ aledl
Jigd cValee o Jgmall c¥aleal) s3g) dise
da @i, g7 g i) e osill (53 dadiall 4SSl
Ayl Maail el LK Jigd Vel
Glaa¥l a5 s o Jpanll pailadl)
dnll A gl o A 13g] RS
dpgula A5k aladinly Jisall e3¢l aedl B0
oaodl R asula malig el &5 Cua Ay
il Mathematica® Sl s 4aja alasiuly
Lalll Jis)l c¥aledd A0Sl Al ol i)
G s e sl (53 aSI E) il
iagill el Aglast daph il a asll ol
(Ghosh et al.) Wile Joas Al Al aa (38 55
A;\)S\ 2l Lﬁb o}ﬁmﬂ P ‘;ASS‘ éé\jﬂ\ il
&jﬂ\wo}&d\ umm&;)ﬂ d.a\.x.ol:.ﬁ):\u“_g;
g5 A Jeaniud) Ll el | il <q
& Ol g kil Al o) JISal AeudSl) dllaiaY)
J8 e dediall JIKEY) el dgliae skl ol
2l (55 (Sl 3l g3 Al (Milburn)
O e paii Al dgall (e il 4L 18 aal )
qs)ﬂ\&g;a}ﬁﬂ\&\)jiw&}j&éw&ﬁébﬂd\

Axal Al





