G-Cyclicity And Somewhere Dense Orbit Zeana Zaki Jamil

University of Baghdad - College of Science | Dept. of Mathematics

Abstract

Let H be an infinite - dimensional separable complex Hilbert space, and S be a multiplication semigroup of C with 1. An operator T is called G-cyclic over S if there is a vector $x \in H$ such that $\{\alpha T^n x | \alpha \in S, n \geq 0\}$ is norm-dense in H. Boundon and Feldman have proved that the existence of somewhere dense orbits implies hypercyclicity. We show the corresponding result for G -cyclicity.

Introduction

Let H be an infinite-dimensional separable complex Hilbert space, and R(H) be the Bannach algebra of all linear bounded operator on H.Let S be a multiplication semigroup of \mathcal{C} with I, an operator $T \in B(H)$, T is called Gcyclic over S if there is a vector x in H such that $|\alpha T^n x| \alpha \in S, k \ge 0$ is norm-dense in H. In this case x is called a G-cyclic vector for T over S [3]. Clearly, every hypercyclic operator is Gcyclic and every G-cyclic operator is supercyclic. Bourdon and Feldman [2] prove that every somewhere dense orbit is everywhere dense, and they use this result to give another proof of Ansart's theorem " If T is hypercyclic, then for each $n \ge 1$, T^n is hypercyclic, moreover T and T^n share the same collection of hypercyclic vectors" [1]. Also they use their theorem and give another

proof of Multihypercyclicity Theorem "If T is multihypercyclic then T is hypercyclic"

[4]. Our purpose in this paper is to obtain the corresponding results for *G-cyclic over S*.\$1 Somewhere dense orbit is everywhere dense:

The goal of this section is to prove that the existence of somewhere dense orbits implies. G-cyclicity. Next we fix notation required for the discussion.

Notation: Let S be a semigroup of \mathcal{C} with 1, then:

- 1. $Sorb(T,x) = \{\alpha T^n x | \alpha \in S, n \ge 0\}.$
- 2. $\operatorname{Corb}(T,x) = \{\alpha T^n x | \alpha \in \mathcal{C}, n \ge 0\}.$
- 3. $F(x) \equiv \overline{Sorb(T,x)}$.
- 4. $U(x) = \operatorname{int}(F(x))$.
- 5. $X^{c} \equiv complete \ of \ X \ in \ H$.

Clearly from the definition of G-cyclic [3], that every G-cyclic operator is supercyclic operator, so we get: **Proposition 1.1:** Suppose that x : H is such that Sorb(T,x) is somewhere dense in H, then Corb(T,x) is somewhere dense in H.

Proof: Since S is a semigroup of C with 1, then $Sorb(T,x) \subseteq Corb(T,x)$. Now since $U(x) \neq \phi$ and $U(x) \subseteq int(Corb(T,x))$. Thus Corb(T,x) is somewhere dense.

From [2] we get immediately the following two lemmas:

Lemma 1.2: Suppose that $x \in H$ such that Sorb(T,x) is somewhere dense in H. Then T may have at most one eigenvalue.

Lemma 1.3: Suppose that Sorb(T,x) is somewhere dense in H, then for each $\alpha \in S$, $j \in N$, $\alpha T^{n_j}x$ is a cyclic vector for T. Peries in [4] proved the following lemma.

Lemma 1.4 [4]: Let P be a complex polynomial, p(T) has a dense range if and only if $p(\lambda) \neq 0$ for every eigenvalue λ of T. The next lemma provides the crucial element of the argument.

Lemma 1.5: Let $x \in H$, then for every $\lambda \in S$, $U^{e}(x)$ is invariant under λT .

In addition, $U^{\epsilon}(x)$ is invariant under multiplication by any $\alpha \in S$,

Proof: Since U(x) is nonempty, then there is a positive integer j and a non-zero $\beta \in S$ such that $\beta T^j x$ belongs to U(x) and set $x_j = \beta_j T^j x$. For any $k \in N$, $Sorb(T, T^k x_j)$ is

dense in U(x), thus x_j is a limit point of $Sorb(T, T^kx_j)$ and $U(x) = U(T^kx_j)$. By

lemma (1.5) x_j is cyclic vector for T, i.e. $\{p(T)v_j | p \text{ is polynomial}\}$ is dense in H.

Fix $\alpha \in S$, assume that U'(x) is not λT -invariant, i.e. there is $y \notin U(x)$ but $Ty \in U(x)$. We may assume $y \notin F(x)$, if not, then $y \in \partial F(x)$, also since λT is continues, hence there is a point $y' \in F(x)$ close enough to y and $\lambda Ty'$ is close enough to λTy to keep it in U(x). Thus remains y' as y.

Because $F^*(x)$ is open and $\{p(T)x_j\}$ p is polynomial, is dense in H, thus there is a polynomial p so that $p(T)x_j$ is closed enough to p to ensure $p(T)x_j \in F^*(x)$ and $2Ip(T)x_j \in U(x)$. Since $U(x) \subset F(x)$ and F(x) is λT invariant, then $Sorb(T, \lambda Tp(T)x_j) \subset F(x)$. However $Sorb(T, \lambda Tp(T)x_j) = Sorb(T, p(T)Tx_j)$.

Because x_j is a limit point of $Sorb(T,Tx_j)$, the continuity of p(T) yield $p(T)x_j \in F(x)$. Thus $p(T)x_j \in F(x)$ and its complement, a contradiction. It is easy to prove that $U^c(x)$ is invariant under multiplication under $a \in S$.

Remark: The preceding show that if $y \in Sorh(T, x)$, then U(x) = U(y). Now we will prove the main result.

Somewhere Dense Theorem 1.6: Suppose $T \in B(H)$, and Sorb(T,x) is somewhere dense in H, then T is Greyelic operator.

Proof: Assume that $Sorb(T,x) \neq H$. Since x is cyclic vector for T (1.3), then $\{p(T)x_j \mid p \text{ is polynomial}\}$ is dense in H. Then there is a subcollection Q of polynomial such that $\{q(T)x \mid q \in Q\}$ is dense subset of $U^c(x)$. By (1.5) $U^c(x)$ is AT - invariant for all $A \in S$, so $q(T)orb(T,x) \subset U^c(x)$ for all $q \in Q$, hence, by

continuity of T, $g(T)F(x) = g(T)orb(T,x) = U^{\alpha}(x)$.

Let W denote the collection of non-zero polynomials not having the (possible) eigenvalue of T^* as a zero and let $p \in W$. Now put $D: |U(x) \cup \{q(T)x \mid q \in Q\}$, since $|\{q(T)x \mid q \in Q\}$ is dense set in $U^*(x)$, hence D is dense set in H. Because |p(T)| has dense range in |H| (1.4), therefore |p(T)D| is dense in |H|. Suppose, in order to optain a contradiction, that $|p(T)x| \in \partial U(x)$, hence $|p(T)x| \in U^*(x)$, then $|p(T)x| \in U^*(x)$. Thus $|p(T)U(x) \subset U^*(x)$.

On the other hand, since $U^r(x)$ is λT -invariant for all $\lambda \in S$, thus $p(T)[q(T)x_{\parallel} \ q \in \Omega] \subset U^r(x)$. Therefore $p(T)D \subset U^r(x)$ which contradicting the density of p(T)D. Thus $p(T)x \notin \partial U(x)$.

Because $\{p(T)x\mid p\in W\}$ is connected, contains points in U(x) and contains no boundary point of U(x), thus $\{p(T)x\mid p\in W\}\subset U(x)$. Given a coefficient n-tuple e for any polynomial, there is a sequence for coefficient n-tuples of a polynomials in Q converging componentwise to e, and since x is cyclic vector for T, then $\{p(T)x\mid p\in W\}$ is dense in H. Since $\{p(T)x\mid p\in W\}\subset U(x)\subset F(x)$, therefore F(x)=H. Thus T is G-cyclic operator.

52 Applications to the Somewhere Dense Theorem:

In this section we give two applications to the somewhere dense theorem.

First we need the following fact, let X be a topological space and F_1, F_2, \dots, F_n a finite

family of closed subset of $X: X = \bigcup_{i=1}^{n} F_i$, if

$$\operatorname{int}(F_i) = \phi$$
, then $X = \bigcup_{i=1}^n F_i \setminus [4]$.

Proposition 2.1: if T is a G-cyclic operator over S then for every positive integer n, T^n is G-cyclic operator over S. Moreover, T and T^k share the same collection of G-cyclic vectors.

Proof: Let x be a G-cyclic vector for T over S, and fixed n > 1, then $Sorb(T, x) = \bigcup_{j=0}^{n-1} Sorb(T^n, T^n x)$ will be dense in

If, thus
$$H = \bigcup_{i=0}^{n} \overline{Sorb(T^n, T^n x)}$$
. Thus at least

one of the sets $Sorb(T^n, T^jx)$ must be somewhere dense. Therefore by (1.6) T^n is a G-cyclic operator over S. Now because T must have dense range [3], the set $T^{n,j}\left[Sorb(T^n,T^jx)\right] = Sorb(T^n,T^nx)$ will be dense in H, from which it followed that x is also a G-cyclic vector for T^n .

An operator $T \in \mathcal{B}(H)$ is a multi-G-cyclic operator over S provided there is a finite subset $\{x_i\}_{i=1}^n$ in H such that $\bigcup_{i=1}^n Sarb(T_ix_i)$ is dense in

H. Clearly every G-cyclic operator is multi-G-cyclic operator. A question arises: Is the converse true?

Proposition 2.2: Any multi-revelle operator over S is G-cyclic operator over S. **Proof:** Let $\{x_j\}$ be a multi-G-cyclic vector for T over S, then $\bigcup_{j=1}^n Sarb(T,x_j)$ is dense in H. By [4], there is at least |f(1| < f < n), such that $|Sarb(T,x_j)|$ has somewhere dense in H. Thus by (1.6) T is G-cyclic operator over S.

References

- Ansari, S.: Hypercyclic and cyclic vectors, J.Fimot Anal. 128 (1995), 374-383.
- Bourdon, P. and Foldman, N.: Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J., 52 (3), (2003), 811-819.
- 3. Naoum, A. and Jamil, Z.: G cyclicity,
- Peris, A.; Multi-hypercyclic operators are hypercyclic, Math.2.236 (2001), 779-786.

المستخلص

نبكان H فضاء هابرات على حقل الاعداد العقدية قابل الفسصل عبر مائه البعد و V_{c} شبه زسرة جدائية من V_{c} تحتري على V_{c} بقال المحلى V_{c} فيه دوري من النسط V_{c} أذا وجد متجمه V_{c} المحل V_{c} في مكان أن V_{c} أن أن خواد المحتري وغيات المحتري وغيات أن مكان ما بسودي الله في مكان ما بسودي الله في أن الدوارية. في هذا البحث اعطينا نتائج مماللة في حائسة دواري من النمط في.