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Abstract 

In this article, a Legendre wavelet- Chebyshev wavelet spectral collocation method is proposed 

for solving fractional order space-time Burger's equation with the Legendre wavelet and Chebyshev 

wavelet operational matrices of fractional derivatives. The fractional derivative is described in the 

Caputo sense. The proposed method is based on Legendre wavelet-Chebyshev wavelet for space 

and time variables respectively. This method will reduc the problem under consideration to the 

solution of nonlinear algebraic equations. In order to confirm the efficiency of the proposed 

method, two numerical examples are implemented and comparing the numerical solution with the 

exact one, as well as, of other methods in given literatures, we demonstrate the high accuracy and 

efficiency of the proposed method.   [DOI: 10.22401/JNUS.21.1.19] 
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1. Introduction  
In recent years, there has been a growing 

interest in the field of fractional calculus. 

Oldham and Spanier [1], Miller and Ross [2], 

Gorenflo and Mainardi [3], Momani [4,5], 

Kilbas [6] and Podlubny [7] provide the 

history and a comprehensive treatment of this 

subject. Fractional calculus is one of the 

applied mathematics fields which deals with 

integrals and derivatives of arbitrary orders. 

Fractional calculus has different types of 

applications in mathematics, physics, and 

engineering such as electro chemistry, fluid 

mechanics, viscoelasticity, signalprocessing, 

biological population, and so on [8-12].  

Fractional differential equations have 

recently a great interest which is caused both 

by the intensive development of the theory of 

fractional calculus itself and by its applications 

in various sciences. For this reason we need a 

reliable and efficient technique for the solution 

of fractional differential equations. 

Also, the nonlinear partial differential 

equations (PDEs) arise in many fields of 

science which are used to describe many 

complex nonlinear settings in applications, 

such as vibration and wave propagation,  

fluid mechanics, plasma physics, quantum 

mechanics, nonlinear optics, solid state 

physics, chemical kinematics, physical 

chemistry, population dynamics, and many 

other areas of mathematical modeling. One of 

the famous type of PDEs is the Burger's-type 

equation. The Burger's equation is used in 

many fields, such as in the shock waves, 

mathematical modeling of dynamic fluid and 

in continuous stochastic processes. The 

Burger's equation was first introduced in 

(1915) by [13]. 

Burger's J.M. [14,15] introduced this 

equation to capture some features of turbulent 

fluid in a channel caused by the interaction of 

the opposite effects of convection and 

diffusion, therefore it is popularly referred to 

as “Burger's equation”.  

For better understanding, the phenomena 

that a given nonlinear fractional partial 

differential equation describes, the solutions of 

differential equations of fractional order is 

much involved. The fractional Burger's 

equation [5] discusses the physical processes 

of weakly nonlinear acoustic wave through a 

gas-filled pipe. Fractional derivatives provide 

more accurate models of real world problems 

than integer order derivatives do. 

The goal of this article is to present the 

numerical solutions of Burger's-type equations 

of fractional order of the form: 
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     (   )

       (   )
  (   )

  
  (   )   

 .................................... (1) 

                                
 

subject to one of the two cases of initial 

(I.C) and boundary (B.C) conditions: 
 

Case 1: 

 (   )    ( )            ,         
 .................................... (2) 

{

      
 (   )         
  (   )          

       
  ........................ (3) 

 

Case 2: 

{
 (   )    ( )            

 
  (   )

  
    ( )              

,         

 ................................. (4) 

{
 (   )                
  (   )                 

  ...................... (5) 

 

where   (   ) and       ],     are 

the space and time variables, respectively, the 

fractional derivative is defined in the Caputo 

sense and  (   ) be a source term.  

In this article we develop a Legendre 

wavelet- Chebyshev wavelet collocation 

method for solving numerically the above 

problem. The collocation method is considered 

here for the numerical solution. The 

approximate solution is expanded as a series 

with the coefficients of Chebyshev wavelet in 

time and Legendre wavelet in space with 

unknown coefficients. By using the collocation 

technique and the properties of the Legendre 

wavelet and Chebyshev wavelet, the problem 

is reduced to the solution of a system of 

nonlinear algebraic equations. This research 

paper is organized in following sections: 

In section 2 fractional derivative and 

integration which are necessary for this article 

are given, in section 3 we give an overview of 

Legendre wavelet and Chebyshev wavelet and 

their properties with some theorems needed 

here after, and in sections 4, the way of 

establishing the collocation technique for 

Burger's equation is described by using the 

above basis. In section 5 the suggested method 

is applied to Burger's equation, and 

comparisons are made with the existing exact 

and numerical solutions that were reported in 

other methods. Finally this paper is completed 

with a conclusion in section 6. 

2 Defilations and Properties of Fractional 

Integration and Derivative  
In this section, we propose some 

definitions and preliminary facts of fractional 

calculus [1,6]. 
 

Definition (1):  

The  th order Riemann-Liouville 

fractional integral operator where is defined as  
 

   ( )  
 

 ( )
∫ (   )    ( )   

 

 
           

 ................................. (6) 

   ( )   ( )  

Where                  
 

Definition (2):  

The  th order Riemann-Liouville 

fractional derivative operator where is defined 

as 

  
  ( )  

 

 (   )

  

   ∫ (   )      

 
 ( )      

 ................................. (7) 

          

where    +
 and         .  

 

Definition (3):  

The  th order Caputo fractional derivative 

operator of where is defined as 
 

  
  ( )  

 

 (   )
∫ (   )       

   

 

 
 ( )       

 ................................. (8) 

         

Where    +
 and           

 

Caputo fractional order derivative has a 

useful property: 
 

    
  ( )   ( )  ∑  ( )(     

   )
  

  

   

 ................................. (9) 

where    +
 and           

 

Also, for the Caputo fractional order 

derivative, we have  
 

   
    {

         
 (   )

 (     )
            

  

 ................................ (10) 

 

3. Legendre and Chebyshev Wavelets: 

Wavelets are family of functions 

constructed from dilation and translation of a 

single function called the mother wavelet. 

When the dilation parameter   and the 
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translation parameter   vary continuously we 

have the following family of continuous 

wavelets as [16] 
 

    ( )  | | 
 
  (

   

 
)                   

 

If we restrict the parameters   and   to 

discrete values as     
          

      
      , where   and   are positive 

integers, the family of discrete wavelets are 

defined as  
 

    ( )  |  |
 
  (  

      )        
 

where      form a wavelet basis for   ( )  
In particular, when      and     , then 

    ( ) forms an orthonormal basis. 
 

3.1 Legendre Wavelets 

Legendre wavelet     ( )   (       ) 

where    +
,   is the order of Legendre 

polynomials and   is the normalized time. 

They are defined over the interval (   ) by 
 

    ( )  { 
   
 

√   
      (      (    ))

  

        

   

                                                    

   

 ................................ (11) 
 

where                and              
          

A function  ( )    ( ) defined over 

(   )  can be expressed in terms of Legendre 

wavelets as 
 

 ( )  ∑ ∑       ( )  
   

 
     ................. (12) 

 

where     ( ( )    ( ))  in which 

(   ) denotes the inner product. If the series in 

(12) is truncated, then it can be written as 
 

 ( )  ∑ ∑       ( )     ( )  
   

    
     

 ................................ (13) 
 

where   and  ( ) are   (   )    

matrices given by 
 

  (                                    

 (    )    (    )      (    )  )   ............. (14) 

 

 ( )  (                                   

 (    )    (    )      (    )  )  .......... (15)  

3.1.1 Operational Matrix of Fractional 

Order Derivative for Legendre Wavelets  

Now we present an useful theorem about 

operational matrix of derivative for Legendre 

wavelets: 
 

Theorem (3.1) [17]: 

Let  ( ) be the Legendre wavelet vector 

defined in Eq. (15), and    , (       ) 

then we have 
 

   ( )   ( ) ( )  ............................... (16) 
 

Where  ( ) is the (  (   ))  
(  (   )) operational matrix of fractional 

order derivative in the Caputo sense and its 

(   )-th component is 

 
[ ( )]

  
 

{
                                                                                               ⌈ ⌉ 

 
   
 

√  
 
 
 (∑ ∑    

 
   

 
   (

 
 
)
(  )    (   )          

(   )  (  ) 
) 
 ⌈ ⌉        (   )

   

 ................................ (17) 
 

In which     are the r
th

 coefficients of the 

Legendre wavelet expansion of the functions 
 

  ( )     
*  

  
    

  
+
           

 

and  
*  

  
    

  
+
 is the characteristic function 

defined as: 
 

 
*  

  
    

  
+
( )  {

    *  

   
   

  +

           
  

 

3.2 Chebyshev Wavelets 

Chebyshev wavelet     ( )   (       ) 

where    +
,   is the order for Chebyshev 

polynomials and   is the normalized time. 

They are defined on the interval (   ) by  
 

    ( )  { 
   
 

 ̂ (    (    ))       

  
          

       
                                             

  

 ................................ (18) 
 

Where  ̂ ( )  {

 

√ 
             

√
 

 
        

 and 

                 and                   
     
 

The Chebyshev wavelets     ( ) form an 

orthonormal basis for    
     ] with reference 



Osama H. Mohammed 

124 

to weight function   ( )   (      (    )), 

in which  ( )  
 

√    
  

A function  ( )    ( ) defined over 

(   )  can be expressed in the terms of 

Chebyshev wavelets as 
 

 ( )  ∑ ∑       ( ) 
 
   

 
     .................. (19) 

 

where     ( ( )    ( )). If the infinite 

series in (19) is truncated, then it can be 

written as 
 

 ( )  ∑ ∑       ( )     ( )  
   

    
     

 ................................ (20) 
 

where   and  ( ) are   (   )    

matrices given by 

  (                                   

             (    )    (    )      (    )  )   

 ................................ (21) 
 

 ( )  (                                    

                
(    )  

  
(    )  

    
(    )  

)
 
  

 ................................ (22) 
 

3.2.1 Chebyshev Wavelet Operational 

Matrix of Derivative 

Now, we present the follwoing favorable 

theorem about the operational matrix of 

derivative for Chebyshev wavelets: 
 

Theorem (3.2) [18]: 

Let  ( ) be the Chebyshev wavelet vector 

defined in Eq. (22), and    , (       ) 

then we have 
 

  
  ( )   ( ) ( )  ................................. (23) 

 

where  ( ) is the (  (   ))  
(  (   )) operational matrix of fractional 

order derivative in the Caputo sense and its 

(   )-th component is 
 

[ ( )]
  

 {
                                   ⌈ ⌉ 

 
   
    √

 
   

     
   

   ⌈ ⌉      (   ) 
 

 ................................ (24) 
 

In which 

   
  ∑ ∑       (

   
 

) (  )        
        

            

    (  
 (   

*
 

   
   

  +
)    ( ))

  

  

where  
*  

  
    

  
+
 is the characteristic function 

defined as: 
 

 
*  

  
    

  
+
( )  {

    *  

   
   

  +

           
   

 

and     is the coefficient of the analytic form 

for the shifted Chebyshev polynomial 

expansion       ( )  ∑        
     i.e  

     (  )   (     )    

(   ) (  ) 
  

 

Remark (1): 

A function of two variables  (   )  
  (   ) defined over     )      )  may be 

expressed by Legendre wavelets - Chebyshev 

wavelets basis, as: 
 

  ̂  ̂(   )  ∑ ∑      ( )  ( )
 ̂
   

 ̂
     

   ( )  ( )   ....................... (25) 
 

where   (   ) and 

    (  ( ) ( (   )   ( )))   are ( ̂   ̂) 

matrix, and  ̂   ̂    (   )  
 

4. Legendre Wavelet-Chebyshev Wavelet 

Spectral Collocation Method for Fractional 

Order Space–Time Burger’s Equation 

In this section, we develop the Legendre 

wavelet-Chebyshev wavelet spectral 

collocation method to numerically solve the 

Burger's-type equations of fractional order 

given by equations (1) with reference to the 

conditions (2)-(5). 

In order to solve equation (1) with respect 

to the above conditions, we consider   ̂  ̂ as 

an approximate solution of equation (1) 

namely  (   ). 
 

  ̂  ̂(   )    ( )  ( )   ....................... (26) 
 

where  ( ),  ( ) are given by equations 

(15) and (22) respectively and   is a matrix of 

unknown coefficients.  

Using Equations (23) and (16) in Equation 

(26), we can write 
 

   (   )

      ( ) ( )   ( )   ................... (27) 

     (   )

     
   ( )  (   ) ( )   ............. (28) 

  (   )

  
   ( )  ( ) ( )   ...................... (29) 
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Hence the initial and boundary conditions 

(2)-(5) becomes: 
 

 (   )    ( )  ( )   ........................... (30) 

 (   )    ( )  ( )   ............................ (31) 

 (   )    ( )  ( )   ............................ (32) 
  (   )

  
   ( ) ( )   ( )   .................... (33) 

 

By using Equation (26) and Equations 

(27)-(33), implies that equation (1) can be 

represented in the following matrix form: 
 

  ( ) ( )   ( )    ( )  (   ) ( )  

(  ( )  ( )) (  ( )  ( ) ( ))   (   )    

 ................................ (34) 

  ( )  ( )    ( )   .............................. (35) 

  ( )  ( )      ..................................... (36) 

  ( )  ( )      ..................................... (37) 
 

For suitable collocation points (     ) 

where    are the shifted Legendre -Gauss-

Lobatto nodes (         ̂) and the shifted 

Chebyshev roots    (         ̂) equations 

(34)-(37) can be written as: 

 

  (  ) 
( )   (  )    (  )  (   ) (  )   

     (  (  )  (  )) (  (  ) 
( )  (  ))

   (     )     

 (     ̂   ) (     ̂   )   ......... (38) 

  ( )  (  )    (  )         ̂   ........ (39) 

  (  )  ( )            ̂      ........ (40) 

  (  )  ( )             ̂      ....... (41) 
 

Case two can be handles in a similar 

manner as given in case (1) but by adding the 

following equation 
 

  ( ) ( )   (  )    (  )      ̂     
 ................................ (42) 

 

This generate a nonlinear system of 

algebraic equations in terms of the unknown 

coefficients                   ̂  j = 0,1,··· ,  ̂, 

which can be solved by using Newton's 

method. So the   ̂  ̂(   ) given in equation. 

(26) can be solved. 
 

5. Numerical Examples: 

In this section, we present two numerical 

examples to demonstrate the accuracy and 

applicability of the proposed method. 

Example 1:  

Consider the following fractional Burger's 

equation,  
 

   (   )

   
 

     (   )

     
  (   )

  (   )

  
  (   )   

 

                       
with (I.C)  

 (   )    (   )                          
and (B.Cs ) 

 (   )   (   )                            
 

In which            and the source 

term f is chosen to be: 
 

 (   )  (
     

 (   )
 

     

 (   )
)   (   )  

               (        ) (     

 (   )
       

 (   )
       

 (   )
) 

      (        ) (  (   ) (          )) 
 

The exact solution of this example is [19]: 
 

 (   )  (        )  (   )   
 

Following Table (1) represents the 

maximum absolute error (MAE) of the 

proposed method for Example 1 using 

different values of  ̂ and  ̂ with         

and      . Also we compares the errors that 

we have been obtained with those result given 

in [19]. 
 

Table (1) 

The (MAE) between the Present Method with 

the Methods in [19] at α = 0.999 and β = 0.1. 
 

 ̂   ̂ Our Method    Method[19] 

8 7.445286×10
−3

 
 

 
 1.33732×10

−2
 

12 5.43691×10
−3

 
 

  
 7.00853×10

−3
 

16 3.69124×10
−3

 
 

  
 3.50049×10

−3
 

20 1.64525×10
−3

 
 

  
 1.74046×10

−3
 

24 6.66764×10
−4

 
 

  
 8.67665×10

−4
 

28 3.56293×10
−4

 
 

   
 4.32965×10

−4
 

 

We represent in Fig.(1) a comparison 

between the exact and numerical solution 

given by the proposed method for  

 ̂   ̂    (       ) with α =0.9 and              
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(a) 

 

 
(b) 

Fig.(1): Result of Example 1: 

(a) Numerical solution, (b) Exact solution. 
 

Example 2:  

Consider the following fractional Burgers 

equation,  

 
   (   )

    
     (   )

       (   )
  (   )

  
  (   )    

                          
 

with (I.Cs) 

 (   )    (   )     
  

  
(   )      (   )         

 

and (B.Cs) 

 (   )   (   )               
 

In which            and the source 

term f is chosen as: 
 

 (   )  (
     

 (   )
)   (   )  

        (        ) (
     

 (   )
 

      

 (   )
 

      

 (   )
) 

        (        ) (  (   ) (          ))  

Following Table (2) represent the 

maximum absolute error (MAE) of the 

proposed method for Example (2) using 

different values of  ̂ and  ̂ with       and 

      also we compares the errors that we 

have been obtained with result given in [19]. 
 

Table (2) 

The (MAE) between the Present Method with 

the Methods in [19] at α = 1.1 and β = 0.8. 
 

 ̂   ̂ Our Method   Method[19] 

8 9.6522×10
−5

 
 

 
 2.24697×10

−2
 

12 8.9193×10
−5

 
 

 
 1.82814×10

−2
 

16 6.5716×10
−6

 
 

  
 1.159734×10

−2
 

20 5.7428×10
−6

 
 

  
 6.505725×10

−3
 

24 4.4875×10
−7

 
 

  
 4.807568×10

−3
 

 

Following Fig.(2) shows the numerical 

solutions of Example 2 by fix  , say,  

         , and decrease   from     to    , 

and  ̂   ̂    (       )  
 

 
Fig.(2): The Numerical Solution with 

  = 0.999,   = 0.1,…, 1.0 and  ̂   ̂     

(       ) 
 

6. Conclusions 

In this article, a modified numerical 

technique algorithm based on spectral 

collocation technique, this approach was 

employed for solving Burger’s equation of 

space-time fractional order. The Legendre 

wavelet and Chebyshev wavelet with the 

collocation method are used to transform the 

suggested problem to the solution of nonlinear 

system of algebraic equations. The obtained 

result shows that the proposed method is more 

accurate than the method in [19]. 
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