G-cyclicity

Adil G. Naoum, Zeana Z. Jamil

Department of Mathematics, College of Science, University of Baghdad. Jadiryah, Baghdad, Iraq

Abstract

Dimensional separable complex Hilbert space and S be a multiplication semigroup of L with 1. Generizing the concept of supercyclicity, we define G - cyclicity, namely, an operator T is called G - cyclic over S if there is a vector $X \in H$ - such that $\left\{\alpha T \cap X \mid \alpha \in S, n \geq 0\right\}$ is norm-dense in H, such a vector is called G-cyclic vector for T over S. In this paper, we list some basic properties of G -cyclicity. We study necessary and sufficient conditions for an operator to be G - cyclic. Finally we study some of the spectral properties of G cyclic operators.

Introduction

Let H be an infinite – dimensional separable complex Hilbert space, and let B(H) be the Banach algebra of all linear bounded operators on H. Let T be an element in B(H), T is called "cyclic" if there is a vector x in H such that the closed linear space spanned by the set $\left\{T^kx\left|k\geq0\right\}\right\}$ is the whole space [5,p86]. An operator T is "hypercyclic" if there is a vector x in H such that the set $\left\{T^kx\left|k\geq0\right\}\right\}$ is norm – dense in H [1, p 71], and T is called "supercyclic" if there exists an $x\in H$ such that $\left\{\alpha T^kx\left|k\geq0,\alpha\in\Pi\right.\right\}$ is norm – dense in H [8].

In this paper we introduce a concept which unifies these concepts as follows: Let T be an element in B(H), and let A = A(T) be the subalgebra of B(H) generated by the identity operator I and the operator T over the field of complex numbers. It is easily seen that A is the set of all polynomials in T with coefficients in \mathbb{Z} . Let $\mathcal{G} = \mathcal{G}(T)$ be a multiplication semigroup of A with I. In particular, let S be a multiplication semigroup of \mathbb{Z} with \mathbb{Z} , and let $\mathcal{G} = \mathcal{G}(S,T)$ be the multiplication semigroup of \mathbb{Z} consisting of all elements in \mathbb{Z} of the form $\{\alpha T^{*k} \mid \alpha \in S, k \geq 0\}$ or $\mathcal{G} = A$.

Let x be a vector in H, we say that x is a G-cyclic vector over S for T if $\{gx \mid g \in \mathcal{G}\}$ is norm-dense in H. We call such phenomena cyclic phenomena, we point out that this term is

used in the literature to mean the following three cases:-

3.
$$S = \{1\}$$
 and $\mathcal{G} = \mathcal{G}(\{1\},T)$

(Hypercyclicity).

In this paper we restrict our study on a multiplication semigroup of \square with 1.Clearly, every hypercyclic operator is G – cyclic, and every G – cyclic operator is supercyclic.

In [9], [10] the authors studied G-cyclicity when,

$$S = \left\{ \lambda \in \square \mid |\lambda| = 1 \right\},\,$$

$$S = D = \{ \lambda \in \square \mid |\lambda| \le 1 \},$$

$$S = B^c = \{\lambda \in \square \mid |\lambda| \ge 1\}$$
. An example was

given for an operator which G-cyclic over D but not over B^c and vise versa.

This paper consists of three sections. In section one; we list basic properties of G - cyclicity. In section two, we give necessary and sufficient conditions for G - cyclicity. In section three, we investigate the spectrum of G - cyclic operators.

Preliminaries

In this section we introduce the definition of G - cyclicity and give some basic properties.

Definition. Let S be a multiplication semigroup of \square with 1, an operator T on a separable complex Hilbert space H is called G – cyclic over S if there is a vector x in H such that the set $\left\{ \alpha T^{-k}x \mid \alpha \in S, k \geq 0 \right\}$ is norm – dense in H. In

this case x is called a G - cyclic vector for T over S. It is clear that we may assume $0 \notin S$.

Next we fix notation required for the discussion.

Notation Let S be a multiplication semigroup of L. with 1, and $T \in B(H)$:-

- $\int_{T} \mathbf{G}G_{s}(T) = \{x \in H \mid x \in G \text{cyclic vector for } T \text{ over } S\}$
- $\mathcal{GC}_{s}(H) = \{T \in B(H) | T \text{ is } Q\text{-cyclic operator over } S \}$
- Sorbt $(T,x) = \{\alpha T^*x \mid \alpha \in S, k \ge 0\}$
- $|S| = \{ |\alpha| | \alpha \in S \}$

$$S^{-1} = \left\{ \frac{1}{\alpha} | \alpha \in S \right\}.$$

Note that $(S^{-1}, -)$ is a semigroup of \square with I and $(S^{-1})^{-1} = S$.

Remarks.

- 1. $x \in \mathcal{G}C_{\mathcal{S}}(T)$ if and only if $Sorbt(T,x)^{\perp} = \{0\}$.
- 2. Clearly, from (1.1) every hypercyclic operator (vector) is G cyclic, and every G cyclic is supercyclic.

Since the range of a supercyclic operator T, R(T), is dense [3] then we have:-

 Proposition. The range of a G - cyclic operator T on H is a dense in H.

We begin with an easy observation. Compare the following result with [7].

7. Proposition. Let $x \in \mathcal{G}C_S(T)$, then $\inf \{ \gamma \| T^n x \| | n \ge 0, \gamma \in |S| \} = 0$ and $\sup \{ \gamma \| T^n x \| | n \ge 0, \gamma \in |S| \} = \infty$

Proof. Let $x \in \mathcal{G}C_S(T)$, and assume that $\inf \left\{ \gamma \left\| T^n x \right\| \middle| n \geq 0, \gamma \in |S| \right\} = m > 0$. Since $0 \in H$, then there are sequences $\left< \alpha_k \right>$ in S and $\left< n_k \right>$ in N such that $\left| \alpha_k \right| \left\| T^{n_k} x_k \right\| \to 0$. Hence there is $j \in \Pi$ such that $\left| \alpha_k \right| \left\| T^{n_k} x_k \right\| < m$ for all j > k, a contradiction.

Now assume that $\sup \left\{ \gamma \left\| T^n x \right\| \left\| n \geq 0, \gamma \in |S| \right\} = M < \infty, \text{ and} \right.$ let $y \in H$ such that $\left\| y \right\| > M$. Since $x \in \mathcal{G}C_S\left(T\right)$, then there exist sequences $\left(n_k\right)$ in E, $\left(\alpha_k\right)$ in S such that $\left\|\alpha_k\right\| \left\|T^{n_k}x_k\right\| \to \left\|y\right\|$. Thus we get a sequence of

 $\left\{ y \left| |T|^n x \mid |n \geq 0, \gamma \in |S| \right\} \right\}$ that converges to |y|, hence $\left\| |y| \right\| \leq M$ [12, p57], a contradiction. \Box

For special case, when S_{-} is bounded, one can easily prove the following corollaries.

- 8. Corollary, if S is a bounded semigroup and $x \in \mathcal{G}C_S(T)$, then $\sup\{\|T^nx\| | n \geq 0\} = \infty$
- 9. Corollary, Let $T \in B(H)$, and S be a bounded somigroup. If $|T| \le 1$, then $T \notin \mathcal{GC}_{s}(H)$.

Remark. The backward shift $B: \ell^2(\Box) \to \ell^2(\Box)$ is not G - cyclic over any bounded semigroup, since ||B|| = 1.

One can prove easily the following results that implies that if $x \in \mathcal{G}C_S(T)$, then $\alpha T^n x \in \mathcal{G}C_S(T)$ for all $\alpha \in S$ and $n \ge 0$.

10. Proposition. Let $x \in \mathcal{GC}_S(T)$, and let $F \in B(H)$ such that FT = TF and R(F) is dense in H. Then $Fx \in GC_S(T)$.

Terming now to the similarity of G-cyclic operator.

11. Proposition. Let H, K be Hilbert spaces, let $T \in B(H)$ and $F \in B(K)$, and let $X: H \to K$ be a bounded linear transformation such that R(X) is dense in K, and FX = XT. If $T \in \mathcal{GC}_S(H)$, then $F \in \mathcal{GC}_S(K)$. In particular, if $T, F \in B(H)$ are similar operators, then $T \in \mathcal{GC}_S(H)$ if and only if $F \in \mathcal{GC}_S(H)$

Proof. Let $y \in \mathcal{G}C_S(T)$, then Sorbt(T, y) is dense in H, thus

$$\begin{bmatrix} Sarbi (F, Xy) \end{bmatrix} = \begin{bmatrix} \{\alpha F^* (Xy) | n \ge 0, \alpha \in S \} \end{bmatrix} \\
= \begin{bmatrix} \{X (\alpha T^* y) | n \ge 0, \alpha \in S \} \end{bmatrix} \\
= X (H) = K \square$$

Next we turn our attention to the direct sum of G-cyclic operators. Compare with [9]. The proof is left to the reader.

- 12. Proposition . Let $\{H_i\}$ be family of Hilbert spaces, let $T_i \in \mathcal{B}(H_i)$ for all i . If $\oplus T_i \in \mathcal{GC}_S\left(\oplus H_i\right)$, then $T_i \in \mathcal{GC}_S\left(H_i\right)$ for all i
- Necessary and Sufficient Conditions for G-Cyclicity

The goal of this section is to give a characterization for G-cyclic operators. We first characterize the set of all G-cyclic vectors.

2.1. Proposition. Let $T \subset B(H)$.

Then $\mathcal{G}C_S(T) = \bigcap_k \bigcup_{\alpha \in S} \bigcup_n T^{-n} \left(\frac{1}{\alpha} \bigcup_k \right)$.

where $\{U_k\}_1^{\infty}$ is a countable base for the topology on H.

Proof. Since H is separable, then let $\left\{\bigcup_k\right\}_1^\infty$ be a countable base for the topology on H, $x \in \mathcal{G}C_S(T)$ if and only if $\left\{\alpha T^n x \mid \alpha \in S, n \geq 0\right\}$ is dense in H, if and only if for all $k \geq 1$, there is $\alpha \in S, n \in \mathbb{J}$ such that $\alpha T^n x \in \bigcup_k$, if and only if for all $k \geq 1$, there is $\alpha \in S, n \in \mathbb{J}$ such that $\alpha T^n x \in \bigcup_k$, if and only if for all $k \geq 1$, there is $\alpha \in S, n \in \mathbb{J}$ such that $T^n x \in \frac{1}{\alpha} \bigcup_k$, if and only if $x \in \bigcap_k \bigcup_{\alpha \in S} \bigcup_n T^{-n} \left(\frac{1}{\alpha} \bigcup_k \right) \bigcap$

Recall that a countable intersection of open sets is G_s - set.

2.2. Corollary. If the set of G-cyclic vectors over S is not empty, then it is $G_{\mathcal{S}}$ - set in H.

Proof: Let $x \in \mathcal{G}C_S(T)$. By (1.7) $\alpha T^n x \in \mathcal{G}C_S(T)$ for all $n \ge 0$, $\alpha \in S$. Thus $Sorb(T,x) \subseteq \mathcal{G}C_S(T)$, hence $\mathcal{G}C_S(T)$ is dense in H. Now by (2.1) $\mathcal{G}C_S(T) = \bigcap_k \bigcup_{\alpha \in S} \bigcup_n T^{-n} \left(\frac{1}{\alpha} \bigcup_k \right)$ where $\{\bigcup_k \}_k^m$ is a countable base for the topology on H.

 $\left\{\bigcup_{k}\right\}_{1}^{\infty}$ is a countable base for the topology on H. The desired result follows by the continuity of T and because $\frac{1}{\alpha}\bigcup_{k}$ is open for all k, and all $\alpha \in S$. \square

The following result is a characterization for Gcyclic operators, compare with [4].

- 2.3. Theorem, Let $T \in R(H)$. The following statements are equivalent:
 - 1. $T \in \mathcal{G}C_N(H)$.
- 2. For each non-empty open sets U,V, there are $\alpha \in S$, $n \in \mathbb{N}$ such that $T^n(\alpha U) \cap V \neq \emptyset$.
- 3. For each x, $y \in H$, there are sequences (x_k) in H, (α_k) in L, (α_k) in S such that $x_k \to x$ and $T^{n_k}\alpha_k x_k \to y$.
- For each $x, y \in H$, and each neighborhood W for zero in H, there are $z \in H$, $n \in \mathbb{D}$, $\alpha \in S$ such that $x z \in W$ and $T^*\alpha z y \in W$.

Proof. 1) \Rightarrow 2): Let $\{W_k\}_1^{\infty}$ be a countable base for the topology on H. By (2.1):

$$\mathcal{G}C_{S}\left(T\right) = \bigcap_{k} \left(\bigcup_{\alpha \in S} \bigcup_{n} T^{-n} \left(\frac{1}{\alpha} W_{k} \right) \right) \text{ for } \quad \text{all}$$

$$k \ge 1, \text{ put } M_{k} = \bigcup_{\alpha \in S} \bigcup_{n} T^{-n} \left(\frac{1}{\alpha} W_{k} \right). \text{ By (2.2)}$$

 M_k is dense for all $k \ge 1$. Since U is open, then there are $n \in \mathbb{Z}$, $\alpha \in S$ such that $U \cap T^{-n}\left(\frac{1}{\alpha}V\right) \neq \emptyset$ where $V = \bigcup W_i$;

 $\begin{aligned} W_i &\in \{W_k\}_1^{\infty} \text{. Hence } T^n\left(\alpha U\right) \cap V \neq \varnothing \ . \\ 2) &\Rightarrow 3) \text{: Let } x,y \in H \quad \text{for all } k \geq 1 \text{, let } \\ B_k &= B\left(x,\frac{1}{k}\right), \ B_k' = B\left(y,\frac{1}{k}\right). \ \text{By (2)} \\ \text{we get sequences } \left\langle n_k \right\rangle \text{ in } \mathbb{D} \ , \left\langle \alpha_k \right\rangle \text{ in S, } \left\langle x_k \right\rangle \\ \text{in H such that } x_k \in B_k \text{ and } T^{n_k}\alpha_k x_k \in B_k' \text{ for all } k \geq 1 \text{. Then } \|x_k - x\| \leq \frac{1}{k} \quad \text{ and } \|T^{n_k}\alpha_k x_k - y\| \leq \frac{1}{k} \quad \text{ for all } k \geq 1 \text{. The desired result follows by letting } k \rightarrow \infty. \end{aligned}$

3) \Rightarrow 4). Let x, $y \in H$, let W be a neighborhood for zero in H. By (3), there are sequences $\langle x_k \rangle$ in H, $\langle n_k \rangle$ in \mathbb{Z} , $\langle \alpha_k \rangle$ in S such that $x_k \to x$ and $T^{n_k}\alpha_k x_k \to y$. Hence there is $k \in \mathbb{Z}$ such that $x_k - x \in W$ and $T^{n_k}\alpha_k x_k - y \in W$. Take $z = x_k$.

4) \Rightarrow 3): Let $x, y \in H$ for all $k \ge 1$, let $B_k = B\left(0, \frac{1}{k}\right)$. By (4) we get sequences $\langle z_k \rangle$ in H, $\langle n_k \rangle$ in \square , $\langle \alpha_k \rangle$ in S such that

 $z_k - x \in B_k$ and $T^{n_k} \alpha_k z_k - y \in B_k$ for all $k \ge 1$. Therefore $|z_k - x|| < \frac{1}{k}$ and $||T^{n_k} \alpha_k z_k - y|| < \frac{1}{k}$ for all $k \ge 1$. Let $k \to \infty$.

3) $\Rightarrow 1$): Since II is separable, then there is a

countable base set, say $\{x_j\}_{j \in \mathbb{N}}$. Set $F(f,k) = B(x_j, \frac{1}{k})$ for some $j \in \mathbb{N}$, $k \ge 1$. One can show that the collection of all F(f,k) is a base topology on H. Now by the same argument used in the proof of (2.1), we get $\mathcal{G}C_S(T) = \bigcap_{j \in \mathbb{N}} \left(\bigcup_{\alpha \in S} \bigcup_n T^{-n} \left(\frac{1}{\alpha} F(f,k) \right) \right)$.

By Baire's Theorem, it is enough to prove $\bigcup_{\alpha \in S} \bigcup_{n} T^{-n} \left(\frac{1}{\alpha} F(j,k) \right) \text{ is dense in H for all } k \ge 1 \text{ and } j \in \mathbb{D} \text{ . For a fixed } k,j, \text{ let } y \in H \text{ . By (3), there are sequences } (z_j) \text{ in H,}$

 $\langle \lambda_{\ell} \rangle$ in S, and $\langle n_{\ell} \rangle$ in \Box such that $z_{\ell} \to y$ and $T^{n_{\ell}} \lambda_{\ell} z_{\ell} \to x_{j}$. Thus there is m > 0 such that $||T^{n_{\ell}} \lambda_{\ell} z_{\ell} \to x_{j}|| < 1/k \ \forall \ell > m$. Hence

$$z_{\ell} \in \bigcup_{\alpha \in S} \bigcup_{n} T^{-n} \left(\frac{1}{\lambda_{\ell}} F(j,k) \right) \forall \ell > m.$$

Therefore there is a sequence $\langle z_{\ell}' \rangle$ of the sequence $\langle z_{\ell} \rangle$ such that $z_{\ell} \in \bigcup_{n \in S} \bigcup_{n} T^{-n} \left(\frac{1}{\lambda_{\ell}} F(j, k) \right)$ and $z_{\ell}' \to y$.

In what follows we give an application of the last theorem.

2.4. Proposition. Let $T \in B(H)$ be an invertible operator. $T \in \mathcal{GC}_S(H)$ if and only if $T^{-1} \in \mathcal{GC}_{g-1}(H)$.

Proof. Let $x,y\in H$. Since $T\in \mathcal{GC}_S(H)$, then by (2.3) for all neighborhoods V for zero in H, there are $z\in H$, $n\in \mathbb{Z}$, $\alpha\in S$ such that $z-x\in V$ and $\alpha T^nz-y\in V$. Set $u=\alpha T^nz$, then $u-y\in V$ and $\frac{1}{\alpha}T^{-n}u-x\in V$. Thus $T^{-1}\in \mathcal{GC}_{S^{-1}}(H)$ (2.3). \square

Next we will give another characterization of Gcyclic operators. 2.5. Proposition. The operator $T \in \mathcal{GC}_S(H)$ if and only if the set $\{(x, \alpha T^n x) | x \in H, n \geq 0, \alpha \in S\}$ is dense in $H \oplus H$.

Proof. (a) Let $(y,z) \in H \oplus H$, and let $\varepsilon > 0$. Since $T \in \mathcal{GC}_S(H)$, then by (2.3) there are $w \in H$, $n \ge 0$, $\alpha \in S$ such that $\|w - z\| < \varepsilon/2$ and $\|\alpha T^n w - z\| < \varepsilon/2$. Hence

$$\|(w, \alpha T^n w) - (y, z)\|^2 = \|w - y\|^2 + \|\alpha T^n w - z\|^2 < \varepsilon^2.$$

- 2.6. Proposition. Let $T \in \mathcal{B}(H)$, let U, V be a nonempty open sets in H, and let W be a neighborhood for zero in H. If there are $n \geq 0$, $\alpha \in S$ such that $T''\alpha U \cap W \neq \emptyset$ and $T'''\alpha W \cap V \neq \emptyset$, then $T \in \mathcal{GC}_S(H)$.

Proof. We will verify (2.3). Let $x, y \in H$. for all $k \ge 1$, Let $B_k = B(x, \frac{1}{k})$,

 $B_k' = B\left(y, \frac{1}{k}\right)$. By our assumption, there exist sequences $\left\langle n_k \right\rangle \in \mathbb{D}$, $\left\langle \alpha_k \right\rangle \in S$, $\left\langle w_k \right\rangle \in W$ and $\left\langle z_k \right\rangle \in H$ such that $z_k \in B_k$, $T^{n_k}\alpha_k z_k \in W$ and $T^{n_k}\alpha_k w_k \in B_k'$ for all $k \geq 1$. Therefore $z_k \to x$, $T^{n_k}\alpha_k z_k \to 0$ $w_k \to 0$, $T^{n_k}\alpha_k w_k \to y$

The proof complete by taking $x_k = z_k + w_k$ for

all $k \ge 1$.

2. Spectral Properties of G-cyclic Operators

In this section we discuss the properties of the spectrum of G-cyclic operator. It is known [6] that

if T is supercyclic, then T has at most one eigenvalue, hence have

Proposition. Let $T \in \mathcal{GC}_S(H)$. Then T^* has at most one eigenvalue with modulus:

- Greater than one, if S is bounded above.
- 2) Less than one, if S is bounded below. **Proof.**

1) Since $T \in \mathcal{G}C_S(H)$, then T is supercyclic, thus by $|\delta| = \sigma_p(T^*)$ contains at most one non-zero eigenvalue, say λ . Hence there is a unit vector $z \in H$ such that $T^*z = \lambda z$. Let $x \in \mathcal{G}C_S(T)$, it is easy to prove that $\left\{\left|\langle \mu T^n x, z \rangle\right| \mid n \geq 0, \mu \in S\right\}$ is dense in \square (*)

Note that for all $n \geq 1$, $\left|\langle \mu T^n x, z \rangle\right| = |\mu| \left|\langle T^n x, z \rangle\right|$. Since S is bounded above, then $|\mu| \leq M$ for some M. Now assume that $|\lambda| \leq 1$ Hence $|\langle \mu T^n x, z \rangle| \leq M |\langle x, z \rangle|$, a contradiction with $|\langle \mu T^n x, z \rangle| \leq M |\langle x, z \rangle|$, a contradiction with

Similar.

It would be useful to say something about Weyl-spectrum, $\sigma_{i_0}(T)$, of G-cyclic operators.

Corollary. Let $T \in \mathcal{GC}_S(H)$, then Weyl-spectrum of T is the spectrum of T except possibly one element of modulus:

- Greater than one, if S is bounded above.
- Less than one, if S is bounded below.

Proof:

Since $\sigma\left(T^{*}\right) - \sigma_{w}\left(T^{*}\right) \equiv \sigma_{p}\left(T^{*}\right)$ [1], then by (3.1) either $\sigma_{w}\left(T^{*}\right) + \sigma\left(T^{*}\right)$ or $\sigma_{w}\left(T^{*}\right) = \sigma\left(T^{*}\right) - \left\{\lambda\right\}; |\lambda| \ge 1$ hence either $\sigma_{w}\left(T^{*}\right) = \sigma\left(T^{*}\right) - \left\{\lambda\right\}; |\lambda| \ge 1$ or $\sigma_{w}\left(T^{*}\right) = \sigma\left(T^{*}\right) - \left\{\lambda\right\}; |\alpha| = \sigma\left(T^{*}\right).$

2) Similar. For supercyclic operator T, π is shown in [6] that $\sigma(T) \cup \partial(rD)$ is connected for some $r \geq 0$. Therefore if T is G cyclic, then $\sigma(T) \cup \partial(rD)$ is connected for some $r \geq 0$. A question arises: Is there any restriction on r?

Proposition. Let $T \in B(H)$, then $T \notin \mathcal{GC}_S(H)$ if one of the following statements holds:

- 1. S is bounded, and $\sigma(T)$ has a component σ such that $\sigma\subset B(0,1)$.
- 2. S^{-1} is bounded and $\sigma(\mathcal{T})$ has a component σ such that $\sigma \subset \{\lambda \|\hat{\lambda}\| > 1\}$.

Proof.

connected and $\sigma(T) \subset \mathcal{G}C_S(H)$, if $\sigma(T)$ is connected and $\sigma(T) \subset \mathcal{B}(0,1)$, then $\lim_{n \to \infty} \|T^n x\| \to 0$ for all $x \in H$ [5]. Thus $\sup_{n \to \infty} \left\{ \|T^n x\| \|_{H} \ge 0 \right\} \neq \infty$, a contradiction with (1.5). Now if σ is a component of $\sigma(T)$ such that $\sigma \subset \mathcal{B}(0,1)$. Then by Risez decomposition. Theorem $T = T_1 \subseteq T_2$ such that $\sigma(T_1) = \sigma$. But $T \in \mathcal{G}C_S(H)$ (1.8), hence by the same argument of the first part of this proof we get a contradiction.

2) By using (2.4) and the same argument of the proof of the first part. \Box

Corollary, Let $T\in\mathcal{G}C_{S}\left(H ight)$

- 1) S is bounded, then $\sigma(T) \cap rD$ is connected for all $r \ge 1$.
- 2) S is bounded, then $\sigma(T) \cap (rB)^c$ is connected for all $r \ge 1$.

Proof

1) Let $r \leq 1$, assume $\sigma(T) \cap rD$ is not connected. Then there is a closed and open subset σ of $\sigma(T) \cap rD$, hence $\partial \sigma \neq \emptyset$, thus $\sigma(T) \cap \partial(rD) = \emptyset$, hence $\sigma \subset (rB)$. Since $r \leq 1$, then $\sigma \subset B(0,1)$, a contraduction with (3.3).

2) Similar, 🗖

Let's give a simple application of proposition (3.3).

- Corollary Let S be a bounded semigroup, then a quesinilipotent operator can not be G-cyclic over S.
- 3.3. Corellary, A compact operator can not be Greyelic over any bounded sentigroup S. Proof. Let T be a compact operator which is Greyelic over S. Since every $\lambda \in \sigma(T)$; $\lambda \neq 0$, is an eigenvalue for T, then $0 \neq \lambda \in \sigma_p(T^*)$. But by (3.2) either $\sigma_p(T^*) = \{\lambda\}$;

 $|\lambda| > 1$. Hence either $\sigma(T) = \{0\}$ or $\sigma(T) = \{0, \lambda\}$; $|\lambda| > 1$ if $\sigma(T) = \{0\}$, then we get a contraduction with (3.4). If $\sigma(T) = \{0, \lambda\}$; $|\lambda| > 1$, then since λ is an isolated point in $\sigma(T)$, hence $\{0\}$ is a component for $\sigma(T)$, a contradiction with (3.4).

References

- Beauzamy, B.: Introduction to operator theory and invariant subspaces, Elsevier Science Publishers B. V., 1988.
- Borberian, S., K.: An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J., 16 (1969), 273-179.
- Bourdon, P., S.: Orbits of hyponormal operators. Michigan Math. J., 44 (1997), 345-353.
- Bourdon, P., S. and Shapiro, J., H.: Cyclic phenomena for composition operators, Mem Amer. Math. Soc., (596), 125 (1997).
- Halmos, P., R.: A Hilbert space problem book, Springer- Verlag, New York, 1982.
- Herrero, D., A.: Limits of hypercyclic and supercyclic operators, J. Functional Analysis, (1), 99 (1991), 179-190.
- Herrero, D., A.: Hypercyclic operators and chaos, J. Operator Theory, 28 (1992), 93-103.
- Hilden, H., M. and Wallen, L., J.: Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J., 23 (1974), 557-565.
- Naoum, A., G. and Jamil, Z., Z.: Codiskcyclicity, To appear.
- Naoum, A., G. and Jamil, Z., Z.: Diskcyclicity, To appear.
- Rudin, W.: Real and complex analysis, Tata McGraw-Hill Publishing Co. Lid. New Delhi, 1980.
- Shaakir, L., K.: Cyclic operators on Hilbert spaces, M. Sc. thesis, College of Science, University of Baghdad, 1999.

الخلاصة

ليكن H فضاء هلبرت على حتن الاعداد العندية قابل للفسط غير منته البعد و S شبه زمرة جدانية من H وتحقوي على على منعهم مفهوم فوق الدوارية، عرفتا G دواري، ونعني، يقال الموثر الغطي T اله دواري من القمط G اذا وجد متجه S في S بحيث ان المجموعية S المرتز S الأحوام الاولية في S بحيثا هذا عرضنا بعسض الخواص الاولية المحاورة من النمط S ودرمنا الشروط الضرورية والكافية فيما الموثر الخطي مؤثراً دوارياً من النمط S واخيراً درمنا بعض خواص طيف الموثرات الدوارية من النمط S واخيراً دوارياً من النمط S واخيراً دوارياً من النمط S واخيراً دوارية من النمط S واخيراً دوارياً من النمط S واخيراً دوارية من النمط S وحد درمنا بعض خواص طيف الموثرات الدوارية من النمط S