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Abstract 

In this paper some IFS attractors are defined using the Escape Time Algorithm applied to 

certain dynamical system. This algorithm is used to compare how fast different points in the 

window W escape to the region V under the action of a dynamical system. The chaotic behavior of 

these attractors have been shown in a new way not based on code space method and a new approach 

for computing fractal dimension of these chaotic attractors are given which we called escape 

chaotic dimension. Two algorithms are proposed to find the attractors based on Escape Time 

Algorithm, and to find its fractal dimensions, they are carried out using Delphi Programming 

language.  
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Introduction (Brief history of chaos and 

fractals) 

The story began three hundred years ago 

with Isaac Newton, when he discovered the 

low of gravity and invented differential 

equations. Equipped with calculus and laws of 

motion of the earth around the sun, he was 

solved the two-body problem, afterwards, 

people started to ask a natural question: how 

about three-body problem? For instance, the 

sun-earth-moon-system? 

It was quickly realized that the three-body-

problem was much harder to solve. In fact, it 

was impossible to obtain the solutions in 

explicit formulas. The situation seemed 

hopeless. Then two hundred years passed 

around 1900 when Henri Poincare came along. 

Instead of attempting to give explicit solution 

formulas, he focused on qualitative behavior 

of the problem. Specifically, he asked the 

following question: what happen to the 

solutions as time becomes large? He realized 

that the long-time solution behavior was 

extremely complicated. In his words, "One 

will be struck by the complexity of this figure 

which I do not even attempt to draw. Nothing 

more properly gives us an idea of complication 

of the problem of three bodies and, in general, 

of all the problems in dynamics where there is 

no uniform integral" [1]. This is the first 

encounter with chaos. Poincare's work did not 

receive much attention until 1960's, when 

Edward Lorenz (1963) published his 

celebrated paper on the chaotic motion in a 

simplified model for weather forecast [2]. 

Lorenz found in his model that small errors in 

the initial conditions can lead to huge 

differences in the later motion. This is now 

called sensitive dependence on initial 

conditions and is trademark of chaos. This 

behavior practically makes long-time weather 

forecasting impossible. But Lorenz also 

showed that there was order in chaos. When he 

plotted the solution in three dimensions, he 

obtained a beautiful butterfly pattern. He 

further argued that this butterfly had to have 

infinite layers, a structure now called a fractal 

[3]. At about the same time, the fundamental 

work by Stephen Smale shed much light on the 

understanding of chaotic motion in dynamical 

systems [4]. Finally, a chaotic dynamical 

system has been recognized by Sharkovsky 

[5], Li and Yorke[6], and many others that 

there is a hidden, self- organizing order in 

chaotic system. 

In 1980's, the chaos theory and fractal 

geometry was applied to practically many 

fields of science such as physics, chemistry, 

biology and so on. An important feature of fractal 

geometry is that it enables a characterization of 

irregularity at different scales that the classical 

Euclidean geometry does not allow for. As a result, 

many fractal features have been identified, among 
which the fractal dimension is one of the most 

important[7]. We will build the theory of fractal 

dimension from the basic Euclidean definition to 

the more mathematically exhaustive definitions of 

Hausdorff and Box-counting dimensions[8]. One 
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might ask why there are several different 

definitions of dimension. This is simply because a 
certain definition might be useful for one purpose, 

but not for another. In many cases the definitions 

are equivalent, but when they are not, that because 

of their particular properties that make them more 
suitable for the task at hand [9]. 

The paper is organized as follows. In the 

next section, some background material is 

included to assist readers less familiar with the 

detailed to consider. Section 2 is devoted to a 

contrasting dynamical action-point whose 

iterates separate from one another. This kind 

of behavior is symptomatic of what we call 

chaotic dynamics, or just plain chaos. In 

Section 3 the proposed method to compute the 

escape chaotic dimension of some attractors 

constructed by IFS are presented, with the 

algorithm for compute escape chaotic 

dimension based on Box Counting Theorem. 

Finally Conclusions are drawn in Section4.  
 

1. Theoretical Background 
This section is presented an overview of the 

major concepts and results of fractals and the 

Iterated Function System (IFS). The theory of 

fractal sets is a modern domain of research. 
Iterated function systems have been used to define 

fractals. Such systems consist of sets of equations, 

which represent a rotation, a translation, and a 
scaling. These equations can generate complicated 

fractal images [10]. 
An IFS is defined through a finite set of 

contractive functions XXf i : , or short: 

IFS },...,,;{ 21 NfffX , where (X, d) is a 

complete metric space and RXXd :  is a 

distance function. The functions fi are  

called contractive if and only if there exist a 

so-called contractivity factor  1,0is  with 

),(.))(),(( yxdsyfxfd iii   for all Xyx ,  

[10]. Then a complete metric space (H(X),h) 

based on (X, d) is defined, where H(X) consist 

of nonempty compact subset of X and h(X) 

denotes the Hausdorff metric which describe 

the 'similarity' of two sets, given by: 

)),(minmax),,(minmaxmax(),( yxdyxdBAh
AxByByAx 



[9].  

The functions XXf i : can be extended 

to functions )()(: XHXHF  , defined 

by 
N

i

i XHAAfAF
1

)(),()(


 , being the so-

called Hutchinson Operator. The contractivity 

factor s of the Hutchinson Operator is given 

by },...,max{ 1 Nsss  . Due to the contractive 

property there exists a unique set Ao 

with )(  AFA  , Ao is called the attractor of 

the IFS, and it satisfies 

)(lim AFA n

n





 , )(XHA , where 

nF 
 

denotes the n-fold composition of F (or 

forward iterates of F). This attractor set Ao is 

what we call a fractal. The fractal itself is the 

limit as the number of iterations approaches 

infinity [10]. 

A dynamical system is sources of 

deterministic fractals, the reasons for this are 

deeply intertwined with IFS theory. In the 

following, the idea of a dynamical system and 

some of the associated terminology are 

introduced [11].  
 

Definition1, [12]:  

A dynamical system is a transformation  

f: X  X on a metric space (X, d). It is denoted 

by {X; f}.The orbit of a point x  X is the 

sequence 
0)( n

n xf  . 
 

Theorem1, [11]:  

Let },...,,;{ 21 NfffX  be an IFS. The 

dynamical system {H(X); W}, possesses a 

unique fixed point AH(X), where W(A) = 
N

n 1

 fn(A) , for all A  H(X), is a contraction 

mapping on the complete metric space (H(X), 

h(d)) with contractivity factor 10  s , such 

that   
h (W (A), W (B))  s. h (A, B),  for all A, B  

H(X). The attractor of IFS is an attractor fixed 

point of the dynamical system {H(X); W}. 
 

Theorem2, [11]: 

Let { },,,, 21 nX    be an IFS with 

attractor A. The IFS is totally disconnected if 

and only if   )()( AA ji  , for all 

},...,2,1{, Nji   with ji  . 
 

Definition2, [11]:  

Let {X; fn, n  1, 2,…,N} be totally 

disconnected IFS with attractor A. The 

associated shift transformation on A is the 

transformation S: A  A, defined 

by, )()( 1 afaS n

  for a  fn (A), 
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Where fn is viewed as transformation on A. 

The dynamical system {A; S} is called the shift 

dynamical system associated with the IFS. 
 

Theorem3, [14]: 

(The Box-Counting Theorem) Let A  

H(R
m
), where the Euclidean metric is used. 

Cover R
m
 by closed square boxes of side 

length (1/2
n
). Let Nn(A) denote the number of 

boxes of side length (1/2
n
) which intersect the 

attractor. If 









 )2ln(

))(ln(
lim

n

n

n

AN
D , then A has 

fractal dimension D. 
 

2. The Chaotic Dynamical system based on 

Escape Time Algorithm. 

In this section we introduce two methods 

of describing the way in which iterates of 

neighboring points separate from one another: 

sensitive dependence on initial condition, and 

the Lyapunov exponent. These notions are 

fundamental to the concept of chaos [15]. 
 

2.1 Chaotic Dynamical systems 

The word "chaos" is familiar in every day 

speech. It is normally means a lack of order or 

predictability. Thus one says the weather is 

chaotic, or that rising particles of smoke are 

chaotic, or that the stock market is chaotic. 

Both sensitive dependence on initial condition 

and the Lyapunove exponent qualify as 

measure of unpredictability [16]. 

Before giving a definition of chaos we first 

present some background material. 
 

Definition3, [12]:  

The dynamical system },{ fX is sensitive 

to initial conditions if there exists 0 such 

that, for any Xx and any ball ),( xB with 

radius 0 , there is ),( xBy and an 

integer 0n such that ))(),(( ` yfxfd nn 
. 

Roughly, orbits that begin close together get 

pushed apart by the action of the dynamical 

system. 

Now, we define the Lyapunov exponents 

for initial condition ox , as the following: 
 

Definition4, [15]:  

Let f be continuously differentiable map on 

R
m
, and the Jacobian of the n-th iterate of f at 

xo denoted by: )( o

n

n xDfJ  and let j1(n)  

j2(n)  …  jm (n), be the magnitudes of the 

eigenvalues of Jn. The m-th Lyapunov number 

of ox  can be defined as: 

i  exp(hi)  
n
lim


[ji(n)]
1/n

, i  1, 2, …, m. 

Where i are the Lyapunov exponents of  f. 

A certain degree of order in chaotic system has 

led to various definition of chaos in literature. 

In this paper, we are going to adopt Gulick 

definition of chaos. 
 

Definition5, [15]:  

A dynamical system },{ fX is chaotic if it 

satisfies at least one of the following 

conditions: 

(1)It is sensitive to initial conditions; 

(2) It has positive Lyapunov exponent at each 

point in its domain that is not eventually 

periodic. 
 

2.2 Escape Time Algorithm of a shift 

dynamical system associated with IFS 

The Escape Time Algorithm (ETA) can be 

applied to any dynamical system of the form 

{R
2
; f}, {C; f}. We need only to specify a 

viewing window W and a region V, to which 

orbits of points in W might escape. The result 

will be the “attractor” A of W, wherein the 

pixel corresponding to the point z is colored 

according to the smallest value of the positive 

integer n, such that )(zf n  V. A special 

color, such as black, may be used to represent 

points whose orbits do not reach V before 

(n+1) iterations [11]. 

The relationship between the dynamical 

system {R
2
, f} and the IFS },...,,;{ 21

2

nR   is 

that {A,f} is a shift dynamical system 

associated with IFS. 

In the following is an algorithm for 

computing attractors of some IFS on R
2
.  

(i) Find a dynamical system {R
2
, f} which is 

an extension of a shift dynamical system 

associated with the IFS. 

(ii) Apply the Escape Time Algorithm, with 

V and W chosen appropriately, but plot 

only those points whose numerical orbits 

require sufficiently much iteration before 

they reach V white color and plotting 

those points whose orbit does not reach 

V by black color. 
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The Escape Time Algorithm[11] 

1- GivenWR
2
, such that 

W={(x,y)
2R :a≤x≤c, b≤y≤d}, the 

array of points in W is defined by, 

xp,q=(a+p(c-a)/M , b+q(d-b)/M), 

p,q=1,2,…,M, for any +ve integer M. 

2- Let C be a circle centered at the 

origin, the set V is defined such that, V 

 {(x, y)  R
2
: x

2
 + y

2
 > r},  

where r is sufficiently large number. 

3- Let f be a function with the orbit of 

point 

0, )}({ nqp

n xf  , where xp,qW. 

4-Repeat,   xp,qW. 

IF   

0, )}({ nqp

n xf  V, then xp,q is 

colored  with color indexed by n. 

Else it is colored Black. 

End IF.  
5-Change all colors except black color 

to be white, such that: 

xp,q=

















NnallforVxfifBlack

NnsomeforVxfifWhite

qp

n

qp

n

)(

)(

,

,





 

6-Then the set of escape time point A 

in W is defined as follows, 

A= {xp,q  W: nf  (xp,q)  V, for all  

        n  N} 

   {xp,q  W, such that xp,q is black  

        point}. 

The set A is called the attractor constructed 

by Escape Time Algorithm. 

Now we will introduce the generalization 

Escape Time algorithm written in Delphi for 

computing attractors of IFS },...,,;{ 21

2

nR  . 

General  Escape Time Algorithm for 

Computing aAttractors of IFS in R
2 

INPUT:  READ m, v{ m = number of regions, 

v=value } 

 FOR i=1 TO m 

 READ 
1

i (x,y) = (gi(x),hi(y))   

 ENDFOR {i} 

READ a, b, c, d, R, M, numits{numits=number of 
iterations} 

PROCESS: FOR p=1 TO M 

FOR q=1 TO M 

 x = a + (c-a)*p/M 

 y = b + (d-b)*q/M 

FOR n=1 TO numits 

 IF (x {≤,,<,>}v) and (y{≤,,<,>}v) THEN 
x = gi(x), y = hi(y) 

ENDIF 

 IF x*x + y*y > R THEN 

Graph (p, q), Color (n), n = numits 

ENDFOR {n} 

 ENDFOR {q} 

ENDFOR {p} 

OUTPUT: GRAPH of m Regions 

END. 

2.3 The Escape Chaotic Dynamical System 

no Based on Code Space. 

The following theorem was proved before 

based on code space method in [3, 11, 12]. 

Using ETA, a new proves for this theorem is 

proposed as follows. 
 

Theorem 4: 

The shift dynamical system associated 

with a totally disconnected IFS of two or more 

transformations is chaotic. 

Proof:  

Let { },,,, 21

2

nR   be a totally 

disconnected IFS in R
2
, and A be the attractor 

of the IFS. Consider the dynamical system 

},{ 2 fR where 22: RRf   defined by, 

             

































),(

),(

),(

),(

1

1

2

1

1

yx

yx

yx

yxf

n





 

This dynamical system is related to the IFS 

{ },,,, 21

2

nR   . 

The relationship between the dynamical 

system },{ 2 fR  and the IFS is that },{ fA  is a 

shift dynamical system associated with IFS. 

AAf : . The dynamical system 

},{ 2 fR  is an extension of the shift dynamical 

system },{ fA . Now we apply the Escape Time 

Algorithm with V and W chosen appropriately 

as in section 2.2. The points whose numerical 

orbits require sufficiently many iterations 

before they reach V are plotted with white 

color, and the points whose orbit does not 

reach V are plotted black color. 

Then the set of escape time point A in W is 

defined as follows, 

A= {(x,y)  W:
nf 

(x,y)  V, for all n   

        N} 

    {(x,y)  W, such that (x,y)  is black  

         point}. 

Now, to show that the attractor A which is 

constructed by ETA is chaotic, we have to 
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prove that the shift dynamical system },{ fA is 

sensitive to initial conditions. 

Since the attractor are dense set therefore 

in  every neighborhood of each black point in 

the attractor set A there are  white points not 

belong to A (belong to V) whose orbits escape 

to infinity. So consider two nearby initial points 

),(  yx and ),( 11 yx one in attractor A and the 

other one outside of A  and, then as the 

iteration proceeds, when we take 0 and  N 

is large enough one orbit remains in W (don’t 

belong to V) forever, while the other one 

escape to V . 
That is, 

)),(),,(( 11

` yxfyxfd n

oo

n  , where one 

point is black, while the other one is white for 

some Nn  . In other words, small differences 

in the initial conditions will lead to vastly 

different orbits later on. This is the so –called 

sensitive dependence on initial conditions. So 

small initial distance between the two orbits is 

amplified rapidly by the iteration. Therefore 

the  shift dynamical system },{ fA is chaotic. 
 

3. Escape Chaotic Dimension using IFS 

Attractors. 

Fractal geometry has various approaches to 

compute the fractal dimension of an object. 

These approaches can be classified as 

belonging to the Hausdorff-Besicovitch 

Dimension (like the Box-Counting and 

Dividers methods) or to the Bouligand-

Minkowski Dimension (Minkowski fractal 

dimension method). Fractal dimension D is a 

key quantity in fractal geometry. The D value 

can be a non-integer and can be used as an 

indicator of the complexity of the curves and 

surfaces [16].  
 

3.1 Escape Chaotic Dimension Algorithm 

A new Algorithm carried out using Delphi 

for computing the fractal dimension of chaotic 

attractors constructed by IFS is based on 

finding the shift dynamical system associated 

with IFS },...,,;{ 21

2

nR  . 

We call this fractal dimension by escape 

chaotic dimension. A new method is based on 

Box-Counting theorem 3. A new technique 

that counts the fixed black points in the 

window W that not escapes to the region V is 

applied. It is different from the original 

technique that is based on counting of boxes of 

side length (1/2
n
) which intersect the attractor. 

 

Escape chaotic Dimension Algorithm 
INPUT:  READ m , v   

{ m = number of regions, v=value } 

  FOR i=1 TO m 

  READ
1

i (x,y) = (gi(x),hi(y))   

ENDFOR {i} 

READ a , b , c , d , R, M , numits    {numits=number of 

iterations} 

A = 0                      {the black points) 

PROCESS: FOR p=1 TO M 

 FOR q=1 TO M 
 x = a + (c-a)*p/M 

y = b + (d-b)*q/M 

 FOR n=1 TO numits        

IF (x {≤,,<,>}v) and (y{≤,,<,>}v)  
THEN   x = gi(x) , y = hi(y) 

 ENDIF 
 IF SQRT(x2+ y2) < R THEN A=A+1 

ENDFOR {n} 

ENDFOR {q} 

ENDFOR {p} 

D = ln (A) / (numits*ln (2)) 

OUTPUT: Dimension is: D 

END. 
 

3.2 Examples 

In the following examples the Escape 

chaotic dimension of some IFS attractors are 

applied to certain chaotic dynamical system. 

Calculated using the Escape Time methode. 

Example1.  

Consider the IFS {R
2
, 1, 2}, where 

 ),(1 yx 1/3(x, y) and  

),(2 yx 1/3(x, y) + 2/3(100, 0). 

The attractor of these IFS is Cantor set C. We 

find the dynamical system that is related to 

{R
2
; 1, 2}. The inverse transformations are 

 ),(1

1 yx   (3x, 3y)     if x  ½,   

 ),(1

2 yx   (3x  200, 3y)    if x > 1/2. 

Define f: R
2
  R

2
, by  

f (x,y)  





















   1/2. > x   3y), 200,  -(3x     ),(

2/1            , 3y) (3x,),(

1

2

1

1

ifyx

xifyx




 

We observe that the IFS is totally disconnected 

by theorem (2). },{ fC is a shift dynamical 

system associated with IFS. The dynamical 

system {R
2
; f} is related to the IFS {R

2
; 1, 

2} and it is an extension of the  

shift dynamical system {C; f}. By applying  

the general Escape Time Algorithm to  

this dynamical system {R
2
; f} with 
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W={ 2),( Ryx  :a≤x≤c, b≤y≤d}, where(a,b)= 

(0,0) and (c,d)=(100,100)  and V  {(x, y)  

R
2
: x

2
 + y

2
 > 200},  f : R

2
R

2
, and N is 

large enough we get the fractal set C 

constructed by this algorithm defined by: 

C  { ),( yx   W: nf  (x,y)  V, for all n  N}. 

That is, the black point represents the Cantor 

set C. 

By theorem (4) the shift dynamical system 

{C; f} which associated with totally 

disconnected IFS {R
2
; 1, 2} is chaotic. In 

other word we can say in the neighborhood of 

each black point in C, there are white points 

does not belong to C (belong to V) whose 

orbits escape to infinity.  

By applying the Escape chaotic dimension 

algorithm we have D(C) =0.63. 
 

Example2. 

Consider the IFS {R
2
; 1, 2, 3}, Where 

)100,0(2/1),(2/1),(1  yxyx , 

)0,100(2/1),(2/1),(2  yxyx and  

),(3 yx  1/2(x, y). 

The attractor of these IFS is a Sierpinski 

triangle S. 

The inverse transformation of 1, 2, and 

3 are: 

otherwiseyxyx

yifyxyx

ifyxyx

,)2,2(),(

2/1and ½ x )2,1002(),(

1/2, y )1002,2(),(

1

3

1

2

1

1



















 

Define   f(x, y) = 





























otherwiseyxyx

yifyxyx

ifyxyx

,)2,2(),(

2/1and ½ x )2,1002(),(

1/2, y )1002,2(),(

1

3

1

2

1

1







 

We observe that the IFS are totally 

disconnected by theorem (2). },{ fS is a shift 

dynamical system associated with IFS. The 

dynamical system {R
2
; f} where f : R

2
 R

2
 

is related to the IFS {R
2
; 321 ,,  } is an 

extension of the shift dynamical system {S; f}. 

By applying the general ETA to this 

dynamical system {R
2
; f} with 

W={
2),( Ryx  :a≤x≤c, b≤y≤d}, where 

(a,b)=(0,0) and (c,d)=(100,100)  and V  {(x, 

y)  R
2
: x

2
 + y

2
 > 200},  f : R

2
R

2
, and by 

taking N  large enough we get the fractal set S 

constructed by this algorithm, defined by: 

S  { ),( yx  W : nf  (x,y)  V, for all n  

N}.That is, the black point represents 

Sierpinski triangle. 

The IFS {R
2
; 321 ,,  } is chaotic by 

theorem (4), and by applying the Escape 

chaotic dimension algorithm we find  

D(S) =1.58. 
 

Example3. 

Consider the IFS {R
2
; 1, 2, 3, 4}, 

Where 

),(1 yx 1/2(x,y)

)0,100(2/1),(2/1),(2  yxyx , 

)100,0(3/2),(3/1),(3  yxyx and 

)100,100(4/3),(4/1),(4  yxyx  

The attractor of these IFS is attractor fractal 

tree F. The inverse transformation of 1, 2, 

3 and 4 are:       

½ y  ½,  )3004,3004(),(

1/2, y ,2/1)1002,2(),(

,2/1and ½ x )2,1002(),(

,2/1,2/1)2,2(),(

1-

4

1

3

1

2

1

1















xifyxyx

xifyxyx

yifyxyx

yxifyxyx









 

Define by f: R
2 R

2
 by f(x, y = 

































),(

y),(

),(

),(

1

4

1

3

1

2

1

1

yx

x

yx

yx









  

The dynamical system {R
2
; f} is related to 

the IFS {R
2
; 321 ,,  , 4 } and it is an 

extension of the shift dynamical system {F; f} 

associated with IFS{R
2
; 321 ,,  , 4 } . 

By applying the general ETA to the 

dynamical system {R
2
; f} with 

W={
2),( Ryx  :a≤x≤c, b≤y≤d}, where(a,b) 

(0,0) and (c,d)=(100,100)  and V  {(x, y)  

R
2
: x

2
 + y

2
 > 200},  f : R

2R
2
, and by taking 

N large enough,  we get the fractal set F 

constructed by this algorithm defined by: 

F  { ),( yx  W : 
nf 

(x,y)  V, for all n  

N}.That is, the black point represents the  fern 

fractal F. 

We observe that the IFS are totally 

disconnected by theorem (2). Therefore 

{R
2
; 321 ,,  , 4 } is chaotic by theorem (4). 
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And by using the Escape chaotic dimension 

algorithm for the dynamical system {F; f} 

we found that D (f) =1.75829. 
We show in above examples the chaotic 

behavior of the attractors constructed by ETA 

and counting the escape chaotic dimension of 

these attractors on R
2
 , this method for finding 

dimension use only for attractors constructed 

by ETA and its faster than other classical 

method moreover its more precise.  
 

4. Conclusions 

Fractal is defined as the attractor of 

mutually recursive function called IFS. These 

attractors are defined using the Escape Time 

Algorithm. This proposed Algorithm is a 

modification and generalization of the Escape 

Time Algorithm. It is carried out using  

Delphi and implements on some known 

fractals sets which considered as an  

invariant sets in R
2
, and generated using the 

IFS },...,,,{ 21

2

nfffR .The chaotic behaviors of 

these attractors have been proved without 

using the code space method. Also a new 

method is proposed to find the Escape 

dimension of some chaotic systems based on 

Box-Counting theorem. A new technique that 

counts the fixed black point in the window W 

that not escapes to the regain V is applied. It is 

different from the original technique that is 

based on counting of boxes )(ANn .  
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