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Abstract 

In this paper, we define another type of compactness which is called "strongly c-compactness ". 

Also, we study some properties of this type of compactness and the relationships with compactness, 

strongly compactness and c-compactness. 
 

1. Introduction and Preliminaries 

A topological space (X,) is said to be  

c-compact space if for each closed set A  X, 

each open cover of A contains a finite 

subfamily W such that {cl v: v  W} covers 

A, [1]. 

Mashhour et.al.[2] introduced preopen 

sets, [A subset A of space X is said to be 

preopen set if A  int (cl(A))]. Obviously each 

open set in (X,) is preopen, not conversely. 

Also, they defined the following concepts: 

Let A be a subset of a space X: 

i. A is called a preclosed set iff (X – A) is 

preopen set. 

ii. The intersection of all preclosed sets 

contain A is called the preclosure of A and 

denoted by pre-clA 

iii. The prederived set of A is the set of all 

elements x of X satisfies the condition, that 

for every preopen set V contains x, implies 

V \{x}  A  . 

Also, they proved some properties, as (the 

preclosure of a set A is a preclosed set) and 

(preclosure (B) = B iff B is preclosed set).  

Pre-open sets are discussed in [3], [4]. 

Ganster [5] has shown that the family of all 

preopen sets in X (PO(X)) is a topology on X 

if closure G is open and {x} is preopen for 

each x  interior F where   X = F  G. 

A space (X,) is called strongly compact if 

every preopen cover of (X,) admits a finite 

subcover. 

Strongly compactness is defined in [6] and 

discussed in [7] and [8]. 

In this paper we shall introduce a new 

concept of compactness, which is called a 

"strongly c-compact space" where [A 

topological space X is said to be strongly  

c-compact space if for every preclosed set  

A  X, each family of preopen sets in X which 

covers A, there is a finite subfamily W such 

that {preclosure U :U  W} covers A]. 

We discuss some properties of this kind of 

compactness and give some propositions, 

corollaries, remarks and examples to explain 

that. After investigating the relationships 

among compact spaces, c-compact spaces, 

strongly compact spaces and strongly  

c-compact spaces are considered. 
 

Proposition (1.1),[1]: 

Every compact space is c-compact.  
 

Remark (1.2): 

The implication in proposition (1.2) is not 

reversible, for example: A space (N,) where, 

 = {Un = {1,2,…,n}n  N}  { N, }  is  

c-compact which is not compact. 
 

Definition (1.3),[9]: 

A topological space (X,) is said to be a 

T3-space iff it is regular and T1- space. 
  

Proposition (1.4),[1]: 

A T3-c-compact space is compact. 
 

Proposition (1.5), [6], [7],[8]: 

Every strongly compact space is compact. 
 

Remark (1.6): 

The opposite direction of proposition (1.5) 

may be false, for example: 

Let X = [0,1] as a subspace of (R,u). 

Clearly, X is compact, but not strongly 

compact space, since the preopen cover  

C = {[0,
1

2
)\{

1

n
:n  N} {(

1

3
,1]}        

{(
1

n
-rn, 

1

n
+ rn) rn = 

2

1

2( 1)n 
 n > 2} has no 

finite subcover. 
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Proposition (1.7),[7], [8]: 

If the set of accumulation points of X is 

finite, then X is strongly compact space, 

whenever it is compact space. 

In proposition (1.8) and remark (1.9) 

below we discuss the relationship between 

strongly and c-compact spaces. 
 

Proposition (1.8): 

Every strongly compact space is  

c-compact. 
 

Proof: 

Follows directly from propositions (1.5) 

and (1.1).  
 

Remark (1.9): 

The opposite direction of proposition (1.8) 

may be false, see the example in remark (1.2), 

(N,) is c-compact space which is not strongly 

compact, since {{1,n} n  N } is a preopen 

cover for N which has no finite subcover. 

In the following proposition we give some 

conditions to make the opposite direction of 

proposition (1.8) true. 
 

Proposition (1.10): 

A T3-c-compact space X is strongly 

compact, whenever the set of accumulation 

points of X is finite. 
 

Proof: 

Follows directly from propositions (1.4) 

and (1.7).  

 

2. Strongly c-compactness: 

In this section we shall introduce the 

concept of strongly c-compactness and the 

relationships among compact, c-compact, 

strongly compact and strongly c-compact 

spaces are examined. 
 

Definition (2.1): 

A topological space X is said to be 

"strongly c-compact space" if for each 

preclosed set A  X, each family {V:} 

of preopen sets in X and covering A there is a 

finite subfamily W such that {pre-cl V: V  

 W} covers A. 
 

Proposition (2.2): 

A strongly compact space is strongly  

c-compact. 
 

Proof: 

Clear.  

Remark (2.3): 

The opposite direction of proposition (2.2) 

need not be true, see the example of remark 

(1.2), (N,) is strongly c-compact which is not 

strongly compact. 
 

Proposition (2.4):  

A T3-strongly c-compact space is strongly 

compact. 
 

Proof: 

Let X be a T3-strongly c-compact space. If 

X is not strongly compact, then there is a 

preopen cover {u:} for X which has no 

finite subcover. Since X is strongly c-compact 

space, then there is afinite subfamily W  

of the preopen cover {u:} such that  

X = 
1
{pre - cl u u W}

i i

n

i
 


  . This means, 

there is x  X, x  pre -clu
i  but x  u

i
 for 

some i = 1,2,…,n. Implies x  

pre -derived u
i . Since X is T1-space, then 

{x} is a closed set and x  u
i
, implies y  

{x}  y  u
i
. Since X is regular, then there 

are two open sets Vy and Vy such that y  Vy 

and {x}  Vy and Vy  Vy =  for each y  

u
i
. 

Therefore y y u{V }
i

  is an open cover for {x}. 

But {x} is compact, then there is 

1 2 ny y y{V ,V ,...,V }    covers {x}. 

Let 
iy

1
V = V

n

i 
  , then V is an open set contains 

x. Let 
i

y
y u

V = V


 , then V is an open set 

contains u
i , and V  V = . Since,every 

open set is a preopen, then V and V are 

preopen sets and x  V, u
i   V and V  V 

= . Therefore, x  pre -derived u
i  which is 

a contradiction. Then X is a strongly compact 

space.  

 

Corollary (2.5):  
A T3-strongly c-compact space is compact. 

 

Proof: 

Follows from propositions (2.4) and          

(1.5).  
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Remark (2.6):  

In general a strongly c-compact space need 

not be compact, see the example of remark 

(1.2), (N,) is strongly c-compact space which 

is not compact. 

On the other hand, a compact space may 

not be strongly c-compact, for example: The 

compact space (N,I), where I is the indiscrete 

topology on N is not strongly c-compact since 

{{n}nN} preopen cover for N, which has 

no finite subfamily W such that {pre-cl uu  

W} covers N, since pre-cl{n} = {n}  n N. 

In the following proposition we add a 

condition to make any compact space strongly 

c-compact space 
 

Proposition (2.7):  

If the set of accumulation points of X is 

finite, X is strongly c-compact space whenever 

it is a compact space. 
 

Proof: 

Follows from propositions (1.7) and    

(2.2).  
 

Proposition (2.8):  
A strongly c-compact space is c-compact. 

 

Proof: 

Let X be a strongly c-compact space, to 

prove it is c-compact. If not, then there is a 

closed set A  X and an open cover {u:} 

for A, such that A  
1
cl u

i

n

i



   n N. Since, 

every open set is preopen, then {u:} is a 

preopen cover for A, then there is a finite 

subfamily { u
i :i = 1,2,…,m} such that 

{pre -clu
i : i=1,2,…,m} covers A. 

This means, there exists x  A such that  

x  pre -clu
i  and x  clu

i  for some 

i=1,2,…,m.  

Since x  clu
i , implies x  u

i , but x  

pre -clu
i  then x  pre -derived u

i . 

On the other hand, since x  clu
i , 

implies x  u
i  and x  derivedu

i . 

Therefore, there exists an open set V such that 

x  V and V  u
i  = . 

Now, we get a preopen set V such that x  

V and V  u
i  = , implies x  

pre -derived u
i  which is a contradiction. 

Therefore X is c-compact whenever it is 

strongly c-compact space.  
 

Remark (2.9): 

A c-compact space need not be strongly c-

compact. As the space (N,I). 

In the following proposition we add some 

conditions to make  c-compact space to be  

strongly c-compact. 
 

Proposition (2.10): 

In a T3-space (X,), if the set of 

accumulation points of X is finite, then the 

concepts of c-compactness and strongly c-

compactness are concident. 
 

Proof: 

Follows from propositions (1.4) and          

(2.7).  
 

The following diagram shows the 

relationships among the different types of 

compactness we studied in this section. 
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3. Certain Fundamental Properties of 

Strongly c-Compact Space 

In this section we shall discuss some 

properties of strongly c-compact spaces. 
 

Remark (3.1): 

Strongly c-compactness is not a hereditary 

property, as the following example shows; 

Let X = N  {0},  

 = P(N)  {HX0HX – H is finite}. 

Now, X is a strongly compact space, 

implies X is strongly c-compact space (by 

proposition (2.2)). But, N  X not strongly c-

compact since {{n}n N } is a preopen cover 

for N which has no finite subfamily W such 

that {pre-cl{n}: {n}W} cover N. 
 

Remark (3.2): 

The continuous image of a strongly 

c-compact space need not be strongly  

c-compact. For example: 

Let f : (N,)  (N,I) such that f(x) = x 

 x  N where  = {Un  Un ={1,2,…,n}n 

N }  {, N }. Then, f is a continuous 

function and (N,) is strongly c-compact 

space, but (N,I) is not strongly c-compact. 
 

Definition (3.3), [10]: 

Let f :(X,)  (Y,) be any function, f 

is said to be a preirresolute function, if and 

only if the inverse image of any preopen set in 

Y is a preopen set in X. 
 

Remark (3.4) [10]: 

A function f :(X,)  (Y,) is a 

preirresolute iff the inverse image of any 

preclosed set in Y is a preclosed set in X. 
 

Lemma (3.5): 

A function f :(X,)  (Y,) is a 

preirresolute if and only if pre cl(f 
-1

(B))  f
-1 

(pre cl( (B))  B  Y. 
 

Proof: 

Necessity, let f :(X,)  (Y,) be a 

preirresolute function and let B  Y. 

Since B  pre cl(B) then f 
-1

(B)        f 
-1

(pre 

cl(B)), implies pre cl(f 
-1

(B)       pre cl(f 
-1

(pre 

cl( (B))). Since f is preirresolute function and 

pre cl (B) is preclosed set in Y, then f 
-1

(pre cl( 

(B)) is preclosed set in X. So, pre cl (f 
-1

(pre 

cl((B))) = f 
-1

(pre cl( (B)). 

Therefore, pre cl(f 
-1

 (B))  f 
-1

(pre cl((B)). 

Sufficiency, suppose pre cl( f 
-1

 (B))  f 
-1 

(pre cl((B))  B  Y. To prove f is 

preirresolute function. 

We must prove that if A is preclosed set in 

Y, then f 
-1

 (A) is preclosed set in X. 

Which means : we must prove that f 
-1

 (A) 

= pre cl (f 
-1

 (A)). It is clear that f 
-1

 (A)  pre 

cl (f 
-1

 (A))  A  Y. 

Now, to prove pre cl (f 
-1

 (A))  f 
-1

 (A). 

Since A is preclosed set in Y, then pre cl(A) = 

A and since pre cl (f 
-1

 (A))  f 
-1

(pre cl((A)). 

Implies, pre cl (f 
-1

 (A))    f 
-1

 (A). 

Therefore, pre cl (f 
-1

 (A)) = f 
-1

 (A) and f 
-1

 

(A) is a preclosed set in X. So f is preirresolute 

function.  
 

Prposition (3.6): 
The preirresolute image of a strongly  

c-compact space is a strongly c-compact. 
 

Proof: 

Let f :(X,)  (Y,) be a preirresolute 

onto function and let X be a strongly  

c-compact space. To prove Y is strongly    

c-compact space. 

Let A be a preclosed subset of Y,  {u: 

} be a -preopen cover for A. Since f is a 

preirresolute function, implies {f 
- 1 

(u): } 

is a -preopen cover for a preclosed set f 
-1

   

(A)  X and since X is strongly c-compact 

space, then there is a finite family 

{
1 2

u ,u ,...,u
n   } such that {pre cl(f 

-1
( u

i ):i 

= 1,2,…,n} covers f 
-1

 (A). So {f (pre-cl(f 
-

1
( u

i ))): i = 1,2,…,n} covers A. In virtue of 

lemma (3.5), {f (f 
 - 1 

(pre-cl( u
i ))):i = 

1,2,…,n} covers A and since f is onto, then                 

{ pre-cl( ( u
i ):i = 1,2,…,n} covers A. Hence, 

Y is strongly c-compact space.  
 

Proposition (3.7), [10]: 

Every homeomorphism function is a 

preirresolute function. 
 

Corollary (3.8): 

        A strongly c-compactness is a 

topological property. 
 

Proof: 

In virtue of proposition (3.7), then 

proposition (3.6) is applicable.  
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4. Conclusion and Recommendations: 

Our conclusions in this paper, that a 

strongly c-compact space is c-compact space 

but not strongly compact space and not 

compact space. So we have to strive to put 

another type of compactness which lies 

between strongly compactness and  

c-compactness. 

For future works, we shall study  

-c-compactness, semi--c-compactness, 

semi-p-compactness and semi-p-c-

compactness. 
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