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Abstract 

This paper presents a multi-member evolution strategy )(ES   to forecast future value 

of observed time series )1,1(ARMA   model. The proposed method is simple and straight forward 

and doesn't required any problem specific parameter tuning of the problem. The experiments 

designed based on simulate )(ES  for different values of  sample size (n=25,50,100),model 

parameters   set ( 75,3.0,05.0  ) and   set to ( 9.,4.0,1.0  ) and use lead time for 

forecasting future value equal to (l=1,2,3).The value of  ,  take equal to (15,100) beside this, 

there is anther experiment designed for simulating  one of method which is known as  Box –

Jenkins with same values of sample size, model parameters and leads time(l) for number of 

replicate (RR=1000). Results of this study has cleared by numbers of figures and tables, which 

are made to clear compression between ES-algorithm and B.J method based on computing 

values of FMSE (Forecasting Mean Square Error ) & Thiels' (U- statistic) ,statistics  used as 

tools to measures reliability of ES- algorithm and also used to  clear accuracy of  ES algorithm 

results. Table(1), tables (2-7) and figures (4 -9) results of statistics  show the reliability of 
)(ES   algorithm to producing individuals which give reasonably  predictions of future values 

of time series for different values of sample size and lead time values of model parameters.  

Key Words: Time series , forecasting function ,evalution strategy ,ARMA model, Box- Jenkins 

(B.J) forecasting, likelihood  function, mution ,crossover, Thiels' (U- statistic). 

 
1.Introduction 

Time-series forecasting is a forecasting 

method which use a set of historical values to 

predict an outcome. These historical values, 

often referred to as a "time series", are spaced 

equally over time and can represent anything 

from monthly sales data to daily electricity 

consumption to hourly call volumes.A 

common goal of time series analysis is 

extrapolating past behavior into the future. 

The statgraphics forecasting procedures 

include random walks, moving averages, trend 

models, simple, linear, quadratic, and seasonal 

exponential smoothing, and ARIMA 

parametric time series models. Users may 

compare various models by holding samples 

at the end of the time series for validation 

purposes. Forecasting use at time t of 

available observations from a time series to 

forecast its value at some  futuere time  ( )lt   

can provide a basis for economic & business 

planning, production planning ,inventory & 

production control and control & optimization 

of industrial processes. Forecasts are usually 

needed over a period known as the lead time 

,which varies with each problem .Assuming  

that observations are available at a discrete 

time (equispaced intervals ) of time, so if 

,...z,z 2t1t  are observations of  previous time, 

these observations may be used to forecast 

future value for lead times ...3,2,1l   ahead , 

)l(zt


 denote the forecast made at origin t of 

the ltz   at some future time ( )lt    ,that is at 

lead time l .The function ,...2,1l),l(zt 


that 

provides the forecasts at origin t for all future 

lead times will called the forecast  function  at 

origin t. Our objective is to obtain a forecast 

function which is such that the mean square of 

the deviations ))l(zz( tlt


  between the 

actual and forecasted values is as small as 

possible for each lead time  l  . The accuracy 

of the forecasts may be expressed by 

calculating probability limits on either side of 

each forecast ,these limits may be calculated 

for any convenient set of probabilities, for 

example 50% and 95% [2]. They are such that 
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the realized value of the time series, when it 

eventually occurs, will be included within 

these limits with the stated probability. A 

model which describes the probability 

structure of a sequence of observation is called 

a stochastic process )z,....z,z(z N21  of N 

successive observations is regard as a sample 

realization, from an infinite population of such 

samples, which could have been generated by 

this process. A major objective of statistical 

investigation is to infer  the properties of the 

population from those of sample ,making a 

forecast is to infer the probability distribution 

of future observation from the population. 

Given  a sample  z of past value we need a 

ways of describing  stochastic processes and 

time series ,and also need classes of stochastic 

models which are capable of describing  

practically occurring situation. A particular  

stationary stochastic processes of value 

modeling ,which is  One of the main topics of 

this work, is the B.J forecasting  methodology   

which is developed by G.E.P.Box and G.M. 

Jenkins  consist of  four basic step, involves 

tentatively identifying a model and sample 

partial autocorrelation function Once  model 

tentatively  identified ,we estimate the model 

parameters in the second step .This is called 

estimation step .In the third step which  is 

called the diagnostic checking step, here see 

whether or not the model we have tentatively 

identified and estimated is adequate .If the 

model proved to be inadequate ,it must be 

modified and improved. The diagnostic 

methods employed will help us to decide how 

the model can improved .When the final 

model  is determined ,we use the model to 

forecast future time series values. This fourth 

step is called the forecast step. B.J 

methodology is an iterative procedure because 

steps of tentative identification, estimation, 

and diagnostic checking is iterative until find 

the  adequate final model, which is used to 

compute forecasts of future time series values. 

Figure (1) depicts time series analysis steps 

[8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Box-Jenkins methodology for 

time   series modeling. 

2. Mathematical part 

This section present  many of 

mathematical definitions for ARMA 

models, forecasting function, forecasting 

errors and likelyhood function ,which is 

used to estimate model parameters,  the 

following subsection illustrate these 

definitions in som details: 

 

2.1 Box –Jenkins Models  

B.J models represent a family of 

models. These models can be grouped in 

the following categories:   

 

1-Autoregrassive Models AR(p) 

tpttt
azzz p 


 ...

11
 ..........(1) 

which employs )2p(   unknown 

parameters:  p,...,1, and  2
a  to be 

estimated from data series. 
 

2- Moving Average Models  MA(q) 

qtq1t1tt
a...aaz


   ....(2) 
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Phase III 

Application  
 

Estimation  

Estimate parameters in potential models 

Select best model using  suitable 

criterion  

Data preparation  

.Transform data to stabilize variance 

.Differece data to obtianstationary series  

Modele selecation  

Examine data ,ACF,PACF to identify 

potential models  

Diagonostics  

Check ACF/PACF of residuals 

DO portmanteau test of residuals  

Are the residuals white noise? 

Forecasting  

Use model to forecast  

yes 

no 
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which employs )2q(  unknown 

parameters:  q,...,1, and  2
a  to be 

estimated from data series.   

 

3- Mixed Model (Autoregrassive-Movig 

Average Models   ARMA(1,1) 

qtq1t1tpt1t1t
a...aaz...zz p 

   ....... (3) 

which has )2qp(  unknown parameters: 

 q,...,1,p,...,1, and  2
a  to be 

estimated from data series.  where at is the 

error term which  has )2
a,0(N)d.i.i(   

distribution.  

Therefore, all models mentioned above are 

subset of ARMA models illustrated in 

equation [1]. 

tt a
)B(

)B(
w




   ..................................... (4) 

where  

wt=is the response series or a difference  of 

the response series, 

 =a constant or intercept, 

B=the backshift operator (i.e. Bzt=zt-1) , 

)B( =the autoregressive operator, represent 

as a polynomial in the backshift operator : 
p

p1 B...B1)B(    

)B( =the moving average operator, 

represent as a polynomial in the backshift 

operator : 
q

q1 B...B1)B(    

at=the random error or shock. 

This paper interest on stationary 

ARMA(1,1) model   if we suppose 0   

aaww
1t1

t
1t1t 

   ............ (5) 

or  

at)B1(w)B1( 1t1    (6) 

a)B(w)B(
tt

   ............................ (7) 

This model is stationary if the root of 

0)B11(   lies outside the unit circle 

and invertible if the root of 0)B1( 1   

lies outside the unit, so we can get 

that 1|| 1  , and 1||
1
  too.  

 

 

 
 

2.2  Estimation 

Likilyhood function that is used to 

estimate model paramaters   is formulated in 

eq (8), [9],  

2

a

11
)1,1(

a
2

),(s
|)Mln(|

2

1
)2(

2

n
)Lln(




 

 ..... (8) 

2

t11 )w,,|
n

t

a(),(S
11

 


  ............. (9) 

where ),(S 11  is the sum squares errors, n  

is the sample size, and 

]w,,|a[E]w,,|a[ t 11t11
   ,denotes the 

expectation of a
t
 conditional on 

11
, and 

w .With assumption  0)w(E t  , }at{  has 

the normal distribution with zero mean and 

constant variance equal to 2
a

 [9]. 

 

2.3 B.J  Forecasting Function  

The B.j forecast function of lnz  at 

the forecast origin n  is given by the 

conditional expectation [1]  

,...)z,z|z(E)l(z 1nnlnn 


 .................... (10) 

We can easily obtain the actual forecasts of 

observed time series with ARMA(1,1) 

model  as follows , 

1ln1ln1ln1ln aazz     ........ (11) 

)1l(z)l(z n1n 


          

l l 1
1 n 1 1 nz a ,for l 2      .... (12) 

n n jz ( j) z ,for j 0 
  ........................... (13) 

na ( j) 0,for j 1, 


 ...................... (14) 

n n j n j 1 n ja ( j) z z (1) a , j 0      
 

 .......... (15) 

The error of forecasting equation is[1],  

)l(zz)l(e nlnn


   ............................... (16) 

we can see that  )l(en  is a linear 

combination of the future random shocks 

entering the system after  n. 

Specifically, the one step ahead forecast 

error is 1nnlnn a)l(zz)1(e  


, in 

general, [1]: 



















0ja

0j0

)a(E

jn

jn

 ..................... (17) 















0jZ

1J)j(Ẑ
)z(E

jt

t

jt  ..................... (18) 

Forecast Mean Square Error (FMSE) is  
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2

tltt )]l(ẑz[E))l(evar(FMSE    . (19) 

2

a

2

11

1l

1j

1j

n )))((1())l(z(FMSE   




 (20) 

for L=1,2,3 ….. 

 

3. Evolution Strategies ES ),( 


 

An individual I),x(a 





  in 

),( 


-ES consists of the following 

components [4] [5]: 

 Rnx 


: The vector of object variables. 

 R
n





: A vector of step length 

or standard deviations )nn1(    of 

the normal distribution. The strategy 

parameter 


 (also called the internal 

model) determines the variances of the 

n-dimensional normal distribution, 

which is used for exploring the search 

space. The user of an evolution strategy, 

depending on his feeling about the 

degree of freedom required, can vary the 

amount of strategy parameters attached 

to an individual. As a rule of thumb, the 

global search reliability increased at the 

cost of computing time when the number 

of strategy parameters is increased. The 

only part of a


 entering the objective 

function evaluation is x


, and the fitness 

of an individual )a(


  is identical to its 

objective function value )x(f


, 

i.e. )x(f)a(





 .Three ES 

operators  are adopted in this work[7]. 

These are : 

1- Arithmetic crossover: Each gen in the 

offspring will be a linear combination of the 

values in the ancestors' chromosomes, in the 

same positions. If ai and bi are the 

offspring's genes, and zi and wi the 

ancestors' ones ,at the position i then  

iii w).1(z.a    

and  

iii z).1(w.b   , 

where   is a random number with 

U(0,1),[7]. 

 

2-Gaussian perturbation: A mutation 

operator  that adds ,to a given gene ,a value 

taken from a Gaussian distribution   ,with 

zero mean small perturbations will be 

preferred over larger ones[7]. Mutation 

operator II:},{m ,0  , is 

defined as follows  

)',x'()(m)x(mx)a(m },{ 0 








  ....(21) 

Which proceeds by: 

 First, mutating the strategy 

parameters 


: 

RR
nn:m 

    

))zznexp(n),...,zzexp((')(m 0011 





 
 ...(22) 

where 

}n,...,1{i),0(N~zi,),0(N~z 22
00  

 

 Secondly, modifying 
x
 according to 

the new set of strategy parameters obtained 

from  mutating


:  RnRn:mx   

)zx,...,zx(x')x(mx nn11 





 ..............(23) 

 

3- Selection operator: The selection  

operators on converting the fitness value 

into its ranking in the population .After the 

selecting  scheme below is applied: 

IIS  :       

P')P(S  ,where  P , P' , and    

)x'(f)x(f:P'Pa:P'
a'











   

 

3. Conceptual  Algorithm  

The ES used in this work is given by 

following pseudo-code: 

 

BEGIN 

Population initialization and evolution  

While (termination criteria is not met ) 

Creat new individuals using ES operators 

Evaluate the new individuals (offspring) 
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Select the survivors and add to the next 

generation 

END 

 

Figure (2): Domnstrates  forecasting ARMA 

model based on ES strategy. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: flowchart schematic 

representation of ES methodology for  

forecasting ARMA  model 

4. Experimental Results  

This section explain the result 

that come from simulating (   )-ES, 

B.J methodology to forecast an 

observation time series with  ARMA 

(1,1) model. Experiment designing 

follows the steps of time series analysis 

which is given in figure (1) these steps 

passes the following three phases:    

First phase: Adopted to generate 

different simples with different (simple 

size n) in this study take 100,50,25n   

,and different values of model 

parameters   set to ( 75,3.0,05.0  ) 

and   set to ( 9.,4.0,1.0  ) samples 

draw one with respect to eq(5). The 

random samples are generated by  using 

Box-Muller formula. 

Phase Two: Estimation of parameters get 

from optimizing  likelihood function of 

model given by  Eq.(8)   by applying ES- 

algorithm for optimizing  likelihood 

function for   ,  in search space [-1,1] 

to use it in next phase. 

Phase Three: Here we applied our 

interested algorithm (ES) to forecast future 

value of time series observations for lead 

time(l =1,2,3) values of  and  are set to 

15 and 100 respectively with the initial 

values for strategy parameters 


 , are set 

to 3.0 . 

All results were obtained by 

running each one of these experiments  

5 different runs and each iterates with 

75 generations and averaging the 

resulting data. Further, the results of 

(   )-ES are compared with those 

obtained by result of simulating 

experiments of BJ  methodology  

(which designed for the same value of 

sample size (n)  and model parameters  

),( 11  with 1000 runs. All test reported 

in this work conducted using 

programming environments developed 

in Matlab6.5. The comparisons make 

based on 

 

1- Forecast Mean square error (FMSE): 

In general from eq(20) 
2

tltt )]l(ẑz[E))l(evar(FMSE          

ttt yye


  ................ (24) 

so  

L

SSE
FMSE

eSSE
lt

1ti

2

i







 ...................... (25)             

2- Theil’s U-statistic 

One measure that has these 

characteristics is the  U-statistic 

developed by theil (1966) this statistic 

allows a relative comparison of  formal  

forecasting  methods  The positive 

characteristic that given much more 

weight than small errors the positive 

characteristic that is given up to theil's –

evalution 

Initial  population  

ARMA Model Generation 

Parameter optimization 

Selection of ancestors 

Arithmetic  Crossover  

Caussian Mutation 

Selection   

New population  

Repeat Until all 

of generation 

complete 
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statistic as measure of accuracy is that 

of intuitive interpreting . 

The mathematical definition of this statistic is  
















l

1i

it

l

1i

it

APE

)APEFPE(

sU'Theil
it  .... (26)                      

where 

t it

t i
t

tF y
FPE

y






  (forecast relative change) 

t

it

it y

yy
APE

t
 


     (actual relative change) 

result of experiments cleared  in table(1) which 

is used to show the comparison among B.J 

mythology and ES algorithm based on values of 

FMSE  and u-statistic besides this tables (2-7) 

represent result of FMSE ,U-statistic and 

number of generation for different values of 

sample size and model parameters, in addition 

figures (4 -9)used to describe the relation for 

FMSE, sample size and number of generation. 

The experiments on a set of data give some 

impressions of the behaviors of both ES and BJ 

methods. As one can see that the MSEs ,u-

statistic of ES are smaller than those of BJ. This 

indicates that ES is more reliable than BJ to 

give prediction of future values of observed 

time series. Moreover, one can see that values 

of  FMSE ,U-statistic are decreased as the 

sample size increased. For ES one can also see 

that the values of FMSE, Thiels' (U- statistic) 

decreases when increasing the number of 

generation and sample size. Also the behavior 

of our test statistic decreases when decreases 

values of parameters ),(
11

  . 

5.Conclusion 

The surge of new bio-inspired 

optimization techniques such as ES, has 

created new exciting possibilities to the field 

of forecasting. Following such a trend, it is 

presented in this work a constructive 

approach to build time series forecasting  

models, assuming no prior knowledge about 

the behavior of  evolving time f ARMA  

models . Furthermore, the systems that are 

generated work autonomously and do not 

require any kind of statistical data analysis. 

The main handicap is the computational 

complexity of the proposed approach. 

Nevertheless, time complexity could be 

reduced if a subset of promising models 

were incorporated into the ES's initial 

population, although this would require the 

use of a priori information. Since most of 

the real-world time series  use daily or 

monthly data, this is not considered a major 

concern. In future work it is intended to 

enrich the GA forecasting models with the 

integration of nonlinear functions (e.g., 

logarithmic or trigonometric). Another area 

of interest may rely on the application of 

similar techniques to long term and 

multivariate forecasting. Once the ESs 

revealed good results in parameter 

optimization and model selection and 

forecasting . 
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المستخلص 

 انثاحثىٌ اهًُح خاصح نذساسح وذحهُم ياول

انسلاسم انضيُُح يسرخذيٍُ كافح الاسانُة انشَاضُح 

والاحرًانُح وانثُاَُح وانحاسىتُح انًراحح نهزا انغشض 

ورنك نكىٌ انسهسهح انضيُُح وانرٍ ذعشف تاَها يدًىعح 

يٍ انًشاهذاخ انًعرًذج وانًىنذج تانرعاقة عم وفق ذشذُة 

صيٍُ يعٍُ ذذخم فٍ دساسح وذحهُم انعذَذ يٍ  (ذسهسم )

   ذهذف  هزِ .انظىاهش الاقرصادَح والاخرًاعُح وانهُذسُح

انذساسح نًحاكاج  خىاسصيُح انرطىس  
 )(ES   نحساب

  نسهسح انضيُُح  ذرثع يشاهذاذها  انًُىرج انعشىائٍ   انركهٍ

ARMA(1,1)  . حساب انرُثىء انًسرقثهٍ نثُاَاخ انسهسهح

ES)(انضيُُح تاعرًاد خىاسصيُح    ًَش تًشاحهها

يحاكاج  (crossover, mutation, selction )انثلاثح 

 ذًد يٍ خلال  ذصًُى عذد يٍ انرداسب ESخىاسصيُح 

 وتالاعرًاد عهً  اسرخذاو قُى يخرهفح نكم يٍ حدى انعُُح

((n=25,50,10 يعهًرٍ انًُىرجو  

(75,3.0,05.01  ),( 9.,4.0,1.01  (   

 وقُى    Lead time l =1,2,3)    )تالاضافح 
)15,100,(    . اٌ َرائح هزِ انرداسب  ذًد يقاسَرها

يع انُرائح انرٍ ذى انحصىل عهُها يٍ  ذصًُى ذدشتح 

اخشي ورنك نذساسح انركهٍ انًسرقثهٍ نهسهسهح انضيُُح 

تالاعرًاد عهً واحذج يٍ الاسانُة انرقهُذَح وانرٍ ذعشف 

حُث اسرخذيد َفس حدىو انعُُح  (تىكس خُكُض  )تاسى 

عذد يشاخ ذكشاس انردشتح )وقُى انًعهًاخ تالاضافح انً 

نخصد انُرائح فٍ عذد يٍ  .  (RR=1000)يساوٌ  

وانزٌ     (1)اندذاول وانرٍ  ذًثهد فٍ اندذول سقى 

ES)( َىضح انًقاسَح تٍُ خىاسصيُح   وطشَقح  

Box –Jenkins  تالاعرًاد عهً كم يٍ اصائُح ثاَم  

(Thiels' (U- statistic ٍويرىسط يشتعاخ خطا انركه

FMSEُ اثثررد  انُرائح قذسج خىاسصيُح  'ES  فٍ حساب  

انركهٍ انًسرقثهٍ  ورنك يٍ خلال اسرحصانها    انقُى  

 'FMSE, Thiels . اندُذج نكم يٍ احصائُح   

(FMSE) فرًثم انعلاقح تٍُ  (7-2) ايا اندذاول انًشقًح

 واحصائُح  (FMSE) كم يٍ  انقُى الاحصائُح نكم يٍ 

ثاَم وحدى انعُُح وقُى انًعهًاخ تالاضافح انً سقى انىلادج 

 (generation  )  حُث اٌ عذد انىلاداخ انًسرخذو

تالاضافح انً الاشكال  gen=70)   )َساوٌ 

  وانرٍ اسرخذيد نرىضُح قُى  (9-4)انرىضُحُح

FMSE اثثرد خىاسصيُح .  يع حدى انعُُح وسقى انىلادج( 

ES)  قذسذها  فٍ حساب انًخًُاخ نًعهًرٍ انًُىرج ورنك

يٍ خلال اَداد انحم الايثم نذانح الايكاٌ الاعظى نهًُىرج 

  [9].انًسرخذو 

 

 

 

 

 

Table 1: Values of FMSE and Thiels' (U- 

statistic) for  comparison between ES and 

BJ   methodology averaging for 1000 run 

of BJ methodology experiments  ,and 

(averaging Es experiments  for 75 

generation).  

 

 

Table (2): Values of FMSE and Thiels'(U-

statistic) based on sample size and no.of 

generation. 4.,3. 11    

 

 

n 
11 ,

 

ES-forecasting 

 
BJ. forecasting 

FMSE u-statistic FMSE u-statistic 

25 
 

-.05,-.1 0.0059 0.039 1.1898 0.6428 

-.3,-.4 0.01509 0.05431 2.6585 0.7247 

-.75,-.9 0.02401 0.12491 10.907 3.2776 

.05,.1 0.002403 0.03018 0.8828 0.6028 

.3,.4 0.06196 0.16543 0.4674 0.3862 

.75,.9 1.01948 0.626103 0.0245 0.0839 

50 

-.05,-.1 0.0058 0.04 1.241 0.6253 

-.3,-.4 0.01757 0.10778 2.4535 0.7163 

-.75,-.9 0.03057 0.12027 5.2.104 2.3942 

.05,.1 0.00152 0.01620 0.8356 0.5498 

.3,.4 0.04518 0.0917 0.3941 0.378 

.75,.9 0.736786 0.37326 0.0279 0.0748 

100 

 

 

-.05,-.1 0.0017 0.019 1.1877 0.6072 

-.3,-.4 0.008431 0.06312 2.3676 0.715 

-.75,-.9 0.05512 0.15500 3.7134 
1.48

9 

.05,.1 0.00075 0.03853 0.7794 0.46062 

.3,.4 0.02002 0.05286 0.3597 0.35078 

.75,.9 0.81287 0.627722 0.0359 0.7106 

No. 

of  
gen 

n=25 n=50 n=100 

FMSE u-statistic FMSE 
u-

statistic FMSE 
u-

statistic 

10 0.09228 0.21504 0.06278 0.09946 0.02474 0.06134 

20 0.08982 0.21242 0.0421 0.09894 0.0153 0.0458 

30 0.06166 0.17372 0.042 0.09696 0.01254 0.03444 

40 0.06028 0.17336 0.03838 0.09382 0.0121 0.0303 

50 0.06002 0.16756 0.0325 0.09272 0.0112 0.02274 

60 0.04848 0.10704 0.0312 0.0925 0.0038 0.02264 

70 0.04816 0.107042 0.031194 0.0875 0.00298 0.00728 
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Table (3): Values of  MSE and Thiels' (U- 

statistic) based on sample size and no.of 

generation  for 4.,3. 11    

 

Table (4): Values of  MSE and Thiels' (U- 

statistic) based on sample size and no.of 

generation  for 9.,75. 11   . 

 

Table (5): Values of  MSE and Thiels' (U-  

statistic) based on sample size and no.of 

generation  for 9.,75. 11   . 

 

 

 

 

 

 

 

Table (6) : Values of  MSE and Thiels' (U- 

statistic) based on sample size and no.of 

generation  for 1.0,5.0 11   . 

 

Table(7): Values of  MSE and Thiels' (U- 

statistic) based 1.0,05 11    on 

sample size and no.of generation for   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. 

of 
gen 

n=25 n=50  n=100 

FMSE u-statistic FMSE u-statistic FMSE u-statistic 

10 0.02756 0.06552 0.018227 0.0592 0.0123 0.0585 

20 0.01582 0.05838 0.013776 0.0522 0.00992 0.0401 

30 0.01494 0.0475 0.013634 0.0442 0.00658 0.03518 

40 0.0141 0.04742 0.01358 0.0366 0.00632 0.0236 

50 0.01406 0.04008 0.011575 0.010162 0.0062 0.010312 

60 0.01401 0.0382 0.01051 0.010082 0.00619 0.010298 

70 0.01208 0.03595 0.01028 0.010078 0.006094 0.010238 

No. of 

gen 

n=25 n=50 n=100 

FMSE u-statistic FMSE u-statistic FMSE u-statistic 

10 1.2625 0.71054 1.25268 0.51578 0.91014 0.57292 

20 1.05376 0.65296 0.94606 0.4385 0.8225 0.51856 

30 1.06.96 0.63244 0.92468 0.41988 0.78756 0.5128 

40 1.0546 0.63004 08.54548 0.32106 0.78092 0.30432 

50 1.00404 0.59538 0.853586 0.3101 0.73495 0.20431 

60 0.94426 0.50624 0.7766 0.28958 0.71244 0.16276 

70 0.88028 0.50152 0.7508 0.28792 0.71182 0.11284 

No. 

of 
gen 

n=25 n=50 n=100 

FMSE u-statistic FMSE 
u-

statistic 
FMSE u-statistic 

10 0.03142 0.1348 0.03072 0.13136 0.011584 0.121912 

20 0.02254 0.11958 0.02034 0.12044 0.0106 0.10528 

30 0.0223 0.11448 0.02011 0.11404 0.010126 0.10411 

40 0.01898 0.11272 0.01562 0.1136 0.01102 0.10218 

50 0.01246 0.112336 0.01026 0.1120 0.001088 0.013864 

60 0.00858 0.1103 0.002048 0.1099 0.001022 0.034926 

70 0.00318 0.10536 0.00202 0.10736 0.001012 0013424 

No. 
of 

gen 

n=25 n=50 n=100 

FMSE u-statistic FMSE u-statistic FMSE u-statistic 

10 .00892 0.05932 0.007972 0.028461 0.00182 0.01942 

20 0.00512 0.03874 0.003346 0.025986 0.00032 0.0102 

30 0.0046 0.02862 0.002733 0.023767 0.0004 0.00884 

40 0.0044 0.02462 0.001644 0.016895 0.0004 0.00884 

50 0.0042 0.02158 0.00135 0.00629 0.0004 0.00066 

60 0.00414 0.01924 0.001225 0.0006 0.000021 0.00019 

70 0.00272 0.01918 0.00025 0.0059 0.0002 0.00012 

No. 
of 

gen 

n=25 n=50 n=100 

FMSE u-statistic FMSE u-statistic FMSE u-statistic 

10 0.0075 0.048 0.0065 0.043 0.0009 0.0148 

20 0.0068 0.035 0.0061 0.038 0.0008 0.0145 

30 0.0063 0.032 0.0055 0.038 0.0005 0.0122 

40 0.0064 0.03 0.0034 0.038 0.00029 0.0128 

50 0.0052 0.028 0.003018 0.032 0.00024 0.01166 

60 0.0052 0.026 0.002566 0.029 0.000229 0.0109 

70 0.0046 0.021 0.00228 0.024 0.000102 0.01012 
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No. of generation 
 

 

Figure  4: Relation among FMSE , sample 

size and no.of generation for 4.,3. 11    

 

 

 

 
 

Figure  6: Relation among FMSE , sample 

size and no.of generation for 

9.0,75.0 11    

 

 

 
 

Figure   8: Relation among FMSE , sample 

size and no.of generation for 

1.0,5.0 11    

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Relation among FMSE , sample 

size and no.of generation for 

4.,3. 11    

 

 

 
 

Figure   7: Relation among FMSE , sample 

size and no.of generation for 

9.0,75.0 11    

 

 

 
 

Figure   9: Relation among FMSE , sample 

size and no.of generation for 

1.0,5.0 11    

 

 

F
M

S
E

R
 

No. of generation 

F
M

S
E

 

F
M

S
E

R
 

No. of generation 

F
M

S
E

R
 

No. of generation 

F
M

S
E

R
 

No. of generation 

F
M

S
E

R
 

No. of generation 


