Journal of Al-Nahrain University Vol.10(1), June, 2007, pp 159-166 Science

DESIGN OF AN ADAPTABLE LADDER EDITOR FOR
PROGRAMMABLE LOGIC CONTROLLER

Assmaa A. Fahad and Omar R. Abed Al-Aziz
College of Science, Computer Science Department, Baghdad University.
E_mail: assmaa_fahad@yahoo.com

Abstract

Ladder diagrams, which have been used for decades for describing relay circuits, are now
being utilized for programming Programmable Logic Controllers (PLC). This is so because
many practicing engineers and technicians are familiar with these diagrams, and fell comfortable
working with them.

The aim of this work is to design and implement a visual editor for ladder programming
language that helps the programmer to write Ladder programs using PC environment, and when
this editor connected with a real-time database it can be used as a ladder man machine interface
to monitor a factory from outside field. This approach provides a good man machine interface
than programming with mnemonic logic instruction.

Normally the ladder programs have a very big size, so the editor has to find the most
suitable method to store these programs and to navigate between the pages of these programs in
a very fast response time.

The designed editor is written using Visual Basic programming language and it is tested
to write application programs for different industrial control processes and shows a very
accepted results.

Keywords: Programmable logic Controller, Ladder Program, PLC Editor

Introduction sends appropriate output commands to
The Programmable Logic Controller control devices. This process of reading
(PLC) founds in industry has evolved from inputs, executing the program, and
the needs for a control system that can be controlling output is done on a continuous
easily reprogrammed as changes occur or as basis called scanning [4,1].
new products develop. The automotive
industry is faced annually with major PLC Operation Modes
changes in production as new models are Depending on the PLC system, there
designed. ~ This changeover requires are different types of operating modes. The
electricians and maintenance personnel to common operating modes are PROGRAM
put in long hours to rewrite relay type mode, RUN mode, and TEST mode [2].
controls. Each changeover period was costly With PROGRAM mode the processor
to the industry, and it often forced changes module prepares for receiving/ transmitting
to be infrequent and as simple as possible. data from/to the programming device with
As a result of these difficulties, the PLC the PLC memory.
was developed to simplify the problem of In RUN mode the PLC system begins
changing control system periodically [4,1]. its scanning operation by looking for input
The PLC is a solid state device used to signals from input devices, execute the user
control machine or process operation by program and according to the user logic
means of a stored program and feedback of program sends output signals to the output
data from input/output devices. It is devices.
composed primarily of three parts: PLC The third mode of operation is the
processor module, the Input/Output modules TEST mode. In this mode the PLC system
and the programming device [6,5]. operates just as in RUN mode except that
The PLC processor module reads input the output modules remain in the OFF state.
data from various sensing devices, executes This mode of operation is normally used to

the stored user program from memory, and

159

mailto:assmaa_fahad@yahoo.com

test the written PLC program before
implementing it, the user activates input
devices and watches the operation of the
program without wary about something that
might moves to the wrong state.

PLC Programming Languages

The term PLC programming
language refers to the method by which
the user communicates information to
the PLC. There are four types of
languages normally encountered in
programmable controllers: Ladder
diagram, Boolean mnemonics, Function
blocks, and High level literal language.

Ladder diagram and Boolean
mnemonics form basic PLC languages,
while function blocks, and High level
literal language are considered high level
languages [2].

The basic PLC languages consists
of a set of instructions that perform the
most primitive type of control functions:
relay replacement, timing and counting
operation. The high level languages have
been brought about the need to execute
more powerful instructions that go
beyond simple timing, counting and
on/off control. High level languages are
suited for operations such as analog
control, data manipulation, reporting,
and other functions that are not possible
with basic instruction sets.

The main requirement from any
PLC programming language is that it
may be easily understood and used in a
control situation. This implies the need
for a language type that provides
commands very closed to the function
required by the control engineer, but
without complexity and learning time
associated with most computer
languages. For this reason ladder
diagram language is chosen, because it
has been the most common method of
describing relay logic circuit, so it is only
natural to base PLC programming on
them in order to create a familiar

160

environment for the user and designer of
logic control systems.

Ladder Diagram Programming
Language

Ladder diagram is the most popular
symbolic language. This language is a
natural choice for PLCs since it was already
used to represent electromechanical relays,
counters, and timers which PLCs were
replacing.

The ladder diagram language is used to
create a PLC user logic program. It is almost
composed of six groups of instructions:
relay-type, timer/counter, arithmetic
instruction, data manipulation, data transfer,
and program control [2]. These instructions
are formatted to obtain the desired control
logic that is to be entered into the PLC
memory.

The main function of the ladder
diagram program is to control outputs based
on input conditions. This control is
accomplished through the use of what is
referred to as a ladder rung.

Each ladder diagram has two vertical
lines, the left wvertical is considered
connected to the supply voltage, while the
right one is grounded as shown in Fig-1.
Thus, each horizontal line, or ladder rung,
represents a separate circuit performing its
own task. The basic ladder diagram element
is the relay, each relay consists of a coil and
a number of contacts, some normally open
(-[1), and some normally closed (-[/]-).
When a coil is energized, the contacts
belonging to the same relay switch (i.e. with
the same identifying number), a normally
open contact closes, while a normally closed
one opens.

The right most PLC symbol within a
ladder rung is referred to as an output
instruction (—()-). This instruction
generates some sort of response based on
True/False status of the ladder rung. This
instruction is almost always a relay coil or
similar instruction. To the left of the output
instruction there are the input conditions
represented by contact instructions for the
ladder rung.

Each contact or coil symbol is
referenced with an address number that

Journal of Al-Nahrain University

indicate what PLC input is connected to
what input device, and what PLC output will
drive what output device. The addressing of
real inputs and outputs, as well as internals,
depends upon the PLC model used
instruction addressing format.

The Designed Ladder Editor

Since the Ladder language is a
symbolic PLC language, a software
development system is needed to provide
graphic programming. This software is
considered as a Man Machine Interface
(MMI) that provides the user with the
essential graphic tools to draw relay ladder
diagram to program the PLC [3]. The
designed editor consists of two main
sections: Editing section and PLC File
Construction section.

A-The Editing Section

The editing section provides a graphic
editing facilities that allow the user to enter
the desired ladder diagram symbols. It is
designed to consist of two areas: the graphic
screen area and the menu area, as shown in
Fig-2.

The graphic screen area is used to
enter relay ladder symbols in order to
construct each rung of the ladder program.
This area is designed to consist of a net of
points to simplify fixing the ladder symbol
either vertically or horizontally. The
symbols bar in this area is provided to
display some of the ladder symbols that can
be used to build the ladder program, and two
text fields, labeled with logic and text, used
to specify the symbol name and the symbol
address that helps to understand and
maintain the ladder program. The symbols
are added one symbol at a time and each
new created symbol must be connected with
either input or output symbol to construct
the ladder program.

The menu area displays a list of
commands, File, View, and Tools. The File
menu is used to create and save a file using
the options provided in this menu such as
New, Open, Save, and SaveAs. The New
option is used to create new instance and
once the user finished working on the file,
the Save option allows the user to save a
copy of the finished ladder program. SaveAs

Vol.10(1), June, 2007, pp 159-166 Science

option is also provided to allow building
different versions of the written ladder
program.

The View menu provides different
options that allow the user to change the
configuration of the ladder editor. Some of
these options are used to specify the
maximum number of pages needed to
construct the ladder program, the number of
rungs in each page, and to define the
maximum number of symbols each page can
hold. Each page can be configured to hold
up to 7*15 symbols.

The Tools menu provides a flexibility
of adding new ladder symbols to the editor
or deleting unused symbols from the editor
(see Fig-3).

The editor also provides many editing
facilities such as online documentation help,
navigation between the program pages,
editing facilities (Cut-Copy-Paste-Undo)
and clear function that can be used to clear
the contents of the current page in one
command.

B- PLC File Construction Section

The PLC file construction section is
responsible for loading and saving the PLC
ladder program. The ladder editor allows the
user to enter the desired ladder diagram
symbols one symbol at a time. The entered
symbols are displayed on the graphic screen
area and an information record about this
symbol is stored in a graphic data table. The
graphic data table consists of many records
of information, one record for each symbol
in the rung. The contents of this table will be
saved in a text file with a necessary header
information about each ladder program that
helps the editor to reload the program. These
header information consists of the
configuration information in addition to any
remark statements in the program inserted
by the user.

The graphic data table is stored in the
memory using dynamic array data structure.
Because of the large size of ladder program,
the information stored in a graphic data table
need to have as minimum size as possible.
Therefore, the record is designed to hold the
following information about each symbol:

X Y Symbol Page Logic Text
Position Position Code NO. State

The program symbols are stored as a
symbol code rather than the symbol itself,
therefore a data base file is used to store the
symbols and their code numbers. The editor
refer to this data base file during the save
and load operations.

After a certain number of designed
pages, depending on the number of symbols
inserted on these pages, the editor save the
contents of the dynamic array in a temporary
file and free the located memory in order to
reuse it. Saving the contents of the graphic
data table in a temporary file will speed up
the operations with this data structure
because of his always small size. The
contents of the temporary file is reloaded in
the dynamic array when the user review the
designed ladder pages.

The Ladder Editor as a Man Machine
Interface

During RUN and TEST modes of
operations, the operator needs to monitor the
operation of the plant during the execution
of the PLC program through MMI. All
objects in the designed ladder program are
linked to a real-time point(field address) in
order to reflect its status to the objects in the
program. The MMI needs a real time data
collected from the field of the plant and to
record the initial states of the components,
which is ON or OFF, in a data base file.
During the scanning operation the editor will
check the new status with the saved one, and
with any change the editor will reflect this
new status to the related object in the ladder
program, and updates the data base file
accordingly.

During TEST mode the user can
monitor the behavior of the plant during
executing the ladder program and with any
illegal operation, the operator can change
the program to overcome any illegal
operation in the program before
implementing it.

In RUN mode the MMI option helps
the operator to monitor the plant operations
and with any fault during the work time the
operator can easily discover the fault reason
and solve the problem in a very fast and
easy way.

162

Real Time Application Examples Using

the Designed Ladder Editor

A number of different real-time
application examples are used to test the
designed editor. The selected examples are
chooses to need different requirements from
the editor in order to test the facilities
provided by the editor.

One of the application program
examples is the Neutralization system
shown in Fig-4. In this example a certain
amount of solution is added to a tank; heated
and chemically treated and then sent out to
the next tank. The sensors ts and as indicate
whether or not the solution has the correct
temperature and PH, respectively. When ts
and as are both activated, the neutralization
is complete. The level switches Is1, Is2, and
Is3 are activated whenever the level in the
tank is at or above a given level [7].The
neutralization process is to proceed as
follows:

1. Initially, all the valves are closed, the
mixer m and heater h are OFF, and the
reaction tank is empty.

2. When the START button is pressed, open
v1 until Is2 is activated. This fills the tank
with the solution to be neutralized.

3. When the solution level rises above Is2,
start the mixer m. When the level drops
below Is1, stop the mixer.

4. Whenever the temperature of the solution
is below a preset point, energize the heater
h.

5. When the PH of the solution is
unbalanced, open v2 to add neutralizer.

6. If the tank becomes full, indicated by the
activation of Is3, close v2 to stop the
inflow of neutralizer. Next, open v4 to
reduce the level of solution to the point
indicated by Is2. Then close v4 and
process to step 5.

7. When both the temperature and PH of the
solution are correct, de-energize the heater
and close v2. Then open v3 to drain the
tank. When the tank is empty, indicated by
the deactivation of Isl, close v3 and
proceed with stepl.

In addition to the above control
sequence, two indicator lights, t1 and al, are
regulated. Lights t1 and al should turn ON
whenever the solution level is above Is2; and

Journal of Al-Nahrain University

the temperature and PH have reached their
preset values.

The designed ladder program and a
part from PLC file for this application
example is shown in Fig-5 and Fig-6
respectively. The PLC file is constructed as
explained in section 4.2.

Discussions and Conclusions

The designed ladder programs are
tested by implementing a real-time
application program with a simulation data
and it proves a good response time. Writing
different control ladder programs for these
examples proves that the designed PLC
ladder editor contains the most ladder
instructions that can be used for
programming PLCs and it provides helpful
functions that make easy creating, updating
and manipulating of any application
program.

The flexibility of the designed editor
due to the different complicated data
structure used in the programming operation
make the load, save, and manipulate
operations performed in a very fast and
efficient way. The written ladder programs
are easy to understand and maintain due to
the inserted text facility provided by the
editor with each ladder symbol.

Saving the contents of the graphic data
table in a temporary file periodically,
minimize the reserved memory space and
this will speedup the response time of the
program especially the navigation between
the designed pages will be faster.

References

1. AL-ISSA, A. M. “Design and
Implementation of Graphical User
Interface for Industrial Applications”,
M.Sc. thesis, college of science,
University of Baghdad, 2004.

2. AL-KHUDAIRY, T. F., “Design of a
VMEDbus-based for Programmable Logic
Controller (PLC)”, Microprocessors and
Microsystems, Elsevier Science, Vol. 21,
Page 329-336, 1998.

Vol.10(1), June, 2007, pp 159-166

163

Science

3. EBERTS, R.E. “User Interface Design”,
Prentice-Hall Inc., 1994.

4. JONES, C. T., and BRYAN, L. A,
“Programmable Controllers Concepts and
Applications”, IPC/ASTEC, 1983.

5. KISSEL, T.E., “Understanding and
using Programmable Controller”, Prectice-
Hall Inc., 2002.

6. PETRUZELLA, F. D., “Programmable

LogicControllers”, Mc-Graw-Hill Inc.,
1989.
7. WARNOCK, I G., “Programmable

Controllers, Operation and Application”,
Prentice-Hall Inc., 1988.

aliial)
Baoae gl g dnaliad)l Anapl) A2l Craadiin
Lihia) 3yl e shaie Aoyl aadind Gl
o sl 138 aa el A g sy lld g Aagyual
dlas A Cplalad) aadlly Gausigall J8 (e DRl
Oe a3l Anasaal) dahial) 8ylad) e shie daa
Gl oded (Fye jome 2T manal s Canill 1a
OSays Bylanal) alyy LUS ajuall o Jgasy dna il
4l Agal S Lga by ae Jay) Lo 13) delaiin
Sl 4858 e duulall Gyl (e A dashice Jee
@ Hhall Dleals s Al ol aladil o) Gas
@AY daapll Gl Bl Al Golal) il (s
Syhasall e ghaia el 58 5idl)

Aol 4ad alasinly 45 5Sa eyl L
Ganaily ol L) amy 13 Lgana S5 el
Aph Cua e gabid) Ge gl 138 ae daladll @)kl
O Rl Gyl Jumily Le3ia Ayhag el e
alatind 23 L Sae g g pulys aalsl) il Ciladia
@y) yaall maly LUK cluy Jlsnd Asapll A3
322) Aiplail) el LUS)) jaall CllSa) and
B il (G8a 2 Lakasl

i
1
.3
-

i
3
= Y

11T]

s

i

AF — | 4k 4¥ ¢ oy Logi IT et ear | About

2 D el o @

Exit >>>

Fig-2 The Designed Ladder Editor

Eile “igw | Taoals

v Add
Dilete ik LF L ALy
o 4 @

Fig-3 The Tools Menu Options
164

Journal of Al-Nahrain University

Vol.10(1), June, 2007, pp 159-166

&

< To Rexervolr

To Next Tanlk

Fig-4 The Neutralization System

10003

_.|

Sxan
0103

_l

v
Ko7

_|

Is2
a0

_|

m
wWooz?

_|

2

0oo7

_|

1£2
0002

_|

153
00ne

_|

wi

10007

52

uo0?

__1

2
Ko7

_1

Is2
0015

_I

w3

10007 0005 J:L_CIIO’} e
/i ()
10006 o101
: { H
151 m
10004 005 Fﬂ?
/1 [¥
e 'jom
i F L
0007 00106
| =
Is2 wi
10005 uli} o) cole l’C-OlO‘
7 (X
ESOZS - = "E-:O’)%
e [¥
::006 005 10006 oone Fm)ﬁ
i HH »;
|
|

« L3 . *

Fig-5 The Neutralization System Ladder Program

165

Science

60330111007 1s2 60 30 1 2 1007 1s2 60 90 1 2 1007 1s3 60 150 1 2 1007
Is2 60 90 1 1 00103 v1 60 210 11 00101 m 60 450 1 1 ©0106 v4 60 390
111008 1s3 6021012 00105v390603190180319042031 120
150 1 1 10006 1s1 120 330 1 1 10004 ts 120 150 1 2 1004 ts 1203901 1
10007 Is2 120 90 1 2 10005 as 180 150 1 2 1005 as 120 30 4 2 10005 as
180 304 1 O0105 v3 180 30 4 2 O0105 v3240 30 4 2 00106 v4 300 150

42 00106 v4 240 150 1 2 10006 Is1 120 21022 180 2102 2 210 1803 2
60 330111007 Is2 60 30 1 2 1007 1s2 60 90 1 2 1007 1s3 60 150 1 2 1007
Is2 6090 11 00103 v1 6021011 00101 m 60 450 1 1 ©0106 v4 60 390
111008 1s3 6021012 00105v390603190180319042031 120

Fig-6 A Part From Neutralization PLC File

166

