
Journal of Al-Nahrain University Vol.10(1), June, 2007, approximation 120-130 Science

 120

ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS

FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS

*Reyadh S. Naoum and **Najla’a M. Hussein

* Department of Mathematics, College of Science, University of Baghdad.

E-mail: reyadh_naoum@yahoo.com

**Department of Computer Science, College of Science, University of Baghdad.

E-mail: najlaa_alkhafaji@yahoo.com

Abstract

The aim of this paper is to approximate multidimensional functions)(C sf R by using

the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function

neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which

is used to train the greedy radial basis function neural networks. An error bound are introduced

in Sobolev space. Finally, a comparison was made between the three algorithms (modified

greedy algorithm, Backpropagation algorithm and the result is published in [16]).

1- Introduction:

Approximations of multidimensional

function have been studied by many

researchers such as Baxter (et al.) [3], Burger

and Neubauer [7], Ciesielski and Sacha [10],

Ellacott [12], Niyogi and Girosi [17] and Orr

[19].

Baxter (et al.), [3], it is known that the

interpolation matrix  n

1k ,jkj
xh(x A


) is

invertible (where h is a radial function), they

computed an upper bounds for the

 ,1p , A
p

1  and showed that when A is

symmetric and positive definite then h decays

sufficiently quickly. Burger and Neubauer

[7], gave an error bound in Sobolev space

)Ω(, p mW for approximation multidimensional

functions by a linear combination of radial

basis functions. Ciesielski and Sacha, [10],

focused on a development of a constructive

formula for the upper bound of L error

approximation. Ellacott [12], proved that a

semilinear feedforward network with one

hidden layer can uniformly approximate any

continuous function in C(K) where K is a

compact set in
sR and s is a positive integer.

Niyogi and Girosi [17], derived a bound to

generalization error for radial basis functions

which apply to any approximation technique.

Orr [19], gave an introduction to radial basis

function (RBF) neural networks with least

squares bound.

The main result of this paper is the

construction of new type of Feedforward

neural networks (greedy radial basis function

neural networks GRBFNNs) to approximate

multidimensional functions)(C sf R and

modifies the greedy algorithm to train greedy

radial basis function neural networks. Also, a

comparison was made between the three

algorithms (modified greedy algorithm,

Backpropagation algorithm and the result in

[16]), where the method in [16] used the

Radon Transform and radial basis function

neural networks to approximate)(C sf R .

2- Greedy Radial basis Function Neural

Networks (GRBFNNs):

Our neural network consists of a large

number of computing units (processing

elements PEs) arranged schematically in

three layers as shown in figure (1), i.e. input

layer, one hidden layer and output layer, with

s inputs, n hidden PEs and  outputs PEs.

An artificial neural network is a

mathematical model of the human brain. In

many literatures, [19], [12], and [16],

different types of neural network models are

studied. Our neural network consists of a

large number of computing units (processing

elements PEs) arranged schematically in

three layers as shown in figure (1), i.e. input

layer, one hidden layer and output layer, with

s inputs, n hidden PEs and  outputs PEs. A

radial basis neural network is a feedforward

neural network with the radial basis function

as an activation function. The idea of radial

basis function (RBF) network derives from

the theory of function approximation.

Reyadh S. Naoum

 121

Each unit of the input layer can be

connected to each unit (PE) in the hidden

layer with a weight, which is a real number.

The weight attached to the link from input

unit j to unit i on the hidden layer is denoted

by ij
w , and is known as the radial basis

function (RBF) center. In a typical operation,

each unit on the input layer will contain a real

number. Let the j
th
 input unit contain the real

number j
x . Then unit i on the hidden layer

will receive from unit j on the input layer the

quantity  2
ijj

wx  , n i , 2, ,1  and

 sj , 2, ,1  . The total input that unit i

receives from all the input units is then





s

j

ijjijji
wx wx c

1

2)(. Unit i on the

hidden layer now processes this input with

radial basis function  (activation function).

Definition 2.1, [14]:

 Let X be a normed linear space. A

function RX:f is said to be radial if

there exists a function RR :h such that

  x hxf )(for all xX, R is a set of all

positive real numbers.

A radial basis function is any translate

of f ; that is, a function of the form

  x hxfx  )()(, where  is any

prescribed point of X. Such a function

depends on the distance x  , . usually

is taken to be Euclidean norm, and this

function is symmetric with respect to a center

point  . 

Then the outputs are the real numbers

)(ic . This output)(ic is then transmitted,

with a weight pia , from the unit i in the

hidden layer to the output unit p in the output

layer. Each output unit implements a linear

combination of these radial basis functions.

The output is then have the form

 
 
















n

i

s

j

ijjipip
wx a y

1 1

2)(  , 2,.. ,1p

 (1)

The above formula can be generalized to

neural network with multiple hidden layers.

3- Function Approximation:

Function approximation can be

described as follows: For a function f ,

known exactly or approximately, find an

approximation that has a more simply

computable form, where the error of the

approximation within a given error tolerance.

Often the function f is not known exactly.

For example, if the function comes from a

physical experiment, that is, only we have a

table of function values. In our paper we

shall consider these properties of f which

can be use to serve our goal of understanding

how neural networks can be used to

approximate an arbitrary function f. A

classical result, over],[b a , is the well-

known Weierstrass theorem (Let] ,C[baf  ,

let 0 . Then there exists a polynomial

)(xp for which ε pf 


 for all

] ,[bax), [1].

Legendre and Gauss used polynomials

to approximate continuous functions over R .

Chebyshev developed the concept of best

uniform approximation. Series expansions

(i.e. Taylor series) have been utilized for

many years to approximate and compute the

value of a function in a neighborhood of the

operating point. Trigonometric polynomials

are also widely used as function

approximators, but their computation is a bit

more involved, [8].

To explain how the artificial neural

networks (ANNs) can be used to approximate

real-valued)(C sf R , we will consider a

model called Greedy radial basis function

neural networks (GRBFNNs) with input

layer, output layer and one hidden layer,

given in section (1). Thus our neural network

consists of a large number of computing units

(PEs) arranged schematically in three layers,

Figure 1: Greedy Radial basis Function

Neural Networks.

 Input layer Hidden layer Output layer

 x1 y1

 x2 y2

  

 xs y l

w2s



1


2



l

a11

na

2a

 a2n

w11

w ns

wn2

1

2

 n

Journal of Al-Nahrain University Vol.10(1), June, 2007, approximation 120-130 Science

 122

as in Figure (1). Then the total output of the

neural network has the form

), ,,(
~

)(
21

1 1

2

s

n

i

s

j

ijjii
x x xfwx a 














 

 



 (2)

It is known, [8], that any continuous

function of s variables can be approximated

with arbitrary precision on compact set by a

function given in equation (2). Thus, by

suitable adjusting the parameters n, ib , ia

and ijw , we can reproduce approximately any

desired output with GRBFNNs just described

above.

Till now, the best achievable

approximation accuracy (rate of

convergence) for approximating s-variable

function with d continuous derivatives is

)(s
d

nO


, [9]. Thus we note that for a given

error approximation the number of

parameters n, number of basis functions,

exponentially increases with s (for a fixed

measure of “complexity” d). It implies that

the number of samples needed for accurate

estimation of n parameters also grows

exponentially with dimensionality s. This

result constitutes the curse of dimensionality.

It is more accurate to view the ratio ds as

the complexity index of the possible trade-off

between the smoothness and dimensionality,

which is the rate of convergence and the

number of samples needed, for training, for

accurate estimation that increases

exponentially with the complexity index.

Thus fast rate of convergence for high

dimensional problems can be obtained, in

principle, by imposing stronger smoothness

constraints.

Mathematically, the neural network

depending upon its architecture can be used

to approximate any continuous function,. For

example, if 1, n s are integers, the output of

a neural network with one hidden layer

comprising n processing elements PEs

(neurons), each evaluating a nonlinear

function , and receiving an input vector
sRx can be expressed in the form

 



n

i

iii
 a

1

wx , where for n i , 2, 1,  ,

the weights s

i
Rw , and the coefficients ia

are real numbers. In the sequel, the class of

all such output functions will be denoted by

sn,, , which often refers to the output

function of the neural network.

The following questions arises, in a

theoretical study, when we approximate a

function)(C sf R by using an artificial

neural networks procedure, are the following:

1. Density, Given a continuous (real-valued)

function f on a compact subset sRK

and a positive number , is it possible to

find some integer n, and a network

sn,, such that

 xxf)()(, Kx ?…(3)

What are the necessary and sufficient

conditions should be putted on  for the

property (2) to hold?

If it does not hold, what the type of

functions that can be approximated by

this way?

2. Complexity, If we know a priori

assumption about the target function f,

formulated mathematically by the

statement Wf  , for some function space

W, can one obtain necessary number of

neurons, n, in the neural network of (2) in

terms of  ? How does the choice of 

affect this bound?

3. Construction, How does one construct a

neural network with, theoretically,

minimal size that approximates any

function from W within a prescribed

accuracy?

4. Limitations, Is there any advantage to be

gained by using a more complicated

architecture, such as networks with

multiple hidden layers; i.e., are there any

limitations on the networks with one

hidden layer?

The density problem is perhaps the

most widely investigated problem. In the

context of neural networks, the works of

Cybenko [11] and Hornik et al. [13] are often

cited. Hornik, et al. showed that feedforward

neural networks (FFNNs) are universal

approximators, the proof is based on an

extension of the Weierstrass theorem (the

Stone-Weierstrass theorem). The study of

Cybenko [11], was concerned with the use of

ridge functions and radial basis functions. In

Reyadh S. Naoum

 123

[15], Mhaskar and Micchelli have formulated

necessary and sufficient conditions for the

function  (where  is a ridge functions) so

as to achieve density. Also, they have given

similar conditions for the radial basis

function networks.

From the point of view of function

approximation, the hidden units provide a set

of activation functions that constitute an

arbitrary “basis” for representing input

patterns in the space spanned by the hidden

units.

However another important character-

ristic, of approximating a function by the use

of neural network, is the study of complexity

which means how the error decreases with

the number of layers, number of neurons, and

the dimension of the input space. The

importance of Feedforward neural networks

(FFNNs) for function approximation was

reinforced by the work of Barron, [2]. He

showed that the asymptotic accuracy of the

approximation with Feedforward neural

networks (FFNNs) is approximately

independent of the dimension of the input

space s, i.e. the order of the error)1(n O

depends only on the number of neurons. This

is unlike approximation with polynomials,

spline, trigonometric expansions and series

expansions with n terms, where the error

convergence rate is exponentially related to

the number of dimensions of the input, i.e.

the order of the error sO n /2)1(where s is

the dimension of the input space of the

function f. This means that Feedforward

neural networks (FFNNs) become much more

efficient, for approximating)(C sf R in

high dimensional space, than using

polynomials, spline, trigonometric

expansions and series expansions.

4- Greedy Approximation:

Greedy process is a technique which

can be used to approximate large classes of

functions. Cheney, [8], use such technique to

produce a sequence of functions, nf , which

can be used to approximate the original

function f, where he proved the following

result.

2
1

n
n Cff


 , (4)

where n denotes the number of neurons

(PEs), in the proposed neural networks and C

is a constant depending on the function f to

be approximated. However, Cheney in his

work does not apply the above result and its

just a theoretical results. Our numerical

result, for approximation of a function with

two variables, conform the above Cheney

result.

The pay off for this nice convergence

behavior is the necessity to compute global

minimum for high-dimensional nonlinear

optimization problems (in particular for large

n) in order to obtain the approximating

functions nf . In the context of neural

networks, the so-called backpropagation

algorithm is the most popular approach to

solve the arising optimization problems

(called training), mainly due to its simple

realization. But since the backpropagation

(BP) algorithm is a version of the gradient

method, steepest descent method, so one

cannot expect global convergence and this is

due to lack of losing the density property.

Thus Cheney result, [8], can not be used.

Moreover, the performance of such

iterative algorithms is limited by the inherent

ill-posedness of the training problem. Our

numerical results in section (6) conform such

conclusion and such, iterative, convergence is

very slow and our conclusion coincide with

the conclusion given in Burger, [5].

Greedy process is an iterative algorithm

which can be used, also, to train neural

networks and such training algorithm

basically depends on the function property

without the need of using the derivatives of

the function to be approximated, also it can

be implemented efficiently. This iterative

algorithm, greedy algorithm, is also called

projection pursuit or convex approximation

techniques. The main idea of such algorithm

is to increase the number of nodes in the

network, Figure (1), step by step by one

neuron (by using suitable convex

combination) and to optimize only over the

parameters of the new node, which yields a

sequence of low-dimensional optimization

problems. The original motivation for such

method is the possibility to maintain the

Journal of Al-Nahrain University Vol.10(1), June, 2007, approximation 120-130 Science

 124

convergence rate 2
1

n with low computa-

tional effort.

To give a detail analysis to the above

algorithm, we need the following definition

and lemma given in [8].

Definition 4.1, [8]:
Let G be a subset of an inner product

space H with induced norm  . Then the

convex hull of G is the set









  
 

n

i

n

i

iiiii
 Gg ng G

1 1

1,0,,:)co( N

The closure of this set is denoted by)(co G .

Furthermore let the elements of the set

G be bounded in the norm, by a constant b,

which may be abbreviated as),0B(b G  . 

Lemma 4.2, [8]:
Let G be a subset of an inner product

space H, and let f be an element of H. In

order that)(co G f  it is necessary and

sufficient that there exists a sequence  
n

g in

G and a sequence  
n

f , with

 
nn

g g f ,,co
1
 for each n, such that

ff
n
 . 

For further analysis we define the constant 

as

 22

H
supinfγ vf vg

Ggv



.…….(5)

This value is in some sense a measure

for the number of different elements of G that

are needed to represent f. If the norm of f is

close to the bound b and therefore f is close

to the boundary of)(co G then the value of 

will be very small. In this case f can be

represented by few different elements of G,

see Figure (2).

Note that the value of  can be

bounded from above by
22 f b  since

H0 . In our paper we combine the two

results of Cheney, [8], and Burger, [6], so

that the constant  can be used to provide an

estimate for the rate of convex approximation

to the function f. The following lemma in [6]

is useful to illustrate the above claim.

Lemma 4.3:

Let),0B(b G  ,)(co G f  ,)(co G h

and let  be defined as in equation (5). Then

the estimate

γλ)1(λλ)1(λinf 2222




 hf ghf
Gg

holds for 1],0[λ  . 

From the above lemma, the function nf

which is defined in the error bound (4) has

the form ghf
n

λ)1(λ  . Now we shall

present the Greedy algorithm, as a result of

above analysis.

4.1 The Greedy Algorithm:

Initialization:

Choose a constant M, such that γM (as

defined in (5)).

Choose a positive sequence k , tending to

zero that fulfills

2

γ

k

M
k


 for  2, ,1k

 Choose a positive integer max.

 Set 0:
0
f .

Iteration:

 For k := 1 to max do

 Find an element Ggk  such that

kk
Gg

kk
 g

k
f

k

k
f g

k
f

k

k
f 












2

1

2

1

11
inf

11

 is satisfied and define kf as

kkk

g
k

f
k

k
f

11
1






.

 End For.

End.

Note that in each step only one element

of G is chosen, the other components of kf

are fixed. Nevertheless with the greedy

algorithm, still, the rate of convergence is

independent of the dimension. Such claim

can be justified by using the following

theorem which is given in [6].

Figure 2: Interpretation of condition (5).

The objective function is the difference of

the radius of the two dashed circles. In

this symmetric case the infimum is

attained for v lying in the center of G.

Reyadh S. Naoum

 125

Theorem 4.4:

Let the conditions of Lemma (4.3) be

satisfied. Then the approximating functions

k
f generated by the above algorithm fulfill

an error estimate
k

M
ff

k


2
. 

The radial basis function feedforward

neural networks, with one hidden layer of

radial basis functions nf , can be represented

as in section (3) by

 
 
















n

i

s

j

ijjiin
wx a f

1 1

2)( ,

where iw , n i , 2, ,1  , is the connections

(weights). Hence for the above neural

networks we can write





n

i

iin
 a f

1

) ,(Θ wx (6)

In order to apply the above algorithm,

using equation (6), we consider the Hilbert

space H which is a Lebesgue space)Ω(2L ,

where Ω is a (not necessarily bounded)

domain in sR , and G be the set

 )Ω(T,:) ,Θ(2L b a a G
b

 wwx ,

where T is the compact set of parameters in
sR . The set bG can be interpreted as the set

of all possible nodes of the neural networks.

If the function  is scaled such that its
2L -

norm is bounded above by 1, uniformly in w,

i.e.,

 
Ω

2

1) ,Θ(dx wx for all Tw ,

... (7)

then
b

G is bounded and),0B(b G
b
 . For

simplicity, assuming equation (7), one can

use the bound
)Ω(2

T

) ,Θ(sup
~

L
 bb wx

w

 for the

factor a in
b

G . Observe that b
~

 can not be

zero because the set T is compact. The value

of , given in equation (5), is now has the

value

 22

T,
2

) ,Θ(supinfγ vf v a
 ba Lv




wx
w

.

 (8)

The convex hull of the set bG is defined as







































Nn ba

 a fLf

G
n

i

i

n

i

ii

b

T,,

), ,Θ(:)Ω(

)co(

1

1

2

w

wx

the sign of the parameters ia is not important,

because the original set bG is symmetric.

Further the sum needs not to be equal to b but

can be smaller, because the zero function is

an element of bG . Note, that)(co
b

G contains

all functions having a representation of the

form 


n

i

ii
 a

1

) ,Θ(wx and wwx d a) ,Θ(
T

 .

Now we shall consider the Greedy

algorithm for training greedy radial basis

function neural networks (GRBFNNs).

4.1.1 The Greedy Algorithm with Radial

basis Functions:
In this section we will explain how to

use the greedy algorithm, with radial Basis

functions, to produce a sequence
k

f which

approximates)(sCf R .

Initialization:

 Choose 0 , say 510  .

 Choose a constant M, such that γM

(as defined in (8)), e.g. choose M equal to

 2

2

2

2

3
 f b M  and set MM

opt
 ,


opt

k .

 Choose a positive integer max.

 Set 0:
0
f .

Iteration:

 For k := 1 to Min(opt
k , max) do

If
k

M
f f

k




2

21
 then

 Set 1:  kk ff and go to the next

step of

 the iteration.

End If

 Find parameters a and w such that

 
k

M
 a

k
f

k

k
f

opt

k







2

2

1

11
wx ,

 and define kf as

  a
k

f
k

k
f kk wx 


  

11
: 1 .

 End for

Journal of Al-Nahrain University Vol.10(1), June, 2007, approximation 120-130 Science

 126

Check:

 If 
2k

f f then

 go to end.

 Else

 Reduce M and repeat the iteration.

 End If

End.

5- Complexity:

As we know, the Backpropagation

training algorithm depends on the derivative

of the activation function  and it’s easy to be

computed if the activation function is logistic

function or hyperbolic tangent function.

Cheney, [8], in his work use the property that

the function  has the derivative  , which

can be putted in term of . But this is not

always true that the derivative can be

expressed in term of the original function.

The weakness of the above analysis is that

the norm defined in Hilbert space which has

been used does not include the derivative of 

and thus we may loss the completeness, or

density, property. Thus we consider the

problem of approximating a function

)Ω(, p mW , where)Ω(, p mW denote the

Sobolev spaces and Ω is a (not necessarily

bounded) domain in sR . For example, if 

can not be putted in term of  then we need

to add a stage to the neural network so that to

handle the derivative as in Figure (3).

Definition 5.1, [1]:

Let m be a non negative integer,

],1[ p . The Sobolev space)Ω(, p mW is the

set of all functions)Ω(1

loc
Lv such that for

each multi-index  with m  , the 
th

weak derivative vD exists and

)Ω(D p Lv . The norm in the space

)Ω(, p mW is defined as







































p v max

 p v
 v

 Lm

m

p

L

W

p

p
p m

,D

1 ,D

)Ω(

1

)Ω(

)Ω(
,









When 2p , we write)Ω()Ω(2, mm WH  .

Note that the Sobolev space)Ω(mH is a

Hilbert space with the inner product

 



Ω

)(D)(D,
m

m dx xv xu v u


 ,

)Ω(, mHv u 

Thus)Ω(mH is a completion of the set of all

real-valued functions)Ω(Cf . 

Now, the problem of approximating f

can be written in the form

XX
inf gf

n g



, (9)

where X is referred as a Sobolev spaces and

n
X denotes the set of all functions of the

form (6), i.e.









 


RR ii

1

ii a ,T :) ,(Θ a X t
n

i

n g wwx

 (10)

Usually, the convergence rate of using

g in equation (9) if it exists (note that nX is

not a finite dimensional subspace of X) is

arbitrarily slow, since the approximation

problem is asymptotically ill-posed, i.e.

arbitrarily small errors in the observation can

lead to arbitrarily large errors in the

approximation as n , our numerical

results in section (6) confirm such

observation, slow rate of convergence, and

such observation coincide with that given in

[4]. However, it was shown in [5] that the set

of functions to which neural networks of the

form in equation (6) converge is just the

closure of the range of the integral operator


T

) ,Θ()(wwxw d h h  .

To improve rates of convergence, or

concord the ill-posed approximation to f,

usually one should impose additional

conditions on f. A natural condition seems to

Figure 3: The Single q
th

 Neuron in MLP

with Sigmoid Activation Function.

Reyadh S. Naoum

 127

be that f is in the range of the above operator,

i.e.


T

) , Θ()()(wwxwx dh f (11)

It was shown in [18] that under this condition

the convergence rate

)(inf 2
1

)Ω(X




 nO gf p

L
n g

,............... (12)

is obtained if  is a continuous function.

In [7], they improved the above error

bound, equation (12), by imposing additional

smoothness assumptions on the basis function

 defined in)Ω(mH as in the following

theorem. Moreover, they gave error bounds

in)Ω(, p mW that depend on the dimension, r,

of T and this is the weakness of such

approach. Also, they gave a sufficient

conditions on f so that condition in equation

(11) hold.

Theorem 5.2, [7]:

Let
n

X be defined as in (10) with
tRT bounded and  such that


 c mH

uwuxwx ) ,Θ() ,Θ(
)Ω(

,

01],,0( c 

Moreover, let)Ω(mHf  satisfy (11)

with (T)Lh . Then the convergence rate is

)(inf 2
1

)Ω(X

t

m nO gf
H

n g





 . 

Now, assume Y)Ω,(Θ , W p m with

)T(Y kH or)T(CY k , where
2

t
k  , and

if we use the following norms













































 

p

 supess max

 p d

m

m

p

W

p

p m

,) ,Θ(

1 ,) ,Θ(

 Θ

Y
Ω

1

YΩ

Y) ,Ω(
,

wx
x

xwx
x

x











Then the following result hold.

Theorem 5.3, [7]:

Let
n

X be defined as in (10) with
tRT bounded and let Y)Ω,(Θ , W p m with

)T(Y kH ,
2

t
k  , or)T(CY k . Moreover,

let)Ω(, p mWf  satisfy (11) with (T)2Lh if

)T(Y kH and (T)1Lh if)T(CY k . Then

the convergence rate is

)(inf
)Ω(X

,

p m
t
k

nO gf
W

n g




 (13)

 We think the above result can be

generalized if the condition given in equation

(11) has the form

wwx
x

wx d

 h f

) , Θ()()(
T

 
 









 , k .

Then the convergence rate is

)(inf

)(

)Ω(X
,

p m
t

k

nO gf
W

n g







 (14)

The convergence rates, in equations

(13) and (14), decrease with increasing the

dimension t. The above conjecture requires

further study but, from our numerical result

in section (6), we feel its true and is the best

possible result, error bound, when we use the

space)Ω(, p mW .

6- Numerical Example:

In this section we verify the above

theoretical results by considering a numerical

example.Let us consider the following two

dimensional function RR 2:f .

2 22
1 2 1 21

2 23 5
1 2 1 21

2 2
1 1

z f (x , x) 3(1 x) exp x (x 1)

1
 10 x x x exp x x

5
1

 exp [(x 1) x].
3

      
 

           

   

A three dimensional plot of the function

f for 44 1  x and 44 2  x is shown

in figure (4). A two dimensional problem is

chosen so that to explain how the steps of the

algorithm can be illustrated. The above

algorithm (Greedy Algorithm with Radial

basis Functions) was, numerically,

implemented by using MATLAB version

(7.0).

-4

-2

0

2

4

-4

-2

0

2

4
-10

-5

0

5

10

x1 axis

surface f(x1,x2)

x2 axis

z
 a

x
is

 x1 axis x2 axis

z
ax

is

Figure 4: the Function),(
21

xxf .

Journal of Al-Nahrain University Vol.10(1), June, 2007, approximation 120-130 Science

 128

Figure (5) shows the approximation to

the function),(
21

xxf and figure (6) shows a

comparison between the exact data of the

function),(
21

x xfz  and the approximation

data with 9k , i.e. number of neurons, 9n ,

in the hidden layer.

Also, the GRGFNNs use the

Backpropagation algorithm with hyperbolic

tangent function in the hidden layer and

pureline function in the output layer. Figure

(7) shows the approximation to the function

),(
21

xxf and figure (8) shows a comparison

between the exact data of the function

),(
21

x xfz  and the approximation data with

9k , i.e. number of neurons, 9n , in the

hidden layer.

Figure (9) shows the approximation to

the function),(
21

xxf by using the method in

[16] and figure (10) shows a comparison

between the exact data of the function

),(21 x xfz  and the approximation data

with 18k , i.e. number of neurons, 18n ,

in the hidden layer.

Figure 6 : Comparison between exact data

and approximate data with 9n .

0 50 100 150 200 250 300
-6

-4

-2

0

2

4

6

8

Data Number

z
 v

a
lu

e

 Exact Data

 Approximate Data

-4

-2

0

2

4

-4

-2

0

2

4
-10

-5

0

5

10

x1 axisx2 axis

z
 a

x
is

Figure 7: Approximation with 9n .

0 50 100 150 200 250 300
-6

-4

-2

0

2

4

6

8

Data Number

z
 v

a
lu

e

Figure 8 : Comparison between exact

data and approximate data with 9n .

 Exact Data

 Approximate Data Figure 5: Approximation with 9n .

-4

-2

0

2

4

-4

-2

0

2

4
-5

0

5

10

x1 axis
x2 axis

z
 a

x
is

Reyadh S. Naoum

 129

7- Conclusions:

 Our numerical results shows that

Backpropagation (BP) algorithm procedure

more accurate numerical approximation to f

than Greedy algorithm and the method in

[16], but the Greedy algorithm is faster and

use less flops than Backpropagation

algorithm and the method in [16] overcome

the problem of dimesionality which discussed

in section (3). Also, if the derivative of f can

be putted in term of f and the derivative of

the sigmoidal function can be putted in term

of the sigmoidal function then the Greedy

algorithm, and its modifications, for training

greedy radial basis function neural networks

(GRBFNNs) procedure almost the same

accurate as we use Backpropagation

algorithm. However, if we adjust the rate of

convergence  in Backpropagation algorithm,

then the BP algorithm converge faster.

References:

1- Atkinson, K. and Han, W. “Theoretical

Numerical Analysis: A Functional

Analysis Framework”, Springer-Verlag,

New York, Inc., 2001.

2- Barron, A. R. “Universal Approximation

Bounds For Superposition of A

Sigmoidal Function”, IEEE Transaction

on Information Theory, Vol. 39, No. 3,

pp. 930-945, 1993.

3- Baxter, B.J.C., Sivakumar, N. and Ward,

J.D. “Regarding the p-norms of Radial

basis interpolation matrices”,

Constructive Approximation, Vol. 10,

No. 4, pp. 451-468, 1994.

4- Bishop, C. M. “Neural Networks for

Pattern Recognition”, Oxford University

Press, Inc., New York, 2004.

5- Burger, M. and Engl, H. W. “Training

Neural Networks with Noisy Data as an

ill-posed Problem”, Advances in

Computational Mathematics, Vol. 13, pp.

335-354, 2000.

6- Burger, M. and Hofinger, A.

“Regularized Greedy Algorithms for

Neural Network Training with Data

Noise”, Computing, Vol. 74, pp. 1-22,

2005.

7- Burger, M. and Neubauer, A. “Error

Bounds for Approximation with Neural

Networks”, Journal of Approximation

Theory, Vol. 112, No. 2, pp. 235-250,

2001.

8- Cheney, E. W. and Light, W. A. “A

Course in Approximation Theory”, The

Brooks/Cole Publishing Company, USA,

2000.

9- Cherkassky, V. and Mulier, F. “Learning

From Data: Concepts, Theory, and

Methods”, John Wiley and Sons, Inc.,

USA, 1998.

10- Ciesielski, K., Sacha, J. P. and Cios, K. J.

“Synthesis of feedforward networks in

supremum error bound”, IEEE

Transactions on neural networks, Vol.

11, No. 6, pp.1213-1227, 2000.

11- Cybenko, G. “Approximation by

Superposition of Sigmoidal Functions”,

Mathematics of Control, Signal and

Systems, Vol. 2, pp. 303-314, 1989.

Figure 10 : Comparison between exact data

and approximate data with 9n .

0 50 100 150 200 250 300
-6

-4

-2

0

2

4

6

8

Data Number

z
 v

a
lu

e

 Exact Data

 Approximate Data

Figure 9: Approximation with 9n .

-4

-2

0

2

4

-4

-2

0

2

4
-5

0

5

10

x1 axis
x2 axis

z
 a

x
is

Journal of Al-Nahrain University Vol.10(1), June, 2007, approximation 120-130 Science

 130

12- Ellacot, S. W. “Aspects of the numerical

analysis of neural networks”, Acta

Numerica, pp. 145-202, 1994.

13- Hornik, K., Stinchcombe, M. and White,

H. “Multilayer Feedforward Networks

are Universal Approximators”, Neural

Networks, Vol. 2, pp. 359-366, 1989.

14- Light, W.A. and Cheney, E. W.

“Interpolation by periodic Radial basis

functions”, Mathematical Analysis and

Applications, Vol. 168, pp. 111-130,

1992.

15- Mhaskar, H. N. and Micchelli, C. A.

“Approximation By Superposition of A

Sigmoidal Function and Radial Basis

Functions”, Advances in Applied

Mathematics, Vol. 13, pp. 350-373,

1992.

16- Naoum, R. S. and Hussein, N. M.

“Approximation of Multidimensional

Functions by Radon Radial basis Neural

Networks”, Al-Nahrain University

Journal for Science, To appear.

17- Niyogi, P. and Girosi , F. “On the

relationship between generalization error,

hypothesis complexity, and sample

complexity for Radial basis functions”, J.

of Neural Computation, Vol. 8, pp. 819-

842, 1996.

18- Niyogi, P. and Girosi, F. “Generalization

Bounds for Function Approximation

from Scattered Noisy Data”, Advances in

Computational Mathematics, Vol. 10, pp.

51-80, 1999.

19- Orr, M.J.L. “Introduction to Radial basis

function networks”, Center for Cognitive

Science, University of Edinburgh,

Scotland, 1996.

)(C sf R

(FFNNs)

(GRBFNNs)

(Greedy

(Sobolev)

Backpropagation

([16]

