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Abstract 

The aim of this paper is to approximate multidimensional functions )(C sf R  by using 

the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function 

neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which 

is used to train the greedy radial basis function neural networks. An error bound are introduced 

in Sobolev space. Finally, a comparison was made between the three algorithms (modified 

greedy algorithm, Backpropagation algorithm and the result is published in [16]). 

 

1- Introduction: 

Approximations of multidimensional 

function have been studied by many 

researchers such as Baxter (et al.) [3], Burger 

and Neubauer [7], Ciesielski and Sacha [10], 

Ellacott [12], Niyogi and Girosi [17] and Orr 

[19]. 

Baxter (et al.), [3], it is known that the 

interpolation matrix  n 

1k  ,jkj
xh(x A


 )  is 

invertible (where h is a radial function), they 

computed an upper bounds for the 

 ,1p     , A 
p

1   and showed that when A is 

symmetric and positive definite then h decays 

sufficiently quickly. Burger and Neubauer 

[7], gave an error bound in Sobolev space 

)Ω(, p mW for approximation multidimensional 

functions by a linear combination of radial 

basis functions. Ciesielski and Sacha, [10], 

focused on a development of a constructive 

formula for the upper bound of  L  error 

approximation. Ellacott [12], proved that a 

semilinear feedforward network with one 

hidden layer can uniformly approximate any 

continuous function in C(K) where  K  is a 

compact set in 
sR  and s is a positive integer. 

Niyogi and Girosi [17], derived a bound to 

generalization error for radial basis functions 

which apply to any approximation technique. 

Orr [19], gave an introduction to radial basis 

function (RBF) neural networks with least 

squares bound. 

The main result of this paper is the 

construction of new type of Feedforward 

neural networks (greedy radial basis function 

neural networks GRBFNNs) to approximate 

multidimensional functions )(C sf R  and 

modifies the greedy algorithm to train greedy 

radial basis function neural networks. Also, a 

comparison was made between the three 

algorithms (modified greedy algorithm, 

Backpropagation algorithm and the result in 

[16]), where the method in [16] used the 

Radon Transform and radial basis function 

neural networks to approximate )(C sf R . 
 

2- Greedy Radial basis Function Neural 

Networks (GRBFNNs): 

Our neural network consists of a large 

number of computing units (processing 

elements PEs) arranged schematically in 

three layers as shown in figure (1), i.e. input 

layer, one hidden layer and output layer, with 

s inputs, n hidden PEs and   outputs PEs. 

An artificial neural network is a 

mathematical model of the human brain. In 

many literatures, [19], [12], and [16], 

different types of neural network models are 

studied. Our neural network consists of a 

large number of computing units (processing 

elements PEs) arranged schematically in 

three layers as shown in figure (1), i.e. input 

layer, one hidden layer and output layer, with 

s inputs, n hidden PEs and   outputs PEs. A 

radial basis neural network is a feedforward 

neural network with the radial basis function 

as an activation function. The idea of radial 

basis function (RBF) network derives from 

the theory of function approximation. 
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Each unit of the input layer can be 

connected to each unit (PE) in the hidden 

layer with a weight, which is a real number. 

The weight attached to the link from input 

unit j to unit i on the hidden layer is denoted 

by ij
w , and is known as the radial basis 

function (RBF) center. In a typical operation, 

each unit on the input layer will contain a real 

number. Let the  j
th
 input unit contain the real 

number j
x . Then unit i on the hidden layer 

will receive from unit j on the input layer the 

quantity  2
ijj

wx  , n i , 2, ,1   and 

 sj , 2, ,1  . The total input that unit i 

receives from all the input units is then 





s

j

ijjijji
wx wx c

1

2)( . Unit i on the 

hidden layer now processes this input with 

radial basis function  (activation function). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 2.1, [14]: 

 Let  X  be a normed linear space. A 

function RX:f  is said to be radial if 

there exists a function RR :h  such that 

  x hxf )(  for all xX, R  is a set of all 

positive real numbers. 

A radial basis function is any translate 

of  f ; that is, a function of the form 

   x hxfx   )()( , where   is any 

prescribed point of  X. Such a function 

depends on the distance   x  ,  .  usually 

is taken to be Euclidean norm, and this 

function is symmetric with respect to a center 

point  .  

Then the outputs are the real numbers 

)( ic . This output )( ic  is then transmitted, 

with a weight pia , from the unit i in the 

hidden layer to the output unit p in the output 

layer. Each output unit implements a linear 

combination of these radial basis functions. 

The output is then have the form 

 
 
















n

i

s

j

ijjipip
wx  a y

1 1

2)(  , 2,.. ,1p  

 ............ (1) 

The above formula can be generalized to 

neural network with multiple hidden layers. 
 

3- Function Approximation: 

Function approximation can be 

described as follows: For a function f , 

known exactly or approximately, find an 

approximation that has a more simply 

computable form, where the error of the 

approximation within a given error tolerance. 

Often the function f  is not known exactly. 

For example, if the function comes from a 

physical experiment, that is, only we have a 

table of function values. In our paper we 

shall consider these properties of  f  which 

can be use to serve our goal of understanding 

how neural networks can be used to 

approximate an arbitrary function f. A 

classical result, over ],[ b a , is the well-

known Weierstrass theorem (Let ] ,C[ baf  , 

let 0 . Then there exists a polynomial  

)(xp  for which ε pf 


 for all 

] ,[ bax ), [1].  

Legendre and Gauss used polynomials 

to approximate continuous functions over R . 

Chebyshev developed the concept of best 

uniform approximation. Series expansions 

(i.e. Taylor series) have been utilized for 

many years to approximate and compute the 

value of a function in a neighborhood of the 

operating point. Trigonometric polynomials 

are also widely used as function 

approximators, but their computation is a bit 

more involved, [8]. 

To explain how the artificial neural 

networks (ANNs) can be used to approximate 

real-valued )(C sf R , we will consider a 

model called Greedy radial basis function 

neural networks (GRBFNNs) with input 

layer, output layer and one hidden layer, 

given in section (1). Thus our neural network 

consists of a large number of computing units 

(PEs) arranged schematically in three layers, 

Figure 1: Greedy Radial basis Function 

Neural Networks. 
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as in Figure (1). Then the total output of the 

neural network has the form 

), ,,(
~

)(
21

1 1

2

s

n

i

s

j

ijjii
x x xfwx  a 














 

 



 

 ............ (2) 

It is known, [8], that any continuous 

function of s variables can be approximated 

with arbitrary precision on compact set by a 

function given in equation (2). Thus, by 

suitable adjusting the parameters n, ib , ia  

and ijw , we can reproduce approximately any 

desired output with GRBFNNs just described 

above. 

Till now, the best achievable 

approximation accuracy (rate of 

convergence) for approximating s-variable 

function with d continuous derivatives is 

)( s
d

nO


, [9]. Thus we note that for a given 

error approximation the number of 

parameters n, number of basis functions, 

exponentially increases with s (for a fixed 

measure of “complexity” d). It implies that 

the number of samples needed for accurate 

estimation of n parameters also grows 

exponentially with dimensionality s. This 

result constitutes the curse of dimensionality. 

It is more accurate to view the ratio ds  as 

the complexity index of the possible trade-off 

between the smoothness and dimensionality, 

which is the rate of convergence and the 

number of samples needed, for training, for 

accurate estimation that increases 

exponentially with the complexity index. 

Thus fast rate of convergence for high 

dimensional problems can be obtained, in 

principle, by imposing stronger smoothness 

constraints. 

Mathematically, the neural network 

depending upon its architecture can be used 

to approximate any continuous function,. For 

example, if 1, n s  are integers, the output of 

a neural network with one hidden layer 

comprising n processing elements PEs 

(neurons), each evaluating a nonlinear 

function , and receiving an  input vector 
sRx  can be expressed in the form 

 



n

i

iii
     a 

1

wx , where for n i  , 2, 1,  , 

the weights s

i
Rw , and the coefficients ia  

are real numbers. In the sequel, the class of 

all such output functions will be denoted by 

sn,, , which often refers to the output 

function of the neural network. 

The following questions arises, in a 

theoretical study, when we approximate a 

function )(C sf R  by using an artificial 

neural networks procedure, are the following: 

1. Density, Given a continuous (real-valued) 

function f  on a compact subset  sRK  

and a positive number , is it possible to 

find some integer n, and a network 

sn,,  such that 

  xxf )()(        , Kx ?…(3) 

What are the  necessary  and  sufficient  

conditions should be putted on    for the 

property (2) to hold?    

If it does not hold, what the type of 

functions that can be approximated by 

this way? 

2. Complexity, If we know a priori 

assumption about the target function f, 

formulated mathematically by the 

statement Wf  , for some function space 

W, can one obtain necessary number of 

neurons, n, in the neural network of (2) in 

terms of  ? How does the choice of   

affect this bound? 

3. Construction, How does one construct a 

neural network with, theoretically, 

minimal size that approximates any 

function from W within a prescribed 

accuracy? 

4. Limitations, Is there any advantage to be 

gained by using a more complicated 

architecture, such as networks with 

multiple hidden layers; i.e., are there any 

limitations on the networks with one 

hidden layer? 

The density problem is perhaps the 

most widely investigated problem. In the 

context of neural networks, the works of 

Cybenko [11] and Hornik et al. [13] are often 

cited. Hornik, et al. showed that feedforward 

neural networks (FFNNs) are universal 

approximators, the proof is based on an 

extension of the Weierstrass theorem (the 

Stone-Weierstrass theorem). The study of 

Cybenko [11], was concerned with the use of 

ridge functions and radial basis functions. In 
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[15], Mhaskar and Micchelli have formulated 

necessary and sufficient conditions for the 

function   (where   is a ridge functions) so 

as to achieve density. Also, they have given 

similar conditions for the radial basis 

function networks.  

From the point of view of function 

approximation, the hidden units provide a set 

of activation functions that constitute an 

arbitrary “basis” for representing input 

patterns in the space spanned by the hidden 

units. 

However another important character-

ristic, of approximating a function by the use 

of neural network, is the study of complexity 

which means how the error decreases with 

the number of layers, number of neurons, and 

the dimension of the input space. The 

importance of Feedforward neural networks 

(FFNNs) for function approximation was 

reinforced by the work of Barron, [2]. He 

showed that the asymptotic accuracy of the 

approximation with Feedforward neural 

networks (FFNNs) is approximately 

independent of the dimension of the input 

space s, i.e. the order of the error )1(  n O  

depends only on the number of neurons. This 

is unlike approximation with polynomials, 

spline, trigonometric expansions and series 

expansions with n terms, where the error 

convergence rate is exponentially related to 

the number of dimensions of the input, i.e. 

the order of the error sO  n /2)1(  where s is 

the dimension of the input space of the 

function f. This means that Feedforward 

neural networks (FFNNs) become much more 

efficient, for approximating )(C sf R  in 

high dimensional space, than using 

polynomials, spline, trigonometric 

expansions and series expansions. 
 

4- Greedy Approximation:  

Greedy process is a technique which 

can be used to approximate large classes of 

functions. Cheney, [8], use such technique to 

produce a sequence of functions, nf , which 

can be used to approximate the original 

function  f, where he proved the following 

result. 

2
1 

n
n Cff 


 , ............................. (4) 

where n denotes the number of neurons 

(PEs), in the proposed neural networks and C  

is a constant depending on the function f  to 

be approximated. However, Cheney in his 

work does not apply the above result and its 

just a theoretical results. Our numerical 

result, for approximation of a function with 

two variables, conform the above Cheney 

result. 

The pay off for this nice convergence 

behavior is the necessity to compute global 

minimum for high-dimensional nonlinear 

optimization problems (in particular for large 

n) in order to obtain the approximating 

functions nf . In the context of neural 

networks, the so-called backpropagation 

algorithm is the most popular approach to 

solve the arising optimization problems 

(called training), mainly due to its simple 

realization. But since the backpropagation 

(BP) algorithm is a version of the gradient 

method, steepest descent method, so one 

cannot expect global convergence and this is 

due to lack of losing the density property. 

Thus Cheney result, [8], can not be used. 

Moreover, the performance of such 

iterative algorithms is limited by the inherent 

ill-posedness of the training problem. Our 

numerical results in section (6) conform such 

conclusion and such, iterative, convergence is 

very slow and our conclusion coincide with 

the conclusion given in Burger, [5].  

Greedy process is an iterative algorithm 

which can be used, also, to train neural 

networks and such training algorithm 

basically depends on the function property 

without the need of using the derivatives of 

the function to be approximated, also it can 

be implemented efficiently. This iterative 

algorithm, greedy algorithm, is also called 

projection pursuit or convex approximation 

techniques. The main idea of such algorithm 

is to increase the number of nodes in the 

network, Figure (1), step by step by one 

neuron (by using suitable convex 

combination) and to optimize only over the 

parameters of the new node, which yields a 

sequence of low-dimensional optimization 

problems. The original motivation for such 

method is the possibility to maintain the 
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convergence rate 2
1

n  with low computa-

tional effort.  

To give a detail analysis to the above 

algorithm, we need the following definition 

and lemma given in [8]. 
 

Definition 4.1, [8]: 
Let G be a subset of an inner product 

space H with induced norm    . Then the 

convex hull of G is the set 









  
 

n

i

n

i

iiiii
   Gg ng  G

1 1

1,0,,:)co(  N

The closure of this set is denoted by )(co G .   

Furthermore let the elements of the set 

G be bounded in the norm, by a constant b, 

which may be abbreviated as ),0B( b G  .  
 

Lemma 4.2, [8]: 
Let G be a subset of an inner product 

space H, and let f  be an element of H. In 

order that )(co G f   it is necessary and 

sufficient that there exists a sequence  
n

g  in 

G and a sequence  
n

f , with 

 
nn

g  g  f ,,co
1
  for each n, such that 

ff
n
 .   

For further analysis we define the constant  

as 

 22

H
supinfγ  vf  vg     

Ggv



.…….(5) 

This value is in some sense a measure 

for the number of different elements of G that 

are needed to represent f. If the norm of  f  is 

close to the bound b and therefore f  is close 

to the boundary of )(co G  then  the value of   

will be very small. In this case f  can be 

represented by few different elements of G, 

see Figure (2). 
 
 

 

 
 

 

 

 
 

 

 
 

 

 

Note that the value of    can be 

bounded from above by 
22  f b   since 

H0 . In our paper we combine the two 

results of Cheney, [8], and Burger, [6], so 

that the constant  can be used to provide an 

estimate for the rate of convex approximation 

to the function f. The following lemma in  [6] 

is useful to illustrate the above claim. 
 

Lemma 4.3: 

Let ),0B( b G  , )(co G f  , )(co G h  

and let  be defined as in equation (5). Then 

the estimate 

γλ)1(λλ)1(λinf 2222




 hf   ghf  
Gg

holds for 1],0[λ   .  

From the above lemma, the function nf  

which is defined in the error bound (4) has 

the form ghf
n

λ)1(λ  . Now we shall 

present the Greedy algorithm, as a result of 

above analysis. 
 

4.1 The Greedy Algorithm: 

Initialization: 

Choose a constant M, such that γM  (as 

defined in (5)).  

Choose a positive sequence k , tending to 

zero that fulfills 

         
2

γ

k

M
k


        for  2, ,1k  

         Choose a positive integer max. 

         Set  0:
0
f . 

Iteration: 

         For  k := 1 to max do 

             Find an element Ggk   such that 

kk
Gg

kk
 g 

k
f 

k

k
f  g 

k
f 

k

k
f 












2

1

2

1

11
inf

11

               is satisfied and define kf  as 

       
kkk

g 
k

f 
k

k
f

11
1






. 

           End For. 

End. 

Note that in each step only one element 

of G is chosen, the other components of kf  

are fixed. Nevertheless with the greedy 

algorithm, still, the rate of convergence is 

independent of the dimension. Such claim 

can be justified by using the following 

theorem which is given in [6]. 

 

Figure 2: Interpretation of condition (5). 

The objective function is the difference of 

the radius of the two dashed circles. In 

this symmetric case the infimum is 

attained for v lying in the center of G. 
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Theorem 4.4: 

Let the conditions of Lemma (4.3) be 

satisfied. Then the approximating functions 

k
f  generated by the above algorithm fulfill 

an error estimate 
k

M
ff 

k


2
.  

The radial basis function feedforward 

neural networks, with one hidden layer of 

radial basis functions nf , can be represented 

as in section (3) by  

 
 
















n

i

s

j

ijjiin
wx  a f

1 1

2)( , 

where iw  , n i , 2, ,1  , is the connections 

(weights). Hence for the above neural 

networks we can write  





n

i

iin
 a f

1

) ,(Θ wx  .......................... (6) 

In order to apply the above algorithm, 

using equation (6), we consider the Hilbert 

space H which is a Lebesgue space )Ω(2L , 

where Ω  is a (not necessarily bounded) 

domain in sR , and G be the set  

  )Ω(T,:) ,Θ( 2L   b a     a G
b

 wwx ,  

where T is the compact set of parameters in 
sR . The set bG  can be interpreted as the set 

of all possible nodes of the neural networks. 

If the function  is scaled such that its 
2L -

norm is bounded above by 1, uniformly in w, 

i.e., 

 
Ω

2

1) ,Θ( dx  wx          for all  Tw ,    

......................................... (7) 

then 
b

G  is bounded and ),0B( b G
b
 . For 

simplicity, assuming equation (7), one can 

use the bound 
)Ω(2

T

) ,Θ(sup
~

L
    bb wx

w

  for the 

factor a in 
b

G . Observe that b
~

 can not be 

zero because the set T is compact. The value 

of  , given in equation (5), is now has the 

value 

 22

T,
2

) ,Θ(supinfγ  vf  v a    
 ba Lv




wx
w

. 

 ...................................... (8)  

The convex hull of the set bG  is defined as 







































Nn  ba             

     a fLf

G
n

i

i

n

i

ii

b

T,,

), ,Θ(:)Ω(

)co(

1

1

2

w

wx

 

the sign of the parameters ia  is not important, 

because the original set bG  is symmetric. 

Further the sum needs not to be equal to b but 

can be smaller, because the zero function is 

an element of bG . Note, that )(co
b

G contains 

all functions having a representation of the 

form 


n

i

ii
   a  

1

) ,Θ( wx  and wwx d    a  ) ,Θ(
T

 . 

Now we shall consider the Greedy 

algorithm for training greedy radial basis 

function neural networks (GRBFNNs). 
 

4.1.1 The Greedy Algorithm with Radial 

basis Functions: 
In this section we will explain how to 

use the greedy algorithm, with radial Basis 

functions, to produce a sequence 
k

f  which 

approximates )( sCf R . 

Initialization: 

       Choose 0 , say 510  . 

       Choose a constant M, such that γM  

(as defined in (8)), e.g. choose M equal to  

 2

2

2

2

3
 f b M   and set MM

opt
 , 


opt

k . 

        Choose a positive integer max. 

        Set  0:
0
f . 

Iteration: 

        For  k := 1 to Min( opt
k , max) do 

If  
k

M
f f 

k




2

21
  then  

     Set 1:  kk ff  and go to the next 

step of  

     the iteration. 

End If 

         Find parameters a and w such that 

 
k

M
     a 

k
f 

k

k
f 

opt

k







2

2

1

11
wx , 

         and define kf  as  

     a 
k

f 
k

k
f kk wx 


  

11
: 1 . 

        End for 
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Check:   

        If   
2k

f f   then   

            go to  end. 

        Else    

           Reduce M  and repeat the iteration. 

        End If 

End. 
 

5- Complexity: 

As we know, the Backpropagation 

training algorithm depends on the derivative 

of the activation function  and it’s easy to be 

computed if the activation function is logistic 

function or hyperbolic tangent function. 

Cheney, [8], in his work use the property that 

the function   has the derivative  , which 

can be putted in term of . But this is not 

always true that the derivative can be 

expressed in term of the original function. 

The weakness of the above analysis is that 

the norm defined in Hilbert space which has 

been used does not include the derivative of  

and thus we may loss the completeness, or 

density, property. Thus we consider the 

problem of approximating a function 

)Ω(, p mW , where )Ω(, p mW  denote the 

Sobolev spaces and Ω  is a (not necessarily 

bounded) domain in sR . For example, if   

can not be putted in term of   then we need 

to add a stage to the neural network so that to 

handle the derivative as in Figure (3). 
 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

Definition 5.1, [1]: 

Let m be a non negative integer, 

],1[   p . The Sobolev space )Ω(, p mW  is the 

set of all functions )Ω(1

loc
Lv  such that for 

each multi-index  with m   , the 
th

 

weak derivative vD  exists and 

)Ω(D p Lv . The norm in the space 

)Ω(, p mW  is defined as 







































p             v   max

 p    v    
 v 

 Lm 

m 

p

 
L

W

p

p
p m

,D

1 ,D

)Ω(

1

)Ω(

)Ω(
,









When 2p , we write )Ω()Ω( 2, mm WH  . 

Note that the Sobolev space )Ω(mH  is a 

Hilbert space with the inner product 

 



Ω

)(D)(D,
m    

m dx xv xu   v u


 , 

)Ω(, mHv u   

Thus )Ω(mH  is a completion of the set of all 

real-valued functions )Ω(Cf .  

Now, the problem of approximating  f  

can be written in the form 

XX
inf  gf  

n g



, ................................  (9)  

where  X  is referred as a Sobolev spaces and 

n
X  denotes the set of all functions of the 

form (6), i.e. 









 


RR ii

1

ii a ,T :) ,(Θ a X t
n

i

n g wwx  

 .......... (10) 

Usually, the convergence rate of using 

g in equation (9) if it exists (note that nX  is 

not a finite dimensional subspace of X) is 

arbitrarily slow, since the approximation 

problem is asymptotically ill-posed, i.e. 

arbitrarily small errors in the observation can 

lead to arbitrarily large errors in the 

approximation as n , our numerical 

results in section (6) confirm such 

observation, slow rate of convergence, and 

such observation coincide with that given in 

[4]. However, it was shown in [5] that the set 

of functions to which neural networks of the 

form in equation (6) converge is just the 

closure of the range of the integral operator  


T

 ) ,Θ( )( wwxw d h h  . 

To improve rates of convergence, or 

concord the ill-posed approximation to f, 

usually one should impose additional 

conditions on f. A natural condition seems to 

 

Figure 3: The Single q
th

  Neuron in MLP 

with Sigmoid Activation Function. 
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be that f  is in the range of the above operator, 

i.e.  


T

 ) , Θ( )()( wwxwx dh f .  .............. (11) 

It was shown in [18] that under this condition 

the convergence rate 

)(inf 2
1

)Ω(X




 nO gf  p 

L
n g

,............... (12)  

is obtained if  is a continuous function. 

In [7], they improved the above error 

bound, equation (12), by imposing additional 

smoothness assumptions on the basis function 

 defined in )Ω(mH  as in the following 

theorem. Moreover, they gave error bounds 

in )Ω(, p mW  that depend on the dimension, r, 

of T and this is the weakness of such 

approach. Also, they gave a sufficient 

conditions on f  so that condition in equation 

(11) hold. 
 

Theorem 5.2, [7]: 

Let 
n

X  be defined as in (10) with 
tRT  bounded and  such that  


   c     mH

uwuxwx   ) ,Θ() ,Θ(
)Ω(

,

01],,0(  c    

Moreover, let )Ω(mHf   satisfy (11) 

with (T)Lh . Then the convergence rate is  

)(inf 2
1

)Ω(X

t
  

m nO gf  
H

n g





 .   

Now, assume Y)Ω,(Θ ,  W p m  with 

)T(Y kH  or )T(CY k , where 
2

t
k  , and  

if we use the following norms 
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1

YΩ
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,

wx
x

xwx
x

x











Then the following result hold. 
 

Theorem 5.3, [7]: 

Let 
n

X  be defined as in (10) with 
tRT  bounded and let Y)Ω,(Θ ,  W p m  with 

)T(Y kH , 
2

t
k  , or )T(CY k . Moreover, 

let )Ω(, p mWf   satisfy (11) with (T)2Lh  if  

)T(Y kH  and (T)1Lh  if )T(CY k . Then 

the convergence rate is  

)(inf
)Ω(X

,

 

p m
t
k

nO gf  
W 

n g




  ...........(13) 

 We think the above result can be 

generalized if the condition given in equation 

(11) has the form 

wwx
x

wx d 
 

 h   f
 

 

 ) , Θ()()(
T

 
 









 ,   k . 

Then the convergence rate is  

)(inf

)(

)Ω(X
,

 

p m
t

k

nO gf  
W 

n g





  

 .......... (14) 

The convergence rates, in equations 

(13) and (14), decrease with increasing the 

dimension t. The above conjecture requires 

further study but, from our numerical result 

in section (6), we feel its true and is the best 

possible result, error bound, when we use the 

space )Ω(, p mW . 
 

6- Numerical Example: 

In this section we verify the above 

theoretical results by considering a numerical 

example.Let us consider the following two 

dimensional function RR 2:f . 

2 22
1 2 1 21

2 23 5
1 2 1 21

2 2
1 1

z f (x , x ) 3(1 x ) exp  x (x 1)

1
             10 x x x  exp x x  

5
1

               exp [ (x 1) x ].                  
3

      
 

           

   
 

A three dimensional plot of the function  

f for 44 1  x  and 44 2  x  is shown 

in figure (4). A two dimensional problem is 

chosen so that to explain how the steps of the 

algorithm can be illustrated. The above 

algorithm (Greedy Algorithm with Radial 

basis Functions) was, numerically, 

implemented by using MATLAB version 

(7.0).  
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Figure 4: the Function ),(
21

xxf . 
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Figure (5) shows the approximation to 

the function ),(
21

xxf and figure (6) shows a 

comparison between the exact data of the 

function ),(
21

x xfz   and the approximation 

data with 9k , i.e. number of neurons, 9n , 

in the hidden layer.  
 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

Also, the GRGFNNs use the 

Backpropagation algorithm with hyperbolic 

tangent function in the hidden layer and 

pureline function in the output layer. Figure 

(7) shows the approximation to the function 

),(
21

xxf and figure (8) shows a comparison 

between the exact data of the function 

),(
21

x xfz   and the approximation data with 

9k , i.e. number of neurons, 9n ,  in the 

hidden layer. 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

Figure (9) shows the approximation to 

the function ),(
21

xxf by using the method in 

[16] and figure (10) shows a comparison 

between the exact data of the function 

),( 21 x xfz   and the approximation data 

with 18k , i.e. number of neurons, 18n ,  

in the hidden layer.  
 

 
 

 
 

 

 

 
 

 

 
 

Figure 6 : Comparison between exact data 

and approximate data  with 9n . 
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Figure 7: Approximation with 9n . 
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Figure 8 : Comparison between exact 

data and approximate data  with 9n . 
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7- Conclusions: 

 Our numerical results shows that 

Backpropagation (BP) algorithm procedure 

more accurate numerical approximation to f 

than Greedy algorithm and the method in 

[16], but the Greedy algorithm is faster and 

use less flops than Backpropagation 

algorithm and the method in [16] overcome 

the problem of dimesionality which discussed 

in section (3). Also, if the derivative of  f  can 

be putted in term of  f  and the derivative of 

the sigmoidal function can be putted in term 

of the sigmoidal function then the Greedy 

algorithm, and its modifications, for training 

greedy radial basis function  neural networks 

(GRBFNNs) procedure almost the same 

accurate as we use Backpropagation 

algorithm. However, if we adjust the rate of 

convergence  in Backpropagation algorithm, 

then the BP algorithm converge faster. 
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