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Abstract  
The aim of this paper is to prove the local existence, uniqueness and the exact 
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List of symbols  
L(X)    Banach algebra {the set of bounded 

linear operators} 

{T(t)}t0  Family of bounded linear operators 

U            Open set 

O, X, Y   Banach space            

B             Bounded linear operator 

w             Control function 

L
p
([0, r):O) Banach space of p-integrable 
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 
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w
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w
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1. Introduction 

Byszewski in 1991 [1], has study the 

local existence and uniqueness of the mild 

solution to the semilinear initial value 

problem: 

0

du
 Au(t) f (t,u(t))

dt

u(0)  u  







 



 ............................ (1) 

Where A is the infinitesimal generator 

of a C0 semigroup defined from D(A) X 

into X and f is a nonlinear continuous map 

define  from [0,r)×X  into X.  

A continuous function u is said to be a mild 

solution to the semilinear initial value 

problem (1) given by [2]          

u(t)T(t)u0+
t

T(t s)f(s,u(s))ds
s 0




 ......... (2)  

WWhheerree  TT((tt))  iiss  bboouunnddeedd  lliinneeaarr  ooppeerraattoorr  

ffoorr  tt>>00..  

Bahuguna.D in 1997 [3], has studied 

the local existence without uniqueness of the 

mild solution to the semilinear initial value 

problem: 

0

tdu
 Au(t) f (t, u(t)) h(t s)g(s,u(s)ds t 0

dt s 0

u(0) u


     


 

 

 ............ (3) 

where A is the infinitesimal generator 

of a C0 semigroup defined from D(A)X 

into X and f and g are a nonlinear 

continuous maps  defined from [0,r)×X  into 

X  and  h is the real valued  continuous 

function defined from [0,r) into R where R 

is the real number.  
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Pavel in 1999 [4] has studied the uniqueness 

of the mild solution to the semilinear initial 

value problem given by (3). 

A continuous function u is said to be a mild 

solution to the semilinear initial value 

problem (3) given by [3]: 

u(t)T(t)u0+
t s

T(t s) f(s,u(s)) + h(s τ)g(τ,u(τ))dτ ds
s=0 τ=0

 
   

 

 

 ............ (4) 

Our work is concerned the semilinear initial 

value control problem: 

0

tdu
+ Au(t) = f(t, u(t)) + h(t s)g(s,u(s)ds + B (t), t > 0

dt s=0

u(0) = u

w


 




 ............ (5) 

where A is the infinitesimal generator 

of a C0 semigroup defined from D(A)X 

into X and f and g are a nonlinear 

continuous maps  defined from [0,r)×X  into 

X, h is the real valued  continuous function 

defined from [0,r) into R where R is the real 

number  and  B is a bounded linear operator 

define from O into X. Where O is a Banach 

space  and w(.) be the arbitrary control 

function is given in L
p
([0, r):O), a Banach 

space of control functions with ||w(t)||O  k1, 

for 0  t < r. 

The mild solution will be developed as 

follow:    

A continuous function uw will be 

called a mild solution of (5), given by: 

 

B (s) + f(s,u (s)) +
t

su (t) = T(t)u + T(t s) ds0 h(s τ)g(τ,u (τ))dτs=0
τ=0

w w

w
w

 
   
  

 

 ............ (6) 

For every given w  L
p
([0, r):O). 

 The local existence, uniqueness and 

controllable of the mild solution defined in 

(6) to the semilinear initial value control 

problem defined in (5) have been developed.   
 

2. Preliminaries    

2.1 Definition: A family {T(t)}t0 of 

bounded linear operators  on a Banach space 

X is called a (one-parameter) semigroup on 

X if it satisfies the following conditions: 
T(t s) T(t)T(s), t,s 0

T(0) I

   


 

 

2.2 Definition [5]  

A semigroup {T(t)}t0 on a Banach 

space X is called strongly continuous 

semigroup of bounded linear operators or 

(C0 semigroup) if 

The map R
+
  t  T(t)  L(X), satisfies 

the following conditions: 

1. T(t + s)  T(t)T(s),  t, s  R
+
. 

2. T(0)  I. 

3. lim || T(t)x x ||
t 0




  0, for every xX. 

 

2.3 Definition [6]  

A semigroup {T(t)}t0 is said to be 

compact if T(t) is  a compact operator  for 

each  t > 0. 
 

2.4 Definition [5],[7]  

Given any two points u0 , u X ( X is 

a Banach space) , we say that the mild 

solution given by (6) to the semilinear initial 

value control problem given by (5) is 

exactly controllable on J0  [0,] , if there 

exist a control w L
p
(J0:O) such that the 

mild solution uw(.) of equation (5) satisfy the 

following conditions u
w

(0)=u0 and 

u
w

()=u. 

 

2.5 Precompact set  

Let X be a Banach space, a subset S of 

X is said to be precompact if for each 

  >0, there exists some finite set S  

{x1,….,xn} in X such that S is contained in 

i

n
β(x ,ε)

i 1
,


  where 

i
β(x ,ε)   {y  X : 

i
y x   }. 

 

2.6 Equicontinuous set  

A subset S of C[a,b] is said to be 

equicontinuous, for each 0  , there is a 

0,  such that: 

x y    And u  M imply 

C[a,b]
u(x) u(y)    

 

2.7Arzela-Ascoli's theorem  

Suppose F is a Banach space and E is 

a compact metric space. In order that a 

subset H of the Banach space 
F
(E) be 

relatively compact, if and only if H be 

equicontinuous and that, for each x  E, the 

set H(x)  {f(x): f  H} be relatively 

compact in F. 
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2.8 Schauder fixed point theorem  

Let M be a nonempty closed, 

bounded, convex subset of a Banach space 

X and the map T: M  M is compact 

then T has a fixed point. 
 

2.9 Compact map    

Let S, M be two sets, a map T: S  M is 

said to be compact if the following 

conditions are hold: 

1-T is continuous map. 

2-For each bounded subset of S, T(S) 

is relatively compact set in M. 
 

2.10 Remark [2]:   

A semigroup {T(t)}t0 is called a 

continuous in the uniform operator topology 

if: 

(1) ||T(t+ )xT(t)x|| 0, as   0, 

xX. 

(2) ||T(t)x T(t)x|| 0, as  0, 

x X. 
 

3. Main results   
It should be notice that the local 

existence and uniqueness of a mild solution 

of (5) have been developed, by assuming the 

following assumptions:  

1. A be the infinitesimal generator C0 

compact semigroup {T(t)}t0, where A 

defined from D(A)  X into X and X is 

a Banach space. 

2. Let >0 such that B(u0)  {x  X | ||x 

 u0||  }, 

 (where u0U and U is an open subset of 

X), The nonlinear maps f, g defined 

from [0, r) U into X, satisfy the locally 

Lipschitze condition with respect to 

second argument, i.e.||f(t, v1)  f(t, v2)||X 

 L0||v1  v2|| and ||g(t, v1)  g(t, v2)||X  

L1||v1  v2|| 

 For 0  t < r and v1, v2  B(u0) and 

L0,L1 are Lipschitze constant. 

3. h is continuous function which at least 

hL1([0,r):R),where R is the set real 

numbers. 

4. Let t > 0 such that ||f(t, v)||X  N1, ||g(t, 

v)||X  N2,for 0  t  t and vB(u0).  

Also let  t>0 such that ||T(t)u0  u0||X  

 for 0  t  t and u0  U, where  is a 

positive constant such that  < . 

5. w(.) be an arbitrary given control 

function is given in Lp([0, r): O), a 

Banach space of control functions with 

O as a Banach space and here B is a 

bounded linear operator from O into X 

with  ||w(t)||O  k1, for 0  t < r. 

6. Let t1>0 such that: 

t1  min {r, t , t} and satisfy the 

following conditions  

(6.i)      t1
0 1 1 t 21

(K K N h N )M

 

 
  

(6.ii)      t1< 
0 1 t1

1

M(L L h )
  

 

Theorem (1)  

Assume the hypotheses (1)-(6) are 

hold. Then for every u0 U, there exist a 

fixed number t1 , 0 < t1 < r, such that the 

initial value control problem (5) has a 

unique local mild solution uwC([0, t1]:X), 

for every control function w(.)  L
p
([0, r): 

O). 

Proof  

Without loss of generality, we may 

suppose r<, because we are concerned here 

with the local existence only.  

Since T(t) is a bounded linear operator on X, 

there exist  M0  such that  ||T(t)||   M , 

0 t r.  

Let  > 0 be such that B(u0)  {v  X | ||v  

u0||  }  U { since U is an open subset of 

X}. Assume 

hr    ...............................  (7) 

Set Y C([0,t1]:X), where Y is a Banach 

space with the sup-norm  defined as follows: 

||y||Y  

1

Sup
0 t t 

||y(t)||x   , and define 

Sw{uwY| uw(0)u0,uw(t)B(t0),for a given 

wL
p
([0,t1]:O),0tt1} ......................  (8) 

It is clearly Sw is bounded, convex and 

closed subset of Y. 

Define a map Fw : Sw   Y,  by:  

(Fwuw)(t)   (t)u0+ 
t s

s=0 τ=0

T(t s) f(s,u (s)) + h(s τ)g(τ,u (τ))dτ dsw w

 
  

  
 

+ 

t

s=0

T(t s)B (s)dsw
,   

For arbitrary w(.)  L
p
([t0, r): O) .......  (9) 
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Let uw be arbitrary element in Sw such 

that FwuwFw(Sw) ,  we must prove  Fwuw  

Sw.  

From (8), and the definition of the map 

Fw,notice that FwuwY . 

and  (Fwuw)(0)  u0 by (9),  to prove 

(Fwuw)(t)  B(u0), for any uw  Sw   

From the definition of the closed ball B(u0) , 

notice that (Fwuw)(t)  X { the definition of 

the Banach space Y} and 

||(Fwuw)(t)  u0||X  ||T(t)u0  u0 + 
t

T(t s)B (s) ds
s=0

w  + 

t s
T(t s) f(s,u (s)) + h(s τ)g(τ,u (τ))dτ ds

s=0 τ=0
w w

 
 
  

  
|| 

By using the conditions (4), (5) and (7), we 

get:  

||(Fwuw)(t)  u0||X   + MK0K1t1 + MN1t1 + 

M
t1

h N2 t1  

||(Fwuw)(t)  u0||X   + (K0K1 + N1 + 
t1

h N2) 

M t1 ,By using the assumption (6.i),we get:  

||(Fwuw)(t)  u0||X  , for 0  t  t1  ,  i.e., 

(Fwuw)(t)  B(u0), for 0  t  t1   

Hence Fwuw  Sw, for arbitrary uw  Sw ,  

which implies that  Fw : Sw  Sw  

So one can select the time t1 such that:   

t1  min 
0 1 1 21t

t ,t , r ,
( K K N h N ) M

  
  

   

  

To complete the poof, we have to show that 

Fw : Sw  Sw  is a continuous map: 

Given ||
n

u
w

  uw||Y  0, as n , to 

prove ||Fw
n

u
w

 Fwuw||Y  0, as n    

Notice that: 

||Fw
n

u
w
Fwuw||Y Sup

0 t t
1

 
||(Fw

n
u

w
)(t) 

(Fwuw)(t)||x  

||Fw
n

u
w

  Fwuw||Y  Sup
0 t t

1
 

||T(t)u0 + 

t
T(t s)(B )(s) ds

s=0
w  +  

n n
t s

T(t s) f(s,u (s)) + h(s τ)g(τ,u (τ))dτ ds
τ=ts=0 0

w w

 
 
 
  

  

  T(t)u0  
t

T(t s)(B )(s) ds
s=0

w   

t s
T(t s) f(s,u (s)) + h(s τ)g(τ,u (τ))dτ ds

s=0 τ=0
w w

 
 
  

  
|| 

After simple calculatios and using the 

conditions  (4), (5) and (7), we get:                    

||Fw
n

u
w
Fwuw||YM n

0 t 11 Y
L h L u u

w w
    t1, 

since n

Y
u uw w 0, as n  

n
lim


||Fw
n

u
w
Fwuw||Y=0,i.e. 

||Fw
n

u
w
Fwuw||Y0, as n   

Now, assume that  S  Fw(S), and for fixed t 

 [0, t1], let S (t){Fwuw)(t) : uwSw}. 

 To show that S (t) is a precompact set for 

every fixed t  [0, t1],  

 For t  0  S (0)  {(Fwuw)(0) : uwSw}  

{u0}  which is a precompact set in X. Now 

for t > 0, 0 <  < t, define: 

( F


w
uw)(t)T(t)u0+

t

s 0 0

s
T(t s) f s u (s)) h(s )g( u (τ))d ds

w w
( , ,



 

 
       

 

+
t

s 0

T(t s)(B )(s) dsw




 , 

For arbitrary u S
w w
   

 

( F


w
uw)(t)T(t)u0+ 

t

s

s 0

0

f s u (s))
T(ε) T(t s ) ds

h(s )g( u (τ))d B (s)

w

w

( ,

, w







 
 
 
 
  


    

 

 .......... (10) 

From the compactness of the semigroup 

{T(t)}t0 and use  equation (10) one can get 

for every , 0 <  < t, 

Set S (t) = {( F


w
uw)(t):uwSw}is 

precompact set . 

Moreover for any uwSw, we have: 

||(Fwuw)(t)  ( F


w
uw)(t)||X  ||T(t)u0 +  

t s

s 0 0

T(t s) f (s u (s)) h(s )g( u (τ))d ds
w w

, ,
 

         

 +  
t

s 0

T(t s)(B (s) dsw )


   T(t)u0   

t s

s 0 0

T(t s) f (s u (s)) h(s )g( u (τ))d ds
w w

, ,


 

         

  
t

s 0

T(t s) B (s) ds( w )




 ||   

After simple calculatios and using the 

conditions  (4), (5) and (7), we get: 

||(Fwuw)(t)( F


w
uw)(t)||X(N1+ t1

h N2+ 

K0K1)M   

||(Fwuw)(t)  ( F


w
uw)(t)||X    0 , as    

 0 , i.e.,    F u (t) F u (t)w w w wlim  

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Which imply that S (t) is precompact set in 

X, for every fixed t > 0 {see [3], [7]}. 

To prove that S   Fw(Sw) is an 

equicontinuous family of  functions, we 

have: 

||(Fwuw)(r1)(Fwuw)(r2)||X  ||(T(r1)  

T(r2))u0||X+M K0K1 (r1  

r2)+M(N1+ r1
h N2)(r1r2) 

Since {T(t)}t0 is a compact semigroup 

which implies T(t) is continuous in the 

uniform operator topology for t > 0 , 

therefore the right hand side of the above 

inequality tends to zero as r1r2 tends to 

zero. Thus  S  is equicontinuous family of 

functions. It follows from the theorem 

"Arzela-Ascoli's theorem"  that is  S Fw(S) 

be relatively compact in Y and by Applying 

"Schauder fixed point theorem" , which 

implies Fw : Sw Sw has a fixed point, 

i.e., Fwuw  uw, Hence the initial value 

control problem  given by equation (5)  has 

a local mild solution uwC([0,t1]:X). 

To show the uniqueness, 

Let u
w

(t), ūw(t) be two local mild solutions 

of the initial value control  problem given by 

equation (5) on the interval [0, t1].  We must 

prove:     

|| u
w

(t) ūw(t) ||X  0,   

Assume || u
w

(t)  ūw(t)||X  0, notice that:  

|| u
w

(t)  ūw(t)||X  t

0

s 0

T(t)u T(t s)(B )(s) dsw



 
 

+  
t s

s 0 0

T(t s) f s u (s)) h(s g( u (τ))d dsw w( , ) ,
 

 
 
  

        

T(t)u0  
t s

s 0 0

T(t s) f s u (s)) h(s g(u (t))d ds
w w

( , )
 

        
 

 
t

s 0 X

T(t s)(B )(s) dsw


  

 || u
w

(t)  ūw(t)||X  M (L0+ t1
h L1) || u

w
 

ūw ||Y t1 , By using assumption (6.ii) 

 || u
w

(t)  ūw(t)||X < M (L0+ t1
h L1) * 

0 t 11

1

M (L h L ) 
|| u

w
 ūw ||Y  

 || u
w

(t)  ūw(t)||X < || u
w
 ūw ||Y  

By taking the suprumun over [0, t1] of the 

both sides of the above inequality, we get:  

|| u
w
 ūw ||Y <  || u

w
 ūw ||Y  , which implies  

to a contradiction  

   || u
w

(t) ūw(t) ||X  0     u
w

 (t)= ūw(t) 

for 0 t t1. 

Hence we have a unique local mild solution  

uwC([0, t1]:X) , for arbitrary w(.)  L
p
([0, 

t1): O). 

So one can select t1>0 such that:  

t1min
0 1 1 t 2 0 1 t1 1

1t t r
K K N h N M M L L h

, , , ,
( ) ( )

 
 
 
  

 
    

It should be notice that the controllable of 

the local mild solution to the semilinear 

initial value control problem equation (5) 

will be developed by using the following 

assumptions: 

1. A be the infinitesimal generator C0 

compact semigroup {T(t)}t0, where A 

defined from D(A)  X into X. where X 

be a Banach space. 

2. For >0, we define B(u0){x  X | ||x 

u0||X }, where u0U (open subset of 

X),The nonlinear maps f, g define from 

[0,r)U into X, satisfy the local 

Lipschitz condition with respect to the 

second arguments , i.e.  

||f(t, v1)  f(t, v2)||X  L0||v1  v2||  and  

||g(t, v1) g(t, v2)||X  L1||v1  v2|| 

For 0  t  t1 and v1, v2  B(u0) and L0, 

L1  is  a Lipschitz constants. 

3. h is continuous function which at least 

hL
1
([0,t1):R),Where R is the real 

number. 

4. Let t >0 such that ||f(t,a)||X  N1, ||g(t,a)||X 

 N2, for 0 t  t and a  B(u0). Also let 

t>0 such that ||T(t)u0  u0||X   for 0  

t  t and  u0  U, where  is a positive 

constant such that  < . 

5. w(.) be an arbitrary control function is 

given in L
p
([0,t1]:O), a Banach space of 

control function with O as a reflexive 

Banach space and here B is a bounded 

linear operator from O into X. 

6. The linear operator G from O into X 

defined by: 

      Gw()    

      
s 0

T s B s ds( ) w ( )




  ,w(.)L
p
([0,):O).  

Induces an invertible operator G  

defined on O/kerG.   
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7. There exist a positive constant I1, such 

that || G

1||  I1. 

8. Let =min {t, t, t1} and satisfy the 

following conditions:  (8.i)  


0 1 0

0 1 1 2

I I ( v M u )

(1 I I )M(N h N )

|| || || ||



  

   and 

         (8.ii) <
0 1 0 1

1

(L h L )(1 I I )M 
 

 

Remark  

The condition (6) in our assumptions 

can be satisfied {see appendix}. 
 

Theorem (2)  

Assume that the hypotheses (1)-(8) are 

hold. Then for every u0, v0 V  U, there 

exists a fixed number,, 0<<t1, such that (6) 

is exactly controllable on J0  [0,]. 

Proof  

  Using the condition (6), define the 

control: 

w (t)G
1 t

0 0

s 0

v T(t)u T(t s) f (s u (s))w,



 


   

s

0

h(s )g(τ,u(τ))d ds




   

  
  ....... (11) 

Define the following map, given by: 

(wuw)(t)  

T(t)u0+ 
t

s 0

T(t s) (B )(s) f (s u (s))
w

w ,


    

s

0

h(s )g( u (τ))d dsw,






   ,w(.)L
p
([0, t1): O) 

 ........................................................ (12) 

By using (11) and (12), we have to show 

that wuw has a fixed point.  

We can rewrite equation (12) as follows: 

(wuw)(t)T(t)u0+
t s

s 0 0

T(t s) f (s u (s)) h(s )g( u (τ))d dsw w, ,
 

 
 
 

       

+ L(t)Bw(t)   ,w(.)  L
p
([0, t1): O) 

 .......... (13) 

By using (11) and (13), we obtain: 

( uw w )(t)  T(t)u0 +  

t s

s 0 0

T(t s) f (s u (s)) h(s )g( u (τ))d dsw w, ,
 

 
 
 

       

+L(t)BG
1 t

0 0

s 0

v T(t)u T(t s) f (s u (s))w,



 


   

s

0

h(s )g( u (τ))d dsw,





 
    , 

For  w L
p
([0, t1):O).      

There exist M0, such that T(t) M, for 

0 t t1 {since T(t) is a bounded linear 

operator on X}. 

Let  > 0 be such that B(u0)  {x X : ||x  

u0||x  }  U {since U is an open subset of 

X}.To guarantee the fixed point property, 

we have done as follow: 

Assume hr 
r

s 0

h(s) ds| |


  

Set ZC(J0 :X), where Z is a Banach space 

with the supremum defined as follows: 

||z||Z  Sup
0 t 

||z (t) ||x 

And define Z0  { uw  Z : uw (0)  u0, 

uw (t)B(u0), for 0 t  } 

It is clearly Z0 is bounded, Closed and 

convex subset of Z. 

Define a nonlinear map w  : Z0  Z, by: 

( uw w ) (t)  T(t)u0 + 
t s

s 0 0

T(t s) f (s u (s)) h(s )g( u (τ))d dsw w, ,
 

 
 
 

       

   + (t)BG 1 t

s 0

v T(t)u T(t s) f (s u (s))0 0 w,



 


     

s

0

h(s )g( u (τ))d dsw,





 
     

, for w   L
p
([0, t1):O ....................... (14) 

Let uw be arbitrary element in Z0 such that 

uw w  
w

(Z0), to prove uw w  Z0 for 

arbitrary element uw   Z0. from the 

definition of Z0 , notice that uw w Z {the 

definition of w } and ( uw w )(0)  u0 {by 

equation(14)}, to prove ( uw w )(t) B(u0), 

for 0 t  . From the definition of the 

closed ball B(u0), notice that ( uw w )(t)X  

and 

||( uw w )(t)  u0||X  T(t)u0  u0 + 

t

s 0

T(t s) f (s u (s))w,


   

s

0

h(s )g( u (τ))d dsw,






   + L(t)BG 1
 

t

0 0

s 0

v T(t)u T(t s) f (s u (s))w,



 


     

s

0
X

h(s )g( u (τ))d dsw,





 
    
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After simple calculations and using 

conditions (4) and (7), we get: 

||( uw w )(t)  u0||X   +[1+I0I1](N1+ 

hN2)M + I0I1[M ||u0|| +||v0||]  

By using the condition (8.i), we get:   

||( uw w )(t)  u0||X         

Therefore uw w  Z0, for any uw
 Z0    

w : Z0  Z0  

So, one can select  >0, such that: 

  Min 

0 1 0 0
1

0 1 1 γ 2

ρ ρ I I (|| v || +M || u ||)
t , t , t ,

(1+ I I )M(N + h N )

  
 
  

 
   

To complete the proof, to show that w : Z0 

 Z0 is a continuous map 

Given || n
uw

uw ||Z  0, as n,To 

prove ||w
n

uw
w uw ||Z 0, s n    

Notice that:  

||w
n

uw
w uw ||Z

0 t
sup
 

||(w
n

uw
)(t) 

(w uw )(t)||X 

||w
n

uw
w uw ||Z=

0 t
sup
 

T(t)u0+

t
n

s 0

T(t s) f (s u (s))w,



 

s
n

0

h(s )g( u (τ))d dsw,






    

+L(t)B G 1 t
n

0 0

s 0

v T(t)u T(t s) f (s u (s))w,



 


   

s
n

0

h(s )g( u (τ))d dsw,





 
   T(t)u0 

t s

s 0 0

T(t s) f (s u (s)) h(s )g( u (τ))d dsw w, ,
 

 
 


       

L(t)B G
1  

t

0 0

s 0

v T(t)u T(t s) f (s u (s))w,



 


   

s

0
X

h(s )g( u (τ))d dsw,





 
  

 

After simple calculations and using 

conditions (2), (4) and (7), we get: 

||w
n

uw
w uw ||z 

 n n

0 1 0 γ 1
Z Z

s=0

(1+ I I )M L u u + h L u u dsw w w w



 
 

   

||w
n

uw
w uw ||z  (1+I0I1) 

(L0+hL1) n

Z
u u

w w
    

Since n

Z
u u

w w
0, as n  ,  

n
lim


||w
n

uw
w uw ||z = 0, 

 i.e. ||w
n

uw
w uw ||Z 0, as n  .      

Assume  R  w (Z0), let R (t)  

{(w
uw )(t) : uw  Z0}, to show that R (t) 

is a precompact set in X, for every fixed t  

J0,  when  t  0 

   R (0)  {(w uw )(0) : uw Z0} {u0} 

which is a precompact set in X. 

Now, for t >0, 0 <  < t, define: 

( 


w
uw ) (t)  T(t)u0 + 

t s

s 0 0

T(t s) f (s u (s)) h(s )g( u (τ))d dsw w, ,


 

 
 


     

 + 
t

1

0 0

s 0 0

s
T(t s)BG v T(s)u T(s )




 





    


0

f ( u (θ)) h( )g( u (τ))d d dsw w, ,




 
 

 
       

 ( 


w
uw ) (t) T(t)u0 +  

T()
t s

s 0 0

T(t s ) f (s u (s)) h(s )g( u (τ))d dsw w, ,


 

 
 


      

+T() t s
1

0 0

s 0 0

T(t s )BG v T(s)u T(s )




 


      


 

0

f ( u (θ)) h( )g( u (τ))d d dsw w, ,





 
        
  

  (15) 

From the compactness of the semigroup 

{T(t)}t0 and equation (15) which implies 

that for any , 0<< t.  

The set R (t) {( 


w
uw )(t): uw Z0} is 

precompact set in X.  

Moreover for any uw  Z0, notice that: 

||( uw w )(t)  ( 


w
uw )(t)||X  T(t)u0 + 

t

s 0

T(t s) f (s u (s))w,


   
s

0

h(s )g( u (τ))d dsw,






    

+ 
t s

1

0 0

s 0 0

T(t s)BG v T(s)u T(s )

 





    
  

0

f ( u (θ)) h( )g( u (τ))d d dsw w, ,




 
 

 
       

 T(t)u0 


t s

s 0 0

T(t s) f (s u (s)) h(s )g( u (τ))d dsw w, ,


 

 
 


       

  
t s

1

0 0

s 0 0

T(t s)BG v T(s)u T(s )




 





    
  

0
X

f ( u (θ)) h( )g( u (τ))d d dsw w, ,




 
 

 
       



Radhi A. Zboon 

 108 

After simple calculations and using 

conditions (2), (4) and (7), we get: 

||( uw w )(t)  ( 


w
uw )(t)||X  M(N1+hN2)  

+  0 1 0 0
MK I || v || M || u ||  + 

2

0 1 1 2
M K I (N h N )




2

t
2

 
 
 


  

 ||( uw w )(t)  ( 


w
uw )(t)||X  0, as  

 0. 

Which implies that R (t) is precompact set 

in X for every fixed t > 0 {see [3], [7]}. 

To prove that R w (Z0) is an 

equicontinuous family of functions.  

Notice that: ||( uw w )(r1)( uw w )(r2)||x 

1 2 0 X
(T(r ) T(r ))u + M(N1+ r1

h N2) (r1r2) 

+ MK0I1 0 0v M u    (r1r2) + 
2

0 1 1 t 21
M K I (N + h N )

2
 (r1

2
 r2

2
) 

Since {T(t)}t0 is a compact semigroup, 

which implies T(t) is continuous in the 

uniform operator topology for t > 0, 

therefore the right hand side tends to zero  

as r1  r2 tends to zero.Thus R  is 

equicontinuous family of functions.It 

follows from the theorem "Arzela-Ascoli's 

theorem" that is R  w  (Z0) be relatively 

compact in Z. 

By applying "schauder fixed point theorem", 

which implies w  has a fixed point, i.e.  

uw w   uw .To verifies that the uniqueness:  

Let u (t)
w

 and u (t)
w

 be two mild solution of 

equation (5) on the interval J0, we must 

prove that || u
w

(t)u (t)
w

||x0.Assume That 

|| u (t)
w

 u (t)
w

||X  0. Notice that: 

|| u (t)
w

 u (t)
w

||x 


t s

0

s=0 τ=0

T(t)u + T(t s) f(s,u (s)) + h(s τ)g(τ,u ( )(τ))dτ dsw w

 
 
 
 

   

+ L(t)B G
1

 
t

0 0

s=0

v T(t)u T(t s) f(s,u (s)) +w

 
 
 



    

s

τ=0

h(s τ)g(τ,u (τ))dτ dsw





 

   T(t)u0  

t s

s=0 τ=0

T(t s) f(s,u (s))+ h(s τ)g(τ,u (τ))dτ dsw w

 
 
 

     

L(t)B 
t

s t1

T(t s) (B )(s) f (s, (s))


   ww v  

L(t)BG
1

    
t

0 0

s=0

v T(t)u T(t s) f(s,u (s))+w


 


  

s

τ=0
X

h(s τ)g(τ,u (τ))dτ dsw




 


 

After simple calculations and using 

conditions (2), (4) and (7), we get: 

|| u (t)
w

u (t)
w

||x   (L0+hL1) (1+I0I1) M 

|| u
w
u

w
||Z   

Take the spremum over 0t  of the above 

inequality, we obtain:  

0 t
sup
 

|| u (t)
w

u (t)
w

||x   (L0+h L1) (1+I0I1) 

M || u
w
u

w
||Z   

|| u
w
u

w
||Z   (L0+hL1) (1+I0I1) M 

|| u
w
u

w
||Z    

By using the condition (8.ii), we get: 

 || u
w
u

w
||Z <|| u

w
u

w
||Z   , which get a 

contradiction  

 ||u (t)
w

u (t)
w

||x  0  u (t)
w

= u (t)
w

 , for 

0≤t   
Therefore, we have a unique local mild 

solution u
w
C(J0:X)  

So one can select the time    Such that:  

Min

0 1 0 0
1

0 1 1 2 0 1 0 1

I I v M u 1
t t t

1 I I M N h N L h L 1 I I M

(|| || || ||)
, , , ,

( ) ( ) ( )( ) 

  
 
  

  
 

   

Notice that ( uw w ) (0)  u0 and  

( uw w ) () T()u0 

+
s

s 0 0

T( s) f (s u (s)) h(s )g( u (τ))d dsw w, ,


 

 
 
 

      

 + 

L()BG 1

0 0

s 0

v T( )u T( s) f (s u (s))w,





 


      

s

0

h(s )g( u (τ))d dsw,





 
    

 ( uw w ) ()  v0, Thus equation (6) is 

exactly controllable on J0.    
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Appendix                                                                               

(construction of W ) {[9], [10]}: 

Define a linear operator W : O/Ker W  

X, by:                   

   W (t) W (t) (t) (t)w w ,w w   

W is one-to-one  

Since    w (t) w (t) (t) (t) O KerWw w , w , w /        
   

  W (t) W (t) (t) (t) (t) (t)w w , w w ,w w     
 

 W (t) W (t) 0w w   

  W (t) (t) 0w w   

 (t) (t)w w KerW 

 (t)w  (t)w {Since (t)w  

{ (t)w O: (t)w  (t)w  KerW} 

  (t)w    (t)w  

So, there exist 1W defined from V into 

O/Ker W. 

To prove Range W=V is a Banach spaces 

via the norm defined as follow: 
1

V O KerW
v W v

/

   

Notice that: 

   1 1

V O KerW O W
W (t) W W (t) W W (t) (t) (t)

/ / ker
w w w , w w     

 



 
  O OO KerW (t) (t)

(t) (t) (t) (t) O
/ w w

w inf w w , w


   

So, W is a bounded linear operator for  

0  t  . 

And    
XX

W (t) W (t) (t) (t)w w , w w    

  
X

W (t)w  
O

W (t) (t) (t)w , w w    

 

 
X

W (t)w

 
 

O O W(t) (t)
W (t) W (t)

/ kerw w
inf w w


                 

    
O WX

W (t) W (t)
/ ker

w w . 

                                                
(1) Assistance proof in mathematics and computer 

applications, Department of mathematics, College of 

Science, ALNahrain University, Baghdad, Iraq. 

Since W is bounded and D( W )  O/KerW 

is closed which implies that 1W  is closed  

Since 1W  is closed operator and by the 

norm 1

V O KerW
v W v

/

  , which implies that  

V  RangeW a Banach space {[9]}.Since O 

is reflexive Banach space and KerW is 

weakly closed, So the infimum is actually 

attained, we can choose a control function 

 (t) (t)w w such 

that 1(t) W W (t)w w  ,{see[9],[10]}. 

  W (t) W (t)w w , for 0  t  . 
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