ON THE TENSOR PRODUCT OF OPERATORS ON HILBERT SPACE

Maysaa, M. Abdul-Munem and Buthainah, A. Ahmad
University of Baghdad, College of Science, Department of Mathematics.

Abstract

: In this paper we prove that there exist some properties of operators that are invariant under tensor product like posinormal, binormal, pseudo normal operators. But *-paranormalhas not invariant under tensor product

Introduction

Let H be an infinite dimensional separable complex Hilbert space with inner product \langle,$\rangle and let B(H)$ be the algebra of all bounded linear operators on H, given $A_{1}, A_{2} \in B(H)$, the tensor product $A_{1} \otimes A_{2}$ on the Hilbert space $H \otimes H$ has been considered variously by many of authors(see[1],[3], [12],[14]).

The operation of taking tensor product $A_{1} \otimes A_{2}$ preserves many properties of A_{1} and $A_{2} \in B(H)$ but by no means all of them .Thus, whereas the normaloid property is invariant under tensor products ,the spectraloid property is not (see [15]p. 623 ,[15] p. 631) again ,whereas $A_{1} \otimes A_{2}$ is normal if and only if A_{1} and $A_{2} \in B(H)$ are [9] and is similarly for hyponormal ,subnormal ,normaloid , θ-operator and U-operator [4-],[5],[8],[9] it was shown in [15]that paranormal is not invariant under tensor product .

The operator A is said to be strongly stable if $\left\|A^{n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in H$ [4].

In this paper we prove there exist another operators' properties that are invariant under tensor product like posinormal, pseudo normal, binormal, θ-adjoint operators.

2-We recall $A \in B(H)$ is called posinormal operator if there exists an operator $P \in B(H)$ such that $A A^{*}=A^{*} P A$. P is called an interrupter of A. The set of all posinormal operators on H is denoted by $P(H) . A$ is called coposinormal if A^{*} is posinormal operator. [11]

Theorem [2-1]

Let $A_{i} \in B\left(H_{i}\right), \quad i=1,2, \ldots, n \quad$ and $A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n} \neq 0$ on the Hilbert space $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{n} \quad, \quad A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n}$ is a posinormal operator if and only if A_{i}, $i=1,2, \cdots, n$, are all posinormal operators.

Proof:

By induction, it suffices to show that if $A_{1} \otimes A_{2}$ is posinormal if and only if both A_{1} and A_{2} are.
Let $A_{1} \otimes A_{2} \neq 0$ is posinormal operator, then:-
$\left(A_{1} \otimes A_{2}\right)\left(A_{1} \otimes A_{2}\right)^{*}=\left(A_{1} \otimes A_{2}\right)^{*}\left(P_{1} \otimes P_{2}\right)\left(A_{1} \otimes A_{2}\right)$
$A_{1} A_{1}^{*} \otimes A_{2} A_{2}^{*}-A_{1}^{*} P_{1} A_{1} \otimes A_{2}^{*} P_{2} A_{2}=0$
If $A_{1} A_{1}^{*}$ and $A_{1}^{*} P_{1} A_{1}$ are linearly
independent then $A_{2} A_{2}^{*}=A_{2}^{*} P_{2} A_{2}=0$ then $A_{2}=0$ contradiction

Hence $A_{1} A_{1}^{*}$ and $A_{1}^{*} P_{1} A_{1}$ are linearly dependent then $A_{1} A_{1}^{*}=r A_{1}^{*} P_{1} A_{1}$.

If $A_{2} A_{2}^{*}$ and $A_{2}^{*} P_{2} A_{2}$ are linearly independent $A_{1} A_{1}^{*}=A_{1}^{*} P_{1} A_{1}=0 \quad$ then $A_{1}=0$ contradiction Hence $A_{2} A_{2}^{*}$ and $A_{2}^{*} P_{2} A_{2}$ are linearly dependent then $A_{2} A_{2}^{*}=r^{-1} A_{2}^{*} P_{2} A_{2}$.
Now to prove $r=1$

$$
\begin{aligned}
\left\|A_{1}\right\|^{2} & =\left\|A_{1} A_{1}^{*}\right\|=\left|r\left\|A_{1}^{*} P_{1} A_{1}\right\| \leq\left|r\left\|A_{1}^{*}\right\|\right|\|A\|\right. \\
& =\left|r\left\|A_{1}\right\|\left\|A_{1}\right\|=\right| r\left\|A_{1}\right\|^{2}
\end{aligned}
$$

hence $1 \leq|r| \quad$ and

$$
\begin{aligned}
\left\|A_{2}\right\|^{2} & =\left\|A_{2} A_{2}^{*}\right\|=\left|r^{-1}\left\|A_{2}^{*} P_{2} A_{2}\right\| \leq|r|\left\|A_{2}^{*}\right\|\left\|A_{2}\right\|\right. \\
& =\left|r^{-1}\left\|A_{2}\right\|\left\|A_{2}\right\|=\right| r^{-1}\left\|A_{2}\right\|^{2}
\end{aligned}
$$

hence $1 \leq\left|r^{-1}\right| \quad$ it implies that $r=1$
$\Leftarrow) \mathrm{t}$ if A_{1} and A_{2} are posinormal operators then $A_{1} A_{1}^{*}=A_{1}^{*} P_{1} A_{1} \quad$ and $A_{2} A_{2}^{*}=A_{2}^{*} P_{2} A_{2}$

$$
\begin{aligned}
\left(A_{1} \otimes A_{2}\right)\left(A_{1} \otimes A_{2}\right)^{*} & =A_{1} A_{1}^{*} \otimes A_{2} A_{2}^{*} \\
& =A_{1}^{*} P_{1} A_{1} \otimes A_{2}^{*} P_{2} A_{2} \\
& =\left(A_{1} \otimes A_{2}\right)^{*}\left(P_{1} \otimes P_{2}\right)\left(A_{1} \otimes A_{2}\right)
\end{aligned}
$$

then $A_{1} \otimes A_{2}$ is posinormal.
An operator A on a Hilbert space H is said to be binormal operator if $A^{*} A$ commutes with $A A^{*}$. I.e. $\left\lfloor A^{*} A, A A^{*}\right\rfloor=0$. We denote the class of binormal operators by ($B N$). [2], [6]

Theorem [2-2]

Let $A_{i} \in B\left(H_{i}\right), i=1,2, \ldots, n \quad$ and $A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n} \neq 0 \quad$ on Hilbert space $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{n} \quad, A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n}$ is binormal operator if and only if each A_{i} $i=1,2, \cdots, n$, is binormal operator.

Proof:

By induction, it suffices to show that if $A_{1} \otimes A_{2}$ is binormal if and only if both A_{1} and A_{2} are.
$\Leftarrow)$ Suppose that $A_{1} \otimes A_{2} \neq 0$ is binormal operator, then
$\left(A_{1} \otimes A_{2}\right)^{*}\left(A_{1} \otimes A_{2}\right)^{2}\left(A_{1} \otimes A_{2}\right)^{*}=\left(A_{1} \otimes A_{2}\right)\left(A_{1} \otimes A_{2}\right)^{* 2}\left(A_{1} \otimes A_{2}\right)$
$A_{1}^{*} A_{1}^{2} A_{1}^{*} \otimes A_{2}^{*} A_{2}^{2} A_{2}^{*}-A_{1} A_{1}^{* 2} A_{1} \otimes A_{2} A_{2}^{* 2} A_{2}=0$
If $A_{1}^{*} A_{1}^{2} A_{1}^{*} \quad$ and $\quad A_{1} A_{1}^{* 2} A_{1} \quad$ are linearly independent then $A_{2}^{*} A_{2}^{2} A_{2}^{*}=A_{2} A_{2}^{* 2} A_{2}=0$ then $A_{2}=0$ contradiction. Hence $A_{1}^{*} A_{1}^{2} A_{1}^{*}$ and $A_{1} A_{1}^{* 2} A_{1}$ are linearly dependent then $A_{1}^{*} A_{1}^{2} A_{1}^{*}=r A_{1} A_{1}^{* 2} A_{1}$
Similarly If $A_{2}^{*} A_{2}^{2} A_{2}^{*} \quad$ and $A_{2} A_{2}^{* 2} A_{2}$ are linearly independent then $A_{1}^{*} A_{1}^{2} A_{1}^{*}=A_{1} A_{1}^{* 2} A_{1}=0 \quad$ hence $\quad A_{1}=0$ contradiction. Hence $A_{2}^{*} A_{2}^{2} A_{2}^{*}$ and
$A_{2} A_{2}^{* 2} A_{2}$ are linearly dependent then $A_{2}^{*} A_{2}^{2} A_{2}^{*}=r^{-1} A_{2} A_{2}^{* 2} A_{2}$
Now it must be proving that $r=1$.

$$
\begin{aligned}
\left\|A_{1}^{*} A_{1}^{2} A_{1}^{*}\right\| & =\left\|r\left(A_{1} A_{1}^{* 2} A_{1}\right)\right\| \\
& =\mid r\| \| A_{1} A_{1}^{* 2} A_{1} \| \\
& =\mid r\left\|\left(A_{1}^{*} A_{1}^{2} A_{1}^{*}\right)^{*}\right\|
\end{aligned}
$$

Hence $|r|=1$
Similarly

$$
\begin{aligned}
\left\|A_{2}^{*} A_{2}^{2} A_{2}^{*}\right\| & =\left\|r^{-1}\left(A_{2} A_{2}^{* 2} A_{2}\right)\right\| \\
& =\mid r^{-1}\left\|A_{2} A_{2}^{* 2} A_{2}\right\| \\
& =\mid r^{-1}\left\|\left(A_{2}^{*} A_{2}^{2} A_{2}^{*}\right)^{*}\right\|
\end{aligned}
$$

Hence $\left|r^{-1}\right|=1$
implies that $r=1$ hence A_{1} and A_{2} are binormal operators.
$\Rightarrow)$ on the other hand it is easy to see that if A_{1} and A_{2} are binormal operators then $A_{1} \otimes A_{2}$ is binormal operator.

We recall $A \in B(H)$. A is called a pseudonormal operator if $A x=\lambda x$ for some $x \in H, \lambda \in \notin$, then $A^{*} x=\bar{\lambda} x$,i.e. .if x is an eigenvector for A with eigenvalue λ then x is an eigenvector for A^{*} with eigenvalue $\bar{\lambda}$. [10]

It is clear that if $\sigma_{p}(A)=\emptyset$ then A is a pseudonormal operator.

Theorem [2-3]

Let $A_{i} \in B\left(H_{i}\right), i=1,2, \ldots, n \quad$ and
$A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n} \neq 0$ on
$H_{1} \otimes H_{2} \otimes \cdots \otimes H_{n} \quad, \quad A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n}$ is pseudonormal operator if and only if each $A_{i}, i=1,2, \cdots, n$, is pseudonormal operator.

Proof:

By induction, it suffices to show that $A_{1} \otimes A_{2} \neq 0$ is pseudo normal if and only if both A_{1} and A_{2} are.
Let $A_{1} \otimes A_{2} \neq 0$ be pseudo normal operator
Let $\quad A_{1} x=\lambda x$ and $A_{2} y=\mu y$

If $\left(A_{1} \otimes A_{2}\right)(x \otimes y)=\lambda \mu(x \otimes y)$
Then $\left(A_{1} \otimes A_{2}\right)^{*}(x \otimes y)=\overline{\lambda \mu}(x \otimes y) \ldots(2-2)$
In (2-1) if $A_{1} x, \lambda x$ are linearly independent then $A_{2} y=\mu y=0$ contradiction hence $A_{1} x, \lambda x$ are linearly dependent $A_{1} x=t \lambda x$ but $A_{1} x=\lambda x$ then $t=1$

In (2-1) $A_{2} y, \mu y$ are linearly independent then $A_{1} x=\lambda x=0$ contradiction Hence $A_{2} y, \mu y$ are linearly independent then $A_{2} y=t^{-1} \mu y$ but $A_{2} y=\mu y$ then $t^{-1}=1$

In (2-2)if $A_{1}^{*} x$ and $\bar{\lambda} x$ are linearly independent then $A_{2}^{*} y=\bar{\mu} y=0$ then $\mu=0$ contradiction.

Hence $A_{1}^{*} x$ and $\bar{\lambda} x$ are linearly dependent $A_{1}^{*} x=r \bar{\lambda} x$
Similarly
If $A_{2}^{*} y$ and $\bar{\mu} y$ are linearly independent then $A_{1}^{*} x=\bar{\lambda} x=0$ then $\lambda=0$ contradiction. Hence $A_{2}^{*} y$ and $\bar{\mu} y$ are linearly dependent $A_{2}^{*} y=r^{-1} \bar{\mu} y$

It is clear $t=r=1$
\Rightarrow) It is clear that If A_{1} and A_{2} are pseudo normal operators then $A_{1} \otimes A_{2}$ is pseudo normal operator.

3-An operator $A \in B(H)$ is called an * - paranormal operator, if $\left\|A^{*} x\right\|^{2} \leq\left\|A^{2} x\right\|$ for every unit vector $x \in H$. [13]

Proposition [3-1]

If A_{1} and A_{2} are $*$-paranormal operators then so is $A_{1} \otimes A_{2}$.

Proof:

Since A_{1} and A_{2} are $*$-paranormaloperator s ,then
$\left\|A_{1}^{2} x\right\| \geq\left\|A_{1}^{*} x\right\|^{2}$ and $\left\|A_{2}^{2} y\right\| \geq\left\|A_{2}^{*} y\right\|^{2}$
$\left\|A_{1 x}^{2}\right\|\left\|A_{2}^{2} y\right\| \geq\left\|A_{1}^{*} x\right\|^{2}\left\|A_{2}^{*} y\right\|^{2}$
$\left\|\left(A_{1} \otimes A_{2}\right)^{2}(x \otimes y)\right\| \geq\left\|\left(A_{1} \otimes A_{2}\right)^{*}(x \otimes y)\right\|^{2}$
Hence $A_{1} \otimes A_{2}$ is $*$-paranormal.

Remark [3-2]

If $A_{1} \otimes A_{2}$ is $*$-paranormal operator, then it may not be true that A_{1} and A_{2} are *-paranormaloperators, for example:-

Let $H=\ell_{2}(\not), \quad A: H \rightarrow H$ define as follows:- $A_{1}\left(x_{1}, x_{2}, \ldots\right)=\left(0,0, x_{2}, 0,0, \ldots\right)$
It is easily checked that
$A_{1}^{*}\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{3}, 0,0, \ldots\right)$
Let $x=\left(x_{1}, 0, x_{3}, x_{4}, \ldots,\right)$ then $A_{1} x=(0,0,0 \ldots)$
$A_{1}^{2} x=0 \quad$ and $\quad\left\|A_{1}^{2} x\right\|=0$
Also $A_{1}^{*} x=\left(0, x_{3}, 0, \ldots\right)$ and $\left\|A_{1}^{*} x\right\|=\left|x_{3}\right|^{2}$
It is clear that A_{1} is not * - paranormaloperator

Next, Let A_{2} be the unilateral shift operator defined on the Hilbert space $\ell_{2}(\phi)$ by $A_{2}\left(y_{1}, y_{2}, \ldots\right)=\left(0, y_{1}, y_{2}, \ldots\right)$. Recall that $A_{2}^{*}\left(y_{1}, y_{2}, \ldots\right)=\left(y_{2}, y_{3}, \ldots\right)$.Let $y=\left(y_{1}, 0,0, \ldots\right)$ one can easily check that
$\left\|A_{2}^{*} y\right\|^{2}=\left\|A_{2}^{*}\left(y_{1}, 0, \ldots\right)\right\|^{2}=|0|^{2}+|0|^{2}+\ldots=0$
And

$$
\begin{aligned}
\left\|A_{2}^{2} y\right\| & =\left\|A_{2}\left(A_{2} y\right)\right\|=\left\|A_{2}\left(0, y_{1}, o, \ldots\right)\right\| \\
& =\sqrt{|o|^{2}+\left|y_{1}\right|^{2}+|0|^{2} \ldots} \\
& =\left|y_{1}\right|=\|y\| .
\end{aligned}
$$

Suppose y is unit vector, i.e. $\|y\|=1$, Thus A_{2} is $*$-paranormal operator Moreover
$\left\|A_{1}^{2} \otimes A_{2}^{2}(x \otimes y)\right\|=\left\|A_{1}^{2} x\right\|\left\|\left.\left|A_{2}^{2} y \|=0 \cdot\right| x_{1}\right|^{2}=0\right.$
and
$\left\|A_{1}^{*} \otimes A_{2}^{*}(x \otimes y)\right\|=\left\|A_{1}^{*} x\right\|\left\|A_{2}^{*} y\right\|=\left|x_{3}\right|^{2} \cdot 0=0$
Hence $A_{1} \otimes A_{2}$ is $*$-paranormal operator.
Recall that an operator $A \in B(H)$ is θ-adjoint if $A^{*}=e^{i \theta} A$ where $\theta \in \mathfrak{R}$ [7]

Theorem [3-3]

Let $\quad A_{i} \in B\left(H_{i}\right), \quad i=1,2, \ldots, n \quad$ and $A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n} \neq 0 \quad$ on $\quad H_{1} \otimes H_{2} \otimes \cdots \otimes H_{n}$ ifeach $A_{i}, i=1,2, \cdots, n$, is θ-adjoint operator then $A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n}$ is θ-adjoint operator.

Proof:

By induction, it suffices to show that $A_{1} \otimes A_{2} \neq 0$ is θ-adjoint if A_{1} and A_{2} are θ-adjoint operators.
If $A_{1}^{*}=e^{i \theta_{1}} A_{1}$ and $A_{2}^{*}=e^{i \theta_{2}} A_{2}$ then $A_{1}^{*} \otimes A_{2}^{*}=e^{i \theta_{1}} A_{1} \otimes e^{i \theta_{2}} A_{2}$ hence $\left(A_{1} \otimes A_{2}\right)$ is $\theta_{1}+\theta_{2}$-adjoint operator.

References

1- Brown, A. and Pearcy," spectra of tenser product of operators", Proc.Math.Soc. 17 (1966)
(162-166)
2- Campbell, S."Linear operators for which T^{*} TandTT* commute
"Proc.Amer.Math.Soc. V. 34 NO. 1 (1972) 177-180.
3- Douglas, R."Banach Algebra Techniques in operator theory" New York and London (1972).

4 - Duggal, B.P. "Tensor Product of operators strong sta6ility and \mathbb{P}-hyponormality" Glasgow Math. J. 42 (2000) 371-381.
5- Duggal, B. P.and Jeon, H. "On Operators with an Absofute Value condition" J.Korean Math. Soc. [To appear]
6- Ehsan, R. "Some Generalization of SNormal Operators" M.Sc. Thesis, college of Science, University of Baghdad, 2000.
7-Hamed, N."Jordan*- derivations on $B(H)$ "PhD Thesis, college of Science, University of Baghdad, 2002.
8-Istràtesca, V. "Introduction to Cinear operator theory" Marcel Dekker, ING. New York and Basel 1981.
9-Jinchuan, H. "On the tensor products of operators "Act. Math.Sin. New series V.9, NO. 2 (1993) 195-202.
10-Naji, S. 'Some generalized of hyponormal operators "M.Sc. thesis, college of Science, University of Baghdad, 2000.
11-Rahly, J.H.C."Posinormal operators."J. Math. Soc.Japan, 46 (1994) 587-605.
12-Robert, I. "Tensor Product of operators "University of British Golumbia [2004]
http://math.forum.org/kb/plain text.jspa? Massage ID=174789 23-41999.

13-Ryoo, C.S.andLeeS.H." Some properties of certain non hyponormal operator, Bull. Korean. Math.Soc. 31 (1994) 133-141.
14-Teishirosaito,"Numerical ranges of tensor products of operators "Tokoku Math. Jou. V.19, NO. 1 (1967) 98-100.
15-"Lectures on operator algebras "SpringerVerlag Berlin, Heidelberg, New York 1970-1971.

