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Abstract 

In this paper we consider system of linear Volterra integro-differential equations of the 

second kind. Two methods are used to solve this system, collocation method and partition 

method. A comparison between approximate and exact results for two numerical examples 

depending on the least-square error is given, to show the accuracy of the results obtained by 

using these methods. For solving examples, we use MatLab program version 6.5. 
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1-Introduction 

One of the uses of approximating 

functions is to replace complicated functions 

by some simpler functions so that many 

operations such as integration can be easily 

performed.  Here, we approximate the 

unknown functions ui(x), i=1, 2, ...,m by 

SiN(x) where 

SiN(x) 



N

k

kik xc
0

)( , i=1, 2, …, m. 

The unknown then being the expansion 

coefficients ci0, ci1,…, ciN, i=1, 2, …,m 

(which depends on N, as may the )(xk ). 

An algorithm based on the above 

approximation is an expansion method. The 

prescribed basis functions )(xk are 

important in expansion method. Moreover, it 

is natural to choose functions )(xk , k=0, 

1,…, N which are linearly independent to 

insure that SiN(x) which is a linear 

combination of )(xk , then determines 

uniquely it’s expansion coefficients ci0, ci1, 

…, ciN, i=1, 2, …,m.  

In order to consolidate the expansion 

method, some error minimizing technique to 

determine the coefficients ci0, ci1, …, ciN, 

i=1, 2, …, m are needed, one of the most 

popular minimizing techniques is the 

weighted residual methods (WRM's) which 

include the {collocation method (CM) and 

partition method (PM)} . 

Expansion method using weighted 

residual technique to find parameters ci0, ci1, 

…, ciN, i=1, 2, …, m has been considered by 

many authors and researchers, Delves and 

Walsh [10], Davis [9], Hall and Watt [12], 

Jain [13], Boyd [5] and Chapra and Canale 

[8]. 

On the other hand Chambers [7] use 

this method to solve first and second kind 

integral equations, approximated solution to 

non-linear VIE of the first kind and integro-

differential equation of Fredholm type 

respectively, while Al-Rawi [2], Al-Asadi 

[1] and Kareem [14] applied this method to 

treat first kind integral equation of 

convolution type, non-linear VIE’s of first 

kind and linear VIDE’s respectively. 

In this paper, we use the WRM's for a 

first time to find the solution of a system of 

linear Volterra integro-differential equations 

of the second kind (VIDEK2) of order n  

[ 





1

0

)(
n

s

s

vs

n DxpD ] )(xu i = )(xf i 


m

j

x

a

jvj dttutxk
1

)(),( , 

i=1, 2, …,m, RbabaIx  ,  ];,[  ............... (1) 

with initial conditions: 

 0)( ii uau  , 

1)( ii uau  ,., )1(

)1( )( 

  ni

n

i uau ; i=1, 2, , m.   

 .................. (2) 

where m ; if , i=1, 2, …, m are 

continuous functions on I and ijk , i, j=1, 2, 

…, m denotes given continuous functions, 

while )(xui , i=1, 2, …, m are the unknown 

functions to be determined. This work is 

organized as follows: 

In section 2, WRM's reformulated to 

be suitable for above systems. 
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In section 3, solution of a system of 

linear VIDEK2 has been proposed, using 

WRM's. 

In section 4, for each of the CM and 

PM, we choose two basis functions (power 

function and Chebyshev polynomial), for 

solving a system of linear VIDEK2. 

In section 5, examples are given for 

illustrations, and comparison between the 

methods and basis functions has been made 

depending on the least square errors. 

Finally, section 6 includes a 

conclusion for this work.  
 

2-Weighted Residual Methods (WRM's)  

The method of weighted residuals has 

its roots in the calculus of variations. It 

forms the basis for analytical techniques 

such as the methods (CM and PM), [5]. 

All of these techniques are described 

to create relatively algebraic functions (often 

polynomials) that can either (1) approximate 

the solution to functional equations whose 

exact solutions are unknown or are overly 

complicated, or (2) give approximate 

relationships to fit a function through a 

series of data points.[5] 

When using these techniques we 

realize that there will be a discrepancy 

between the approximating function and the 

exact solution to the functional equation 

being solved or the relationship passing 

exactly through the data points being 

treated. The discrepancy is quantified by 

residual usually defined at several selected 

points in the domain of the function. If the 

functions are being used to fit a relationship 

through a series of data points, the residuals 

are usually evaluated at the data points 

themselves. If the functions are to be 

approximations to solutions of functional 

equations, the residuals are evaluated at 

locations distributed conveniently over the 

domain of the problem. 

The analyst’s goal is to achieve the 

best possible agreement by minimizing the 

residuals. This can be achieved in two ways: 

 The approximation can be improved by 

increasing the complexity of the 

algebraic function. 

 The analyst can optimize the function’s 

constants to improve the fit. 

In this section we try to reformulate 

the WRM to solve a system of linear 

VIDEK2 as follows: 

Consider the functional equation given 

by: 

)()]([ xfxuT iii  , xD, i=1, 2, , m, .......... (3) 

where iT , i=1, 2, …,m are given operators 

which maps a set U(uiU) into a set F ( fiF 

are given), and D is the domain of iT . 

To find an approximate solution of the 

equation (3), we assume an approximations 

SiN(x) to the exact solutions ui(x), such that 





N

k

kikiN xcxS
0

),()(   ..............................  (4) 

Where the parameters ci0, ci1, …, ciN to 

be determine and the functions )(xk , k=0, 

1, …, N are prescribed basis functions to be 

chosen. 

Now, by substituting the approximate 

solutions SiN(x) given by (4) into equation 

(3), we get the residue 

),()]([)( xfxSTxR iiNiiN  i=1, 2, ........... (5) 

The residue )(xRiN  depends on x as 

well as on the way that the parameters ci0, 

ci1, …, ciN; i=1, 2, …, m  are chosen, 

therefore equation (5) can be written on the 

form 

),()]([),( xfxSTcxR iiNiiN  i=1,2,…,m 

 .................. (6) 

where c =( ci0, ci1, …, ciN  ),  i=1, 2, …, m. 

It is obvious that when 0),( cxRiN , 

then the exact solution is obtained, therefore 

and throughout this section we shall try to 

minimize ),( cxRiN in some sense. In this 

work, we set the weighted integral of 

),( cxRiN equal to zero, i.e. 

 
D

iNi dxcxRxw 0),()( , .................... (7) 

where )(xwi are a prescribed weighted 

function, the technique described by (5) is 

call weighted residual methods, by which 

the optimal values of c ’s that minimize 

),( cxRiN , is determine. We now describe a 

few well-known methods of the weighted 

residual methods to be determine the 
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arbitrary parameters ci0, ci1, …, ciN ; i=1, 2, 

…, m in (4). 
 

2.1 Collection Method(CM), [4,8,9,13]:    

 This method can be used to calculate 

the parameters ci0, ci1, …, ciN ; i=1, 2, …, m 

which minimize ),( cxRiN , i=1, 2, …,m. The 

main idea behind the collocation method is 

the parameters ci0, ci1, …, ciN ; i=1, 2, …, m 

are to be found by foreseeing that the 

residual ),( cxRiN  vanishes at given set of  

N+1 points in the domain D. 

Mathematically, this can be described as 

follows: Let us choose N+1 distinct points 

x0, x1, …, xND and define the weighted 

functions as )()( jj xxxw  , j=0, 1, …, N 

where  represent the unit impulse function 

which vanishes everywhere except at x=xj, 

j=0, 1, …, N. This means that   

    
   if       1

   if      0
)(












j

j

j
xx

xx
xx  

  for j=0, 1, …, N. 

The collocation equations become 

  
D

iNj dxcxRxx 0),()( , 

this can be written as 

0),( cxR jiN , i=1, 2, m; j=0,1,…, N.  

 ................. (8) 

This criterion is thus equivalent to 

putting ),( cxRiN  equal to zero at N points in 

the domain D.  Moreover, the distribution of 

the collocation points on D is arbitrary; 

however in practice we describe the 

collocation points uniformly on D. 

 The equation (8) will provide us by 

m(N+1) simultaneous equations to 

determine the parameters ci0, ci1, …, ciN ; 

i=1, 2, …, m. 
 

2.2 Partition Method (PM):[4, 13] 

In this method the domain D is divided 

into N+1 non-overlapping sub-domains Dj, 

j=0, 1, …, N with the weighted functions is 

chosen as follows: 












j

j

j
Dx

Dx
xw

   if      0

   if      1
)(  for j=0, 1, …, N. 

 Hence the equation (3) is satisfied in 

each of the sub-domains Dj, therefore 

equations (4) become 

  

jD

iN dxcxR 0),( , j=0, 1, …, N .....  (9) 

 We note that the size of one or more 

sub-domains decrease as N is increase with 

the result that the equation (5) is satisfied on 

the average in smaller and smaller sub-

domains, and hence the residue in equation 

(6) approaches zero as  N . 
 

3 Solution of a System of Linear VIDEK2 

In this section, we apply the weighted 

residual methods described in section 4.2 to 

find an approximate solution of the equation 

1.   

Using operator’s forms, this system 

can be written as in equation (5), where the 

operators Ti are defined as: 

)]([ xuT ii [ 





1

0

)(
n

s

s

is

n DxpD ]ui(x)-




m

j

x

a

jij dttutxk
1

)(),( , i=1, 2, …,m ...... (10) 

The unknown functions )(xui  is 

approximated by )(xS iN  which is given by 

equation (4). Now the approximate solution 

(4) substituting in the system (10) to obtain 

equation (6), where  

)]([ xST iNi [ 





1

0

)(
n

s

s

is

n DxpD ]

 
 


N

k

kjk

N

k

m x

a

ijkik dttctxkxc
00 1j

 ))(),(()(  . 

From equation (6) we have the 

following residual equations 

 ),( cxRiN [ 





1

0

)(
n

s

s

is

n DxpD ]

 
 


N

k

kjk

N

k

m x

a

ijkik dttctxkxc
00 1j

 ))(),(()(  - )(xf i ,  

zi=1, 2, …, m; (N>n if a0). ......... (11) 

Here, we use only one equation in the 

system which contains all the unknowns 

u1(x), u2(x), …, um(x) to find the unknowns 

(if there is no such equation, we collect any 

number of equations in the system to obtain 

the desired equation).  
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If we chose equation number v from 

equation (11) with letting ci0=fi(a), i=1, 2, 

…, m if a0 and )0()(d

iid uc  , i=1, 2, …, m; 

d=0, 1, …, n-1 if a=0 then we get 
  

 ),( cxRvN [ 
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0

)(
n

s

s
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n DxpD ]
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k
kvk xc



 )( dtctxk
m

j
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1

0

 

 

  

 

m

vj
j

N

k

x

a

kvjjk dtttxkc
1

)(),(


 )(xfv




m

z

z txG
1

),( . .....................................  (12) 

where 
1

0

0

0

0

1
( )

0

( ) ( ) ( )

( , ) ( )    if   for a 0

( ) ( , ) ( )                      if  

( , )

(0) ( ) ( )

n
n s
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s

x

vv

a

x

z vz

a

z
n

d n s

v vs d

s

f a D p x D x

k x t t dt z v

f a k x t t dt z v

G x t

u D p x D x
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( )

0 0

 

( , ) ( )  if  for a 0 

(0) ( , ) ( )              if  

n

d

x

vv d

xn
d

z vz d

d

k x t t dt z v

u k x t t dt z v





























   

 
          





 

 

and 

 









0   if         

0  if          1

an

a
 . 

To show that the system (11) has a 

unique solution, we must find the 

Wronskian W(x) of the equation (12) where  

 W(x)= MNN CCCCC 
 ...... 121 M

M, 
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,   

q=1, 2, …, v-1,v+1, …, m; q1=1, 2, …, N, 

and  

 )1(  NmM . 

If  W(x)0, then the system has a unique 

solution. 

Now, the problem is how to find the 

optimal values of ic , 1, ic , …, ciN ; i=1, 2, 

…, m which minimize the residual ),( cxRvN  

in (12), this can be achieve by using the 

WRM’s. 

 

3.1 CM: 

Apply the same idea in subsection 2.1; 

we get the following linear system of 

equations from equation (12)  

 
1

0

( ( ) ) ( ) |
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n
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vs k x x
N

s

vk x

k

vv k

a
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k x t t dt
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1

)(),(






 = )( xfv





m

z

z txG
1

),(   ........................................ (13) 

where  x=h, =1, 2, …, M, and h is to be 

chosen.  

Solve the resulting linear system by 

using Gauss elimination method to find ic , 

1, ic , …, ciN, i=1, 2, …, m. 

 

3.2 PM: 

As in subsection 2.2, we get the 

following linear system of equations from 

equation (12) 
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dxdtttxkxDxpDc
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,  ...................................... (14) 

where  x=h, =1, 2, …, L, and h is 

to be chosen.  

 Solve above linear system for ic , 

1, ic , …, ciN, i=1, 2, …, m by using Gauss 

elimination. 
 

4 Choices of Basis Functions: 

4.1 Solution Technique for System of 

Linear VIDEK2 Using Power 

Functions: 

Let  ,)( k

k xx   for k=0,1, …, N, in 

equation (4). Substitute these values in 

equations (13) and (14) respectively, where 

the integrals in this approaches have been 

evaluated numerically using composite 

trapezoid rule or composite Simpson 

method, we get: 

4.1.1 CM: 
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4.1.2 PM: 
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 ................ (16) 

Note: In subsection 4.1, the involved 

integral appears computed numerically by 

using composite trapezoid method or 

composite Simpson method, {for composite 

trapezoid and Simpson methods, see [3, 6 

and 15]. 
 

4.2
 

Solution Technique for System of 

Linear VIDEK2 Using Chebyshev 

polynomials: 

Let  ),()( bxTx kk   , k=0,1, …, N, 

in equation (4) for all axb where )(xTk ’s 

are the Chebyshev polynomials defined in 

chapter one, subsection 1.4.1. Substitute  

 ),()( bxTx kk    in equations (13) and 

(14) respectively, we get 
 

4.2.1 CM: 
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Using open Gauss-Chebyshev formula [3, 

6 and 15] to calculate the integrals in 

equation (17) we get: 
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Using closed Gauss-Chebyshev formula 
[3, 6 and 15] to calculate the integrals in 

equation (17) we get 
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and rV , sW  defined above. 
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Using open Gauss-Chebyshev formula to 

calculate the integrals in equation (22) we 

get 
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and rV  and rW  defined in subsection 4.2.1. 

Using closed Gauss-Chebyshev formula to 

calculate the integrals in equation (22) we 

get: 
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and rV  and rW  defined in subsection 4.2.1. 
 

5 Numerical Examples: 

Here, we present two examples for a 

system of linear VIDEK2’s solved by 

WRM’s (CM and PM), and we use Matlab 

version 6.5 for finding a solution. 
 

Example 5.1: 

Consider the following linear system 

of Volterra integro-differential equations of 

the second kind, with initial solutions 

0)0(1 u  and 0)0(2 u : 

 )()( 11 xuxu
343

31
743

2 xxx
xx  + 

x

dtttu
0

1 )( +  

                        dttuxt

x

)(2

0

3

  

 )()( 22 xuxu
5

2

32
24

543
2 xxx

xx  +

x

dttxtu
0

1 )(  

                        + dttuxt

x

)(2

0

3

  

Solution: 

Assume that the approximate solutions 

are in the form 





2

0

)()(
k

kikiN xcxS  , i=1, 2, 

Where ( ) k

k x x  , )(xTk  (Chebyshev 

polynomial of the second kind), k=0,1,2, 

and from initial solutions we obtain c10=0, 

c20=0. 

After solving this system by all above 

methods, it can be found the coefficients as:  

c11=c12=1, c21=0, c22=2. 

Thus, the solution of this system is 

 2

1211101 )( xcxccxu
2xx   and 

2

2221202 )( xcxccxu  = 22x . 

This is the exact solutions to the 

Example 5.1. 
 

Example 5.2: 

Consider the following linear system 

of Volterra integro-differential equations of 

the second kind, with the initial solutions 

1)0(1 u , 1)0(2 u , 1)0(1 u  and 

0)0(2 u : 

 )()sin()()( 111 xuxxuxxu )(1 xf  




x

tx dttue
0

1

2 )( + 
x

dttuxt
0

2

3 )(

 )()cos()()( 12

2

2 xuxxuxxu )(2 xf


x

dttut
0

1

2 )( +  

x

dttuxtx
0

2

22 )()( , 

where  

 )(1 xf  1)sin(xexe xx
5

4

1
x

)sin(2 4 xx  )cos(12)cos(6 3 xxxx  

  xxx 12)sin(12 2  , 

and 

 )(2 xf  )sin(4)cos(3 2 xxx

 xexx 22 )(cos2  43

3

1
222 xxexe xx

  

  )sin(2 3 xx ).cos(4)sin(4 2 xxxx   

The exact solutions for this system are 
xexu )(1  and )cos(21)(2 xxu  . 

Solution: 

1- Assume that the approximate solutions 

are in the form 

 



3

0

)()(
k

kikiN xcxS  , i=1, 2, 
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Table (5.1) 

Show a comparison between the exact solutions xe  and the numerical 

solution u1(x) of two types, which depends on least square error. 
 

x 
)(1 xu  

Exact CM PM 

0 1 1 1 

0.1 1.105170918 1.105063967 1.105621608 

0.2 1.221402758 1.221237941 1.223154686 

0.3 1.349858808 1.349995029 1.353601611 

0.4 1.491824698 1.492808339 1.497964761 

0.5 1.648721271 1.651150978 1.657246514 

0.6 1.822118800 1.826496053 1.832449249 

0.7 2.013752707 2.020316673 2.024575343 

0.8 2.225540928 2.234085945 2.234627175 

0.9 2.459603111 2.469276976 2.463607124 

1 2.718281828 2.727362874 2.712517566 

L.S.E.  3.182410
-4

 4.833310
-4

 

 

 where k

k xx )( , k=0, 1, 2, 3 and from 

initial solutions we obtain c10=1, c11=1, 

c20=-1, c21=0. 

 After solving this system by above 

methods, we get the following solutions of 

the system: 

(i) Using CM: 

  32

1
2008

493

1019

491
1)( xxxxu  , 

 .
184793

10

29741

4
1)( 32

2 xxxu   

(ii) Using PM: 

  32

1
1682

281

33

18
1)( xxxxu  , 

 .
78557

9

27532

9
1)( 32

2 xxxu  . 

Note: for comparison between exact 

solutions and approximate solutions of 

Example 5.2 where k

k xx )( , k=0, 1, 2, 3 

see Tables (5.1) and (5.2).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table (5.2) 

Show a comparison between the exact solutions 1-2cos(x) and the numerical solution   

u2(x) of two types, which depends on least square error. 

x 
)(2 xu  

Exact CM PM 

0 -1 -1 -1 

0.1 -0.999996954 -1.000001291 -1.000003154 

0.2 -0.999987815 -1.000004947 -1.000012159 

0.3 -0.999972584 -1.000010643 -1.000026327 

0.4 -0.999951261 -1.000018056 -1.000044971 

0.5 -0.999923846 -1.000026859 -1.000067402 

0.6 -0.999890339 -1.000036729 -1.000092935 

0.7 -0.999850739 -1.000047341 -1.000120881 

0.8 -0.999805048 -1.000058370 -1.000150553 

0.9 -0.999753265 -1.000069491 -1.000181264 

1 -0.999695390 -1.000080380 -1.000212326 

L.S.E.  3.890010
-7

 7.170010
-7
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2- Assume that the approximate solutions 

are in the form 





3

0

)()(
k

kikiN xcxS  , i=1, 2,  

where  ),()( bxTx kk   , k=0, 1, 2, 3 and 

from initial solutions we obtain c10=1, 

c11=1, c20=-1, c21=0. 

After solving this system by above 

methods, we get the following solutions of 

the system: 

(i) Using CM: 

  32

1
2008

493

1019

491
1)( xxxxu  , 

 .
184793

10

29741

4
1)( 32

2 xxxu   

(ii) Using PM: 

  32

1
1682

281

33

18
1)( xxxxu  , 

 .
78557

9

27532

9
1)( 32

2 xxxu   

Note: for comparison between exact solutions 

and approximate solutions of Example 5.2 

where  ),()( bxTx kk   , k=0, 1, 2, 3 see 

Tables (5.3) and (5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table (5.3) 

Show a comparison between the exact solutions xe  and the numerical 

solution u1(x) of two types, which depends on least square error. 

x 
)(1 xu  

Exact CM PM 

0 1 1 1 

0.1 1.105170918 1.105063967 1.105621608 

0.2 1.221402758 1.221237941 1.223154686 

0.3 1.349858808 1.349995029 1.353601611 

0.4 1.491824698 1.492808339 1.497964761 

0.5 1.648721271 1.651150978 1.657246514 

0.6 1.822118800 1.826496053 1.832449249 

0.7 2.013752707 2.020316673 2.024575343 

0.8 2.225540928 2.234085945 2.234627175 

0.9 2.459603111 2.469276976 2.463607124 

1 2.718281828 2.727362874 2.712517566 

L.S.E.  3.182410
-4
 4.833310

-4
 

 

 

 

Table (5.4) 

Show a comparison between the exact solutions )cos(21 x  and the numerical 

solution   u2(x) of two types, which depends on least square error 

x 
)(2 xu  

Exact CM PM 

0 -1 -1 -1 

0.1 -0.999996954 -1.000001291 -1.000003154 

0.2 -0.999987815 -1.000004947 -1.000012159 

0.3 -0.999972584 -1.000010643 -1.000026327 

0.4 -0.999951261 -1.000018056 -1.000044971 

0.5 -0.999923846 -1.000026859 -1.000067402 

0.6 -0.999890339 -1.000036729 -1.000092935 

0.7 -0.999850739 -1.000047341 -1.000120881 

0.8 -0.999805048 -1.000058370 -1.000150553 

0.9 -0.999753265 -1.000069491 -1.000181264 

1 -0.999695390 -1.000080380 -1.000212326 

L.S.E.  3.890010
-7

 7.170010
-7
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6 Conclusions: 

In this paper, we use WRM’s (CM and 

PM) for solving a system of linear VIDEK2; 

also we solve two examples by WRM’s 

(CM and PM). In practices, we conclude the 

following remarks: 
 

 In system of linear VIDEK2, if )(xf i , 

i=1, 2, …,m is a polynomials, we get the 

exact solution. 

 If )(xf i  is not a polynomial, we see that 

the approximate solution by power functions 

give a better results than the approximate 

solution by Chebyshev polynomial for a 

system of linear VIDEK2.  

In general, CM gives better results than the 

PM. 
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