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Abstract

In this paper we consider system of linear Volterra integro-differential equations of the
second kind. Two methods are used to solve this system, collocation method and partition
method. A comparison between approximate and exact results for two numerical examples
depending on the least-square error is given, to show the accuracy of the results obtained by
using these methods. For solving examples, we use MatLab program version 6.5.
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1-Introduction

One of the uses of approximating
functions is to replace complicated functions
by some simpler functions so that many
operations such as integration can be easily
performed.  Here, we approximate the
unknown functions ui(x), i=1, 2, ...m by
Sin(X) where

SiN(x):ZN:cikgzﬁk(x), i=1,2, ..., m

The unknown then being the expansion
coefficients cip, Cit,..., c¢iny 1=1, 2, ...m
(which depends on N, as may the ¢,(x)).

An algorithm based on the above
approximation is an expansion method. The
prescribed  basis  functions ¢, (x) are

important in expansion method. Moreover, it
is natural to choose functions ¢, (x), k=0,

1,..., N which are linearly independent to
insure that Siy(x) which is a linear

combination of ¢, (x), then determines

uniquely it’s expansion coefficients Cip, Cis,
., CiN, 1=1, 2, ... m.

In order to consolidate the expansion
method, some error minimizing technique to
determine the coefficients cip, Ci1, ..., cin,
i=1, 2, ..., m are needed, one of the most
popular minimizing techniques is the
weighted residual methods (WRM's) which
include the {collocation method (CM) and
partition method (PM)} .

Expansion method using weighted
residual technique to find parameters cio, Cis,
..., ¢iny 1=1, 2, ..., m has been considered by
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many authors and researchers, Delves and
Walsh [10], Davis [9], Hall and Watt [12],
Jain [13], Boyd [5] and Chapra and Canale
[8].

On the other hand Chambers [7] use
this method to solve first and second kind
integral equations, approximated solution to
non-linear VIE of the first kind and integro-
differential equation of Fredholm type
respectively, while Al-Rawi [2], Al-Asadi
[1] and Kareem [14] applied this method to
treat first kind integral equation of
convolution type, non-linear VIE’s of first
kind and linear VIDE’s respectively.

In this paper, we use the WRM's for a
first time to find the solution of a system of
linear Volterra integro-differential equations
of the second kind (VIDEK?2) of order n

n-1 m X
[D"+Y P (0D*u; () = F,(x) + .t et

s=0 B
i=1,2,...,m xel=[ab]; abeR ............ 1)
with initial conditions:

u; (@) =y,
ui(a) =uy '-lui(nil) (a) = Ui(n-y » i=1,2,, m.

.................. (2)

where meN; f., i=l, 2, ..., m are
continuous functions on I and k;, i, j=1, 2,

..., m denotes given continuous functions,
while u,(x), i=1, 2, ..., m are the unknown
functions to be determined. This work is
organized as follows:

In section 2, WRM's reformulated to
be suitable for above systems.



In section 3, solution of a system of
linear VIDEK2 has been proposed, using
WRM's.

In section 4, for each of the CM and
PM, we choose two basis functions (power
function and Chebyshev polynomial), for
solving a system of linear VIDEK?2.

In section 5, examples are given for
illustrations, and comparison between the
methods and basis functions has been made
depending on the least square errors.

Finally, section 6 includes a
conclusion for this work.

2-Weighted Residual Methods (WRM's)

The method of weighted residuals has
its roots in the calculus of variations. It
forms the basis for analytical techniques
such as the methods (CM and PM), [5].

All of these techniques are described
to create relatively algebraic functions (often
polynomials) that can either (1) approximate
the solution to functional equations whose
exact solutions are unknown or are overly
complicated, or (2) give approximate
relationships to fit a function through a
series of data points.[5]

When using these techniques we
realize that there will be a discrepancy
between the approximating function and the
exact solution to the functional equation
being solved or the relationship passing
exactly through the data points being
treated. The discrepancy is quantified by
residual usually defined at several selected
points in the domain of the function. If the
functions are being used to fit a relationship
through a series of data points, the residuals
are usually evaluated at the data points
themselves. If the functions are to be
approximations to solutions of functional
equations, the residuals are evaluated at
locations distributed conveniently over the
domain of the problem.

The analyst’s goal is to achieve the
best possible agreement by minimizing the
residuals. This can be achieved in two ways:

® The approximation can be improved by
increasing the complexity of the
algebraic function.
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® The analyst can optimize the function’s
constants to improve the fit.

In this section we try to reformulate
the WRM to solve a system of linear
VIDEK2 as follows:

Consider the functional equation given
by:

T.[u;(X)]= f,(x), xeD, i=1, 2, , m, .......... 3)
where T,, i=1, 2, ...,m are given operators

which maps a set U(u;€U) into a set F (fieF
are given), and D is the domain of T, .

To find an approximate solution of the
equation (3), we assume an approximations
Sin(X) to the exact solutions uj(x), such that

Sin(x) = Zcik¢k (%),

Where the parameters Cio, Ci1, ..., cin tO
be determine and the functions ¢, (x), k=0,
1, ..., N are prescribed basis functions to be
chosen.

Now, by substituting the approximate
solutions Siy(x) given by (4) into equation
(3), we get the residue
Rix (X) = Ti[Sin (01— £,(¥),i=1, 2, .covvvnen (5)

The residue R, (x) depends on x as
well as on the way that the parameters cjo,
Ci, ..., cin; 1=1, 2, ..., m are chosen,
therefore equation (5) can be written on the
form

Ry (X,C) =T,[S;, (X)]- f,(x),i=1,2,....m
.................. (6)
where T =( Cio, Ci1, ..., ¢in ), 1=1,2, ..., m.

It is obvious that whenR, (x,C)=0,
then the exact solution is obtained, therefore
and throughout this section we shall try to
minimize R, (X,C)in some sense. In this
work, we set the weighted integral of
Ry (X,C) equal to zero, i.e.

[, 0OR (X,E)AX =0, (7)

where w;(x)are a prescribed weighted
function, the technique described by (5) is
call weighted residual methods, by which
the optimal values of C’s that minimize
Ry (X,C), is determine. We now describe a

few well-known methods of the weighted
residual methods to be determine the
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arbitrary parameters cio, Ci1, ..., cin ; 1=1, 2,
m in (4).

2.1 Collection Method(CM), [4,8,9,13]:

This method can be used to calculate
the parameters cig, Ci1, ..., c¢in; I=1,2, ..., m
which minimize R, (x,C), i=1, 2, ...,m. The
main idea behind the collocation method is
the parameters cig, Ci1, ..., cin; I=1,2, ..., m
are to be found by foreseeing that the
residual R, (x,C) vanishes at given set of
N+1 points in the domain D.
Mathematically, this can be described as
follows: Let us choose N+1 distinct points
Xo, X1, ..., xneD and define the weighted
functions as w;(x) =o(x-¥;),j=0, 1, ...,N
where ¢ represent the unit impulse function
which vanishes everywhere except at x=X;,

j=0, 1, ..., N. This means that
0 if X # X;
S(x—x;)= )
1 if X=X
forj=0, 1, ..., N.

The collocation equations become
ja(x—xj)RiN (x,c)dx =0,

this can be written as
R (X,€)=0,1i=1, 2, m; j=0,1,..., N,
................. (8)
This criterion is thus equivalent to
putting R, (x,C) equal to zero at N points in
the domain D. Moreover, the distribution of
the collocation points on D is arbitrary;
however in practice we describe the
collocation points uniformly on D.
The equation (8) will provide us by
mx(N+1)  simultaneous equations to

determine the parameters Cip, Ci;, ..., Cin ;
i=1,2, ...m

2.2 Partition Method (PM):[4, 13]

In this method the domain D is divided
into N+1 non-overlapping sub-domains D;,

j=0, 1, ..., N with the weighted functions is
chosen as follows:

1 if xeD; )
w;(X) = . forj=0, 1, ..., N.

0 if xgD;
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Hence the equation (3) is satisfied in
each of the sub-domains D;, therefore
equations (4) become

[Ry(x,€)dx=0,j=0, 1, .., N....

b;

We note that the size of one or more
sub-domains decrease as N is increase with
the result that the equation (5) is satisfied on
the average in smaller and smaller sub-
domains, and hence the residue in equation
(6) approaches zeroas N — .

3 Solution of a System of Linear VIDEK2

In this section, we apply the weighted
residual methods described in section 4.2 to
find an approximate solution of the equation
1.

Using operator’s forms, this system
can be written as in equation (5), where the
operators T; are defined as:

Tl (0]=[D" +”i 24 (0D Tui(0)-

j (b, dt, =1, 2, .. (10)
i=la
The unknown functions wu,(x) is

approximated by S, (x) which is given by
equation (4). Now the approximate solution

(4) substituting in the system (10) to obtain
equation (6), where

T[Sy (X)]=[D" "‘i P (X)D°]

Zcmk (0=, j (ky (x, t)ZC,mk ()dt .

=1 a
From equation (6) we have the
following residual equations

Ry, (%,) =[ D" +”Z b (X)D° ]

N m X
D cudh (0= [ (ki
k=0 =1 3
z=1, 2, ..., m; (N>n if a20). ......... (11)
Here, we use only one equation in the
system which contains all the unknowns
u1(X), Uz(x), ..., um(x) to find the unknowns
(if there is no such equation, we collect any
number of equations in the system to obtain
the desired equation).

X, t)ZC]k¢k (t)dt - f,(x),



If we chose equation number v from

equation (11) with letting cip=fi(a), i=1, 2,

., mif a0 and ¢, =u(0), =1, 2, ..., m;
d=0, 1, ..., n-1 if a=0 then we get

Ry (6,8) =[D"+ 3 p. (D*]

s=0

D Cud () - ij\q (x,t) ijk¢kdt —f,(x)

k=7 j=l

+Zm:Gz(x,t):

icvk |:(Dn +HZ_1 pvs (X)DS)¢k (X) _kav (Xlt)¢k (t)dt

iicjk_‘.kw(x t)¢k(t)dt_ f (X)+

j=l k=t
j#v

D G, (X, t) e, (12)
z=1
where
f <a>{[D" .00 a0 -
].kw (x,t)¢0(t)dt} if z=v;fora=0
—fz(a){]kvz (x ,t)¢0(t)dt} if 7 #v
G, (x,t)= :
ZUV“”(O){(D“ +ZPVS(X)D5]¢d x)
—]kw (x,t)g, (t)dt if z=v fora=0
—Zu(" (0){[ x.t)g, (t)dt} if z #v
and

n if a=0"

To show that the system (11) has a
unique solution, we must find the
Wronskian W(x) of the equation (12) where

W(X)=|c; C; .. Ci Ciu - Chlm

{1 if a=0
T=

xMy

(D"~ 3 P (D WA () - K, (x4 ()

"X[(D“ -3 PL (DM - Ikw(x,tm (t)dt]

C(’vfl)x(N+1—r)+I =

dM -1
dXM -1

=1,2, ..., N,

[D" "zpvs(xw.(x) j k (x,t)¢.(t)dt]
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[k (X, D)4, (D)t

%[— j Ky (X, 1)y, (t)dt]

’
C(q “DX(N+1-7)+q

ﬁ(— fac09, (t)dtJ

v-1v+1, ..., m; q1=1,2, ..., N,

g=1 2, ..,
and

M =mx(N+1-7).
If W(x)=0, then the system has a unique
solution.

Now, the problem is how to find the
optimal values of ¢,., ¢, .., ..., cn; 1=1, 2,

., m which minimize the residual R, (x,C)

in (12), this can be achieve by using the
WRM’s.

it

3.1 CM:

Apply the same idea in subsection 2.1;
we get the following linear system of
equations from equation (12)

O X, 0D ),
Cvk e

S Sk 0 Ot

X

kic,k i, (x,. 0, @dt = T, (x,)

m

=36, (K1) o (13)
z=1
M, and h is to be

where X,=ah, a=1, 2, ...,
chosen.
Solve the resulting linear system by

using Gauss elimination method to find c,_,
c CiN; i:1,2,...,m

hr+l2 o0

3.2 PM:

As in subsection 2.2, we get the
following linear system of equations from
equation (12)
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M=z

~
Il

T s=0

m N Xg| X
ZC]kJUkw X t)g, (t dt}dx_'[f (x)dx
j=sk=r  ala
]¢
-y j C 0 OO (14)
7=l g
where X,=ah, =1, 2, ..., L, and h is

to be chosen.
Solve above linear system for c,
C.

ir?
s - cing 1=1, 2, L., m by using Gauss
elimination.

4 Choices of Basis Functions:

4.1 Solution Technique for System of
Linear VIDEK?2 Using Power
Functions:

Let ¢ (x)=x*, for k=0,1, ..., N, in
equation (4). Substitute these values in
equations (13) and (14) respectively, where
the integrals in this approaches have been
evaluated numerically using composite
trapezoid rule or composite Simpson
method, we get:

4.1.1 CM:

N n-1
chk (Dn +Z p\/s(X)Ds)Xk |x:xa
k=t s=0

<

k., (x, it at |-

®

zzcjk j k, (X, t)t“dt =

j=lk=r
J:tv

f,(x,) —iez(xa,t), =12, ...,

z=1

where
fv(a){on(Xa)—Tkw(xa,t)dt} if z=v

- fz(a){ifkw(xa,t)dr}
nz_‘:ué‘”(()){[D" +nz_‘: pvs(x)DS]x‘j
—Zu(” {Ik (%, D)t dt}

fora=0

ifzzv

—fkw(xa,t)t“dt} if 2=v
xex, 0

if z#v

G, (%, t)=

Vol.10(1), June, 2007, pp.84-93

Cuc | {(D" +5 P (0D (0 - J Ky (X, D (t)dt}dx

fora=0

88

Science

4.1.2 PM:

Xg

Cvk J.|:(Dn + nzl pvs(X)DS)Xk

a

M=

- j K, (X, t)tkdt}dx -

a

=~
I
<

¥, f ﬁkw—(x,t)tkdt}dx -
j=lk=r al a
J#V
[f,000x=3" G, (xt)dx, a=1,2, ..., M.
a 2=l g
................ (16)
Note: In subsection 4.1, the involved

integral appears computed numerically by
using composite trapezoid method or
composite Simpson method, {for composite
trapezoid and Simpson methods, see [3, 6
and 15].

4.2 Solution Technique for System of
Linear VIDEK2 Using Chebyshev
polynomials:

Let ¢ (x)=T,(&(x,b)), k=0,1, ..., N,

in equation (4) for all a<x<b where T, (x)’s

are the Chebyshev polynomials defined in
chapter one, subsection 1.4.1. Substitute

$. () =T, (&(x,b)) in equations (13) and
(14) respectively, we get

4.2.1CM:

|7 E R 0D T (),
2.5 x, -
= [ ko (0T (6 x,) )t

kic,k [y 06, 0T, (6 X))t = £, (x.)

m

‘r‘r\l

—ZGZ(xa,t), o=1,2,..,M.....
z=1

Using open Gauss-Chebyshev formula [3,
6 and 15] to calculate the integrals in
equation (17) we get:

(D" + P (DT, (£(x.0)) s,

- |z rkvv(xant)Tk (f(Xr,Xa))



Ma

Z’j: %szfkvj(xa’xr)-rk (f(Xr,Xa)):

ﬂll

f,(x,) —Zm:Gv(xa,t), o=1,2,..,M....(18)

z=1
where
o= Zvk, r o} 2o
" . foraz0
-f (a){fzvskw(x X )} if zzv

6% 0=1

i
ZU(“)(O)[[D"Jip (x)Dij“ —Tivskw(xa,xs)xf} if 2=v
- - e fora=0
_Eu‘“)(O){%‘iVskw(x X )x"} if z#v

................ (19)

Vs :\/(Xs _a)(xa _Xs) )

and
Vr :\/(Xr _a)(xs _Xr) .

Using closed Gauss-Chebyshev formula
[3, 6 and 15] to calculate the integrals in
equation (17) we get

D+Zm (Ex.0))l
Cue | _
- Z rew a't)Tk ( ))
m N
DL 2 Ve O X T (6 %)= F, (%)
j=lk=r r=0
J2v
_ZGV(Xa’t))
z=1
a=1,2, e Moo, (20)
where
ua){pvﬂ(xo,)—%i"wskw(xa,xs)} if 2=v
{ | . } foraz0
-1, EZ"WSkW(xa,xS) if 2y
G, (X, t)=

Zu“‘ {[D +Zp ] q
_;uﬁd)(O){Té"Wskw(xa,xs)xg}

if z#v

and V,, W, defined above.

—72Wk Xgo X)X }lfz v
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4.2.2 PM:

.| +vaS E(X,X,))-
J‘ S=|
a jkv(x,t)rk(g(t,x))dt

a

izcjk jzl:jikvj (x.HT, (é(t,x))dt}dx = Xf f, (x)dx—

Mz

Cuk

Vv

=

=T

j= k=1
]#
Y j G, (X)X, oo (22)
7=l 3
=12, .., M.

Using open Gauss-Chebyshev formula to
calculate the integrals in equation (22) we

N D +vas D )Tk ))
A X=X,

chk T rloy, -

= [ (T (X))ot

®

V, [k, (6 T, (£t )t =

foraz0
if zzv

—72Wk (%, X)X ]lfz v

fora=0

and V, and W, defined in subsection 4.2.1.
Using closed Gauss-Chebyshev formula to

fra=galculate the integrals in equation (22) we

get:
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(D" +vas

DT, (£(x.X,))

J T~ X=X,
zcvk _Z Vr X, -

_I kvv (Xr’t)Tk (g(tlxr))dt

T T
I_ Vr fV(Xr)—Zl—Z"VrG (Xr!t)
r=0 z=1 r=0
o=1,2, .. L eeeeiiiiiiiinnn, (25)
where
i (a){pv.,(x,)—ﬁ"w k(¢ )} if 22v
‘ = fora=0
-f (a){%Z"WSk (%, X )} if z2v
G, (x,.1)= ~
Eu(d)(ﬂ){[DWEp (x)D ]x" —72‘: Wk, (X, X )x"} if z=v
_iu(‘“(O){%i"Wsk (x,,x )x”} if z#v
................ (26)

and V, and W, defined in subsection 4.2.1.

5 Numerical Examples:

Here, we present two examples for a
system of linear VIDEK2’s solved by
WRM’s (CM and PM), and we use Matlab
version 6.5 for finding a solution.

Example 5.1:

Consider the following linear system
of Volterra integro-differential equations of
the second kind, with initial solutions
u,(0)=0 and u,(0)=0:

, B , X3 X X7+X +
U (X)+U (X)=143x+x° -2 -2 -2 jtul(t)dt
3 4 3 3
jxt3u2(t)dt

2 + f xtu, (t)dt

+ j xt?u, (t)dt
0

Solution:

Assume that the approximate solutions
are in the form

S (=30, (9, =1, 2,
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Where ¢ (x)=x*, T,(x) (Chebyshev
polynomial of the second kind), k=0,1,2,
and from initial solutions we obtain c¢10=0,
C20=0.

After solving this system by all above
methods, it can be found the coefficients as:
C11=C12=1, C21=0, C22=2.

Thus, the solution of this system is
U, (X) =C +CyX+Cpx° = X + x? and
U, (X) = Cyy +Cpy X +C,pp X2 = 2X7.

This is the exact solutions to the

Example 5.1.

Example 5.2:

Consider the following linear system
of Volterra integro-differential equations of
the second kind, with the initial solutions
u,(0)=1, u,(0)=-1, u/(0)=1 and
u,(0)=0:

u; (X) + xu; (x) +sin(x)u, (x) = f,(x) +

Ie”tul(t)dt + j xt®u, (t)dt
Uy (X) + x*uj () +cos(x)u, (x) = f,(x)+
Jx‘tzul(t)dt +j(x2 +xt?)u, (t)dt,

where
f,(X) = xe* +e*sin(x) +1- %xf’ +

2x*sin(x) + 6x° cos(x) —12x cos(x) —
12x%sin(x) +12x ,
and
f,(X) = 3cos(x) + 4x sin(x) -

1
2c08%(X) - x%e* + 2x¢" 2" +2-x° - Zx" +

2x°sin(x) — 4xsin(x) + 4x* cos(x).
The exact solutions for this system are
u,(x) =e* and u,(x) =1—2cos(x) .
Solution:

1- Assume that the approximate solutions
are in the form

S ()= 3y (0, =1, 2,



where ¢, (x)=x*, k=0, 1, 2, 3 and from
initial solutions we obtain cio=1, c11=1,
Co0=-1, Cy1=0.

After solving this system by above
methods, we get the following solutions of
the system:

(1) Using CM:

U, (X) =1+ x+ 491 X* + 493 x2,
1019 2008

4 , 10

u,(X) » -1-———Xx"+ X,
29741 184793

Omer M. A. Al-Faour
(i)  Using PM:

u, (X) z1+x+§x2 +&x3,
33 1682

u,(x) ~—1— NI
27532 78557

Note: for comparison between exact
solutions and approximate solutions of
Example 5.2 where ¢, (x) = x*, k=0, 1, 2, 3
see Tables (5.1) and (5.2).

Table (5.1)
Show a comparison between the exact solutions e¢* and the numerical
solution uy(x) of two types, which depends on least square error.

u; (x)

Exact

CM

PM

1

1

1

1.105170918

1.105063967

1.105621608

1.221402758

1.221237941

1.223154686

1.349858808

1.349995029

1.353601611

1.491824698

1.492808339

1.497964761

1.648721271

1.651150978

1.657246514

1.822118800

1.826496053

1.832449249

2.013752707

2.020316673

2.024575343

2.225540928

2.234085945

2.234627175

2.459603111

2.469276976

2.463607124

2.718281828

2.7127362874

2.712517566

3.1824x10*

Table (5.2)

Show a comparison between the exact solutions 1-2cos(x) and the numerical solution
pes, which depends on least square error.

u2(x) of two t

U, (X)

4.8333x10*

-0.999996954

-1.000001291

-1.000003154

-0.999987815

-1.000004947

-1.000012159

-0.999972584

-1.000010643

-1.000026327

-0.999951261

-1.000018056

-1.000044971

-0.999923846

-1.000026859

-1.000067402

-0.999890339

-1.000036729

-1.000092935

-0.999850739

-1.000047341

-1.000120881

-0.999805048

-1.000058370

-1.000150553

-0.999753265

-1.000069491

-1.000181264

-0.999695390

-1.000080380

-1.000212326

3.8900x10”"

91

7.1700x10”"
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2- Assume that the approximate solutions
are in the form

S ()= 3y (0, =1, 2,

where ¢, (x) =T, (£(x,b)), k=0, 1, 2, 3 and
from initial solutions we obtain c3p=1,
C11=1, Cy0=-1, C1:=0.

After solving this system by above
methods, we get the following solutions of
the system:

(i) Using CM:

U, (X) 1+ x+ 491 X* + 493 x2,
1019 2008

Vol.10(1), June, 2007, pp.84-93 Science
u,(x) ~—1— 4 o 10 s
29741 184793
(i)  Using PM:
u, (X) z1+x+§x2 +&x3,
33 1682
u,(x) »-1- > ? > ’

X+ X”.
27532 78557

Note: for comparison between exact solutions
and approximate solutions of Example 5.2

where ¢, (X) =T, (£(x,b)), k=0, 1, 2, 3 see
Tables (5.3) and (5.4).

Table (5.3)
Show a comparison between the exact solutions e¢* and the numerical

solution uy(x) of two types, which depends on least square error.

u; (x)

Exact

CM

PM

1

1

1

1.105170918

1.105063967

1.105621608

1.221402758

1.221237941

1.223154686

1.349858808

1.349995029

1.353601611

1.491824698

1.492808339

1.497964761

1.648721271

1.651150978

1.657246514

1.822118800

1.826496053

1.832449249

2.013752707

2.020316673

2.024575343

2.225540928

2.234085945

2.234627175

2.459603111

2.469276976

2.463607124

2.718281828

2.727362874

2.712517566

3.1824x10™

Table (5.4)

Show a comparison between the exact solutions 1—2cos(x) and the numerical

4.8333x10™

solution uy(x) of two types, which depends on least square error

U, (X)

Exact

-1

-0.999996954

-1.000001291

-1.000003154

-0.999987815

-1.000004947

-1.000012159

-0.999972584

-1.000010643

-1.000026327

-0.999951261

-1.000018056

-1.000044971

-0.999923846

-1.000026859

-1.000067402

-0.999890339

-1.000036729

-1.000092935

-0.999850739

-1.000047341

-1.000120881

-0.999805048

-1.000058370

-1.000150553

-0.999753265

-1.000069491

-1.000181264

-0.999695390

-1.000080380

-1.000212326

3.8900x10”’

7.1700x10”7




6 Conclusions:

In this paper, we use WRM’s (CM and
PM) for solving a system of linear VIDEK?2;
also we solve two examples by WRM’s
(CM and PM). In practices, we conclude the
following remarks:

® In system of linear VIDEK2, if f.(x),
i=1, 2, ...,m is a polynomials, we get the
exact solution.

® If f (x) is not a polynomial, we see that

the approximate solution by power functions
give a better results than the approximate
solution by Chebyshev polynomial for a
system of linear VIDEK?2.

In general, CM gives better results than the
PM.
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