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Abstract  

Modified Statistical Iterative Technique has been adapted to reconstruct satellite images. 

The adopted technique removes some of the assumptions used in the derivation of the Wiener 

filtering solution. Most obviously, the iterative approach we develop will require no assumptions 

about the underlying image generation process. The adapted filter was designed for 

reconstructing satellite images that are blurred with space-invariant blurring function corrupted 

with additive noise.  Different degradation parameters, i.e. different width of blurring function 

and different signal to noise ratio were considered. The results using an adaptive technique were 

compared, quantitatively, using mean square error (MSE). Results shows that this method has 

better performance for reconstructing the degraded satellite images. 
 

Introduction 

In its most general image restoration or 

reconstruction refers to the correction of 

visible defects in observed images. Here, we 

consider an important subclass of image 

reconstruction problems and attempt to 

reverse known systematic distortions that 

can quantified in terms of spatial domain 

impulse or the blurring function "  y,xd ", 

or a frequency domain transfer function 

"  v,uD ". Several simple methods exist for 

removing these known distortions from a 

noiseless image, including direct and 

pseudo-inverse calculations. Unfortunately, 

under even moderate noise conditions, these 

methods may produce unacceptable results.  
 

First, we formalize mathematically the 

degradation model used for this research. 

Consider an ideal (original) image denoted 

by  y,xf  and a known distortion "  y,xd ". 

We model the distortion action using [1,2]: 
)y,x(n)y,x(d)y,x(f)y,x(g   

 .............. (1) 

Where:  y,xg  is the observed (recorded, 

degraded) image, and  y,xn  is the noise 

signal.   represent circular convolution. 

Note that we have implicitly assumed an 

additive and uncorrelated noise. For much of 

the reminder of this work, we find it 

convenient to work in the frequency domain 

and therefore take the Discrete-time Fourier 

Transform (DTFT) on eq.(1) to arrive at:  

       v,uNv,uDv,uFv,uG   ... (2) 

The reconstructed image "  F̂ u,v ", can 

be determined using: 

     v,uHv,uGv,uF̂   

          v,uHv,uNv,uDv,uFv,uF̂   

 .............. (3) 

Image reconstruction may be therefore 

be recast as the problem of finding  v,uH  

such that    v,uFv,uF̂  . 

In the following section, we present a 

statistical reconstruction technique base 

upon the mathematical model of Wiener 

filtering. In section 3, we develop an 

iterative approach to solving the same 

problem. In section 4, we present the 

numerical and pictorial results, and their 

discussion. Finally, conclusion, have been 

presented in section five. 
 

Wiener Filter reconstruction 

An obvious flaw in the direct inverse 

method for image reconstruction (where 

 
 v,uD

1
v,uH   was chosen as the restoration 

filter) is the assumption that the ideal image 

is distorted in a noiseless way. Given some 

knowledge of the noise present in the 

observed image, it is reasonable to assume 

that we can develop a more effective 

reconstruction filter. Specifically, let us 

consider a case where certain statistical 

properties of the noise are known, let us 
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assume access to the autocorrelation 

function and by extension the power spectral 

density "PSD" of the noise. Furthermore, we 

assume the autocorrelation and PSD of the 

ideal image are also known (in at least an 

approximate way) and that the ideal image 

and the observed image are jointly wide 

sense stationary stochastic process. Under 

these circumstances we may derive a Wiener 

filtering solution for the distortion model 

described in the introduction.  

Let us define restoration filter  y,xhw , 

where  1N,.......2,1x  and  2N,.......2,1y . 

Using this filter, we obtain a reconstructed 

image [3]: 

     y,xhy,xgy,xf̂ w  ...................... (4) 

We call  y,xhw  the Wiener filtering 

solution if it is the optimal filter in the sense 

of minimizing the mean squared error "  " 

between the reconstructed image and the 

ideal image. Mathematically [3]: 
      minargy,xh y,xhw  ....................... (5) 

where: 

       


































 
y,x

2

y,x

2 y,xf̂y,xfEy,xeE  .... (6) 

We know the minimum MSE filter 

must satisfy the orthogonality principle, 

which stipulates that the expected error 

between the ideal and reconstructed images 

be (statistically speaking) orthogonal to each 

of the observed points used in forming the 

reconstructed image. This leads to the 

following conditions 

           y,xandy,x0y,xgy,xf̂y,xfE 

 .... (7) 

Substituting in the expression from eq. 

(4) for our reconstructed image, we arrive at 

the following: 

        0y,xgy,xf̂y,xfE   

          0y,xgy,xhy,xgy,xfE w   (8) 

Which implies, using the linearity of 

the expectation operator, that: 

            y,xhy,xgy,xgEy,xgy,xfE w        

 .... (9) 

     y,xhRyy,xxR wyy,xxggfg   ..10 

where fgR  and ggR  are correlation 

functions. We may pull  y,xhw  out of the 

expectations as it is a deterministic signal. 

Taking the DTFT of both sides of eq. (10) 

and solving yields [4]: 

 
 

 v,uP

v,uP
v,uH

gg

fg
w   ............................... (11) 

Where fgP and ggP  are power spectra. 

Recalling from eq.(1) that the observed 

image (g) is obtained by passing the ideal 

image (f) through a deterministic distortion 

filter (d) and adding uncorrelated noise (n), 

we may rewrite eq.(11) in a more useful 

form [3]: 

 
 

 
 
 v,uP

v,uP
v,uD

v,uD
v,uH

f

n2

*

w



  ............ (12) 

Here  v,uPn  and  v,uPf  are the 

PSD's of the ideal image and the 

uncorrelated noise, respectively. Eq.(12) is 

the general form of the Wiener filtering 

solution and has a natural and attractive 

interpretation. Wherever fP  is large relative 

to nP , the ideal image has a large spectral 

component that should be preserved and 

reconstructed. In this case: 

 
 

   v,uD

1

v,uD

v,uD
v,uH

2

*

w   

And the Wiener filter is approximately 

equal to the direct inverse solution. When 

fP is small with respect to nP , the Wiener 

filter response is near zero.  
 

Statistical Iterative Reconstruction 
In this section, we present a second 

reconstruction technique that removes some 

of the assumptions used in the derivation of 

the Wiener filtering solution in eq.(12). 

Most obviously, the iterative approach we 

develop will require no assumptions about 

the underlying image generation process. 

We will therefore not need to estimate the 

power spectrum of the ideal image nor will 

we require information regarding the noise 

present in the image. Let us being the 

development by defining a simple iteration 

[4]: 

      y,xf̂y,xf̂y,xf̂ kk1k   ............. (13) 

where:         y,xf̂y,xdy,xgy,xf̂ kk  ,    

β is a strictly positive constant, and 

 y,xf̂ 1k     is the reconstructed image after 
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k iterations. We may make a weak argument 

for the possible effectiveness of iteration by 

noting that  y,xf , our ideal reconstructed 

image is a fixed point of iteration. 

Unfortunately, we cannot state with 

confidence that  y,xf  is the only fixed point 

in the noiseless case nor can we be sure that 

the fixed point or points are anywhere near 

 y,xf  in the presence of noise.  

To investigate the conditions under 

converges to some image  y,xf , we first 

take the DTFT of both sides in eq. (13) 

yielding: 

        v,uF̂v,uD1y,xGv,uF̂ k1k   

 ............ (14) 

We assume our initial image to be  

  y,x0y,xf̂0   with associated frequency 

domain representation   v,u0y,xF̂0  . 

From this starting point, we may calculate 

our reconstructed image at each iteration 

recursively [5]: 

   v,uGv,uF̂1   
 

        v,uGv,uD1v,uGv,uF̂2   

 ............ (15) 

       

   

3

2

1

1

    

   

F̂ u, v G u, v D u, v G u, v

D u, v G u, v

  

 

 

i.e. the reconstructed image after k iterations 

is given by: 

      






1k

0m

m
k v,uD1v,uGv,uF̂  ... (16) 

From eq.(16), we can easily glean 

 v,uHk , the frequency response of the 

reconstruction filter after k iterations, 

    






1k

0m

m
k v,uD1v,uH  ............ (17) 

To make some statement on the 

convergence properties of eqs. (16) and (17), 

we recall a few fundamental results from the 

calculus of infinite series. The sum [6]: 








1k

om

k
k aS  ........................................... (18) 

Where: a is in general complex valued, 

surely converges as k  if 1a   . When 

this condition is satisfied, we get [6]: 

1

1




k
k

Slim
a

 ...................................... (19) 

Applying this sufficient condition to 

eq. (16), we see that iteration converges if: 

  1v,uD1   ...................................... (20) 

The final reconstructed image is given 

by [7]: 

   
  

 
 v,uD

v,uG

v,uD11

1
v,uGv,uF̂ 


  

 ............ (21) 

 
 v,uD

1
v,uH   .................................. (22) 

Which is the same result as would be 

attained when using the direct inverse. Note 

that the convergence condition in eq. (20) is 

not satisfied if  v,uD  has a spectral null. 

Since  v,uHk  in some cases grow to 

infinity in the limit, we must always stop the 

reconstruction process after a finite number 

of iterations. So the final reconstruction 

filter will have a large, but finite response 

wherever  v,uD  has a spectral null. 

Furthermore, we have the option of stopping 

the iterative process whenever we arrive at 

satisfactory reconstruction and before 

observation noise.  

We may also slightly modify eq.(13) 

so that it will converge even when  v,uD  has 

a spectral null. We accomplish this by 

redistorting the observed image  v,uG  

with the complex conjugate of the distortion 

function  v,uD
*  and using this new image 

as the starting point for our iteration. Let us 

define the redistorted image "  v,uG " as 

[7]: 

     v,uDv,uGv,uG
*    

         v,uDv,uNv,uDv,uFv,uG
*2

  

 ............ (23) 

Redistorted image is now simply the 

ideal image distorted by   2
v,uD . 

Accordingly, we modify eq.(13) to reflect 

this new distortion and arrive at (in the 

frequency domain): 

       v,uF̂v,uD1v,uGv,uF̂ k
2

1k 




   

 ............ (24) 

We can determine a closed-form 

expression for both the reconstructed image 

and the reconstruction filter k iterations [7]: 
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     

m1k

0m

2
k v,uD1v,uGv,uF̂ 









 

       

m1k

0m

2*
k v,uD1v,uDv,uGv,uF̂ 









   

 ............ (25) 

     

m1k

0m

2*
k v,uD1v,uDv,uH 









   

 ............ (26) 

Eqs.(25) and (26) now converge if  

  0v,uD
*   or   1v,uD1

2
  , or in other 

form: 

 









2

v,u
v,uDmax

1
0

 ................................. (27) 

In this case, we see that in the limit, 

the reconstruction filter given in eq.(26), 

will converge to: 

 
 

 



























otherwise0

v,uDif
v,uD

1

v,uH  ... (28) 

This is sometimes referred to as the 

pseudo-inverse solution. Now, if  v,uD  has 

spectral zeros, the ideal image cannot be 

uniquely recovered even under noiseless 

conditions. Clearly, spectral information 

about  v,uF  is permanently deleted when 

the image is distorted. 

Eqs. (25) and (26) are the fundamental 

results of this section. They will be used to 

generate the results presented in section 4. 

We must emphasize that, although we have 

discussed the convergence properties of 

these iterations in some detail, this algorithm 

is not designed to run to convergence. It is 

instead intended to be monitored by a user 

who may qualitatively determine the best 

tradeoff between distortion correction and 

noise amplification. 
 

Results and Discussion 

A satellite grey image of 128*128 

pixels size, Baghdad satellite-image, as 

shown in figure (1-a), was used to check 

the quality of the statistical iterative 

technique:  

The degraded (blurred and noisy) 

satellite images are simulated as follows:  

1. The blurred images were simulated by 

convolving the original satellite image 

with circular function of radius R, two 

values of R =1 and 2 have been taken.  

2. Random noise of Gaussian distribution 

with zero means was added to the 

blurred image (obtained in step 1). 

Different Signal to Noise ratio " SNR ",  

"NR = 10 dB, 20 dB, 30 dB, 40 dB, and 

50 dB, have been taken.  

 

Figure (1-b, to 1-f) shows the original 

image after degraded with circular blurring 

function of radius (R=1) and additive 

Gaussian noise with SNR equal to: 10 dB, 

20 dB, 30 dB, 40 dB, and 50 dB, 

respectively. The figure shows, also, the 

Mean Square Error (MSE) of the 

degraded image with respect to the original 

image. 

Figure (2) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=1 

and SNR=10 dB, after 1 iteration, 10 

iterations, and 30 iterations, respectively.  

Figure (3) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=1 

and SNR=20 dB, after 1 iteration, 10 

iterations, and 30 iterations, respectively 

Figure (4) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=1 

and SNR=30 dB, after 1 iteration, 10 

iterations, and 30 iterations, respectively.  

Figure (5) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=1 

and  

SNR=40 dB, after 1 iteration, 10 iterations, 

and 30 iterations, respectively 

Figure (6) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=1 

and SNR=50 dB, after 1 iteration, 10 

iterations, and 30 iterations, respectively 

Figure (7) shows the MSE for the restored 

images versus no. of iterations for the 

degraded image blurred with circular blur of 

R=1 and with SNR=10 dB, 20 dB, 30 dB, 

40 dB, and 50 dB, respectively. 
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Figure (8-b to and 8-f) shows the original 

image after degraded with circular blurring 

function of radius (R=2) and additive 

Gaussian noise with signal to noise ratio 

(SNR) are 10 dB, 20 dB, 30 dB, 40 dB, and 

50 dB, respectively. The figure shows, also, 

the Mean Square Error (MSE) of the 

degraded image with respect to the original 

image. 

Figure (9) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=2 

and SNR=10 dB, after 1 iteration, 10 

iterations, and 30 iterations, respectively.  

Figure (10) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=2 

and SNR=20 dB, after 1 iteration, 10 

iterations, and 30 iterations, respectively 

Figure (11) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=2 

and SNR=30 dB, after 1 iteration, 10 

iterations, and 30 iterations, respectively.  

Figure (12) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=2 

and SNR=40 dB, after 1 iteration, 10 

iterations, and 30 iterations, respectively 
 

Figure (13) shows the restored images and 

the corresponding MSE for the degraded 

image that blurred with circular blur of R=2 

and SNR=50 dB, after 1 iteration, 10 

iterations, and 30 iterations, respectively 

Figure (14) shows the MSE for the restored 

images versus no. of iterations for the 

degraded image blurred with circular blur of 

R=2 and with SNR=10 dB, 20 dB, 30 dB, 

40 dB, and 50 dB, respectively. 

 

Conclusion 
 

In this paper, we construct an adaptive 

iterative technique for restoring the 

degraded (blurred and noisy) satellite 

images. 

From the above Figures, we can 

conclude that the adopted technique is an 

efficient method to reconstruct the degraded 

images. We also, conclude that the mean 

square error of the reconstructed images 

decreases with the increasing the number of 

iterations until the result convergent. 

Moreover, the convergence, mostly, happens 

after 10 iterations, and also decreased with 

increasing SNR. Finally, we can conclude 

that the ratio of the MSE of the degraded 

image to the corresponding reconstructed 

image at iteration 30 will increased with 

increasing SNR, i.e. this technique has better 

performance for less degradation 

parameters, i.e. with high SNR. 
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(a) (b) (c) 

 MSE = 437.7 MSE = 87 

   

   
(d)  (e)  (f)  

MSE = 50 MSE = 46.6 MSE = 46.2 

   

 Fig.(1)  

 

(a) Original image, "Baghdad" of size 128x128 

(b) Degraded image with circular blur function of R=1 and with additive Gaussian noise 

with SNR=10 dB 

(c) Degraded image with circular blur function of R=1 and with additive Gaussian noise 

with SNR=20 dB 

(d) Degraded image with circular blur function of R=1 and with additive Gaussian noise 

with SNR=30 dB 

(e) Degraded image with circular blur function of R=1 and with additive Gaussian noise 

with SNR=40 dB 

(f) Degraded image with circular blur function of R=1 and with additive Gaussian noise 

with SNR=50 dB 
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(a)  (b)  (c)  

MSE = 114.6 MSE = 104.5 MSE = 99.5 

   

Fig.(2) Reconstructed images of Fig.(1-b) ( i.e. R=1 and SNR = 10 dB) after: 

(a) 1 iteration      (b) 10  iterations   (c) 30 iterations 

   
(a) (b) (c) 

MSE = 54.1 MSE = 45.7 MSE = 45.2 

   

Fig.(3) Reconstructed images of Fig.(1-c)  ( i.e. R=1 and SNR = 20 dB)  after: 

(a) 1 iteration      (b) 10  iterations   (c) 30 iterations 

 

   
(a) (b) (c) 

MSE = 27.5 (b) MSE = 17.1 MSE = 16.6 

   

Fig.(4) Reconstructed images of Fig.(1-d)  ( i.e. R=1 and SNR = 30 dB)  after: 

(a) 1-iteration      (b) 10  iterations   (c) 30 iterations 
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(a)  (b)  (c)  

MSE = 9.4 (b) MSE = 3.9 MSE = 3.7 

 

Fig.(5) Reconstructed images of Fig.(1-e)  ( i.e. R=1 and SNR = 40 dB)  after: 

(a) 1 iteration      (b) 10  iterations   (c) 30 iterations 

   
(a)  (b)  (c)  

MSE = 1.5 (b) MSE = 0.5 MSE = 0.5 

 

Fig.(6) Reconstructed images of Fig.(1-f)  ( i.e. R=1 and SNR = 50 dB)  after: 

(a) 1 iteration      (b) 10  iterations   (c) 30 iterations 
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(a)  (b) 

   
(c) (d) (e) 

 

Fig. (7) Mean Square Errors (MSE) of the Reconstructed images  

Versus no. of iterations for: 

(a) degraded Baghdad image, with circular function of R = 1 and  SNR = 10 dB 

(b) degraded Baghdad image, with circular function of R = 1 and  SNR = 20 dB 

(c) degraded Baghdad image, with circular function of R = 1 and  SNR = 30 dB 

(d) degraded Baghdad image, with circular function of R = 1 and  SNR = 40 dB 

(e) degraded Baghdad image, with circular function of R = 1 and  SNR = 50 dB 
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(a) (b) (c) 

 MSE = 474.2 MSE = 109 
   

   
(d)  (e)  (f)  

MSE = 74.3 MSE = 70.3 MSE = 70 

   

 Fig.(8)  

 

(a) Original image, " Baghdad " of  size 128x128 

(b) Degraded image with circular blur function of R=2 and with additive Gaussian noise with 

SNR=10 dB 

(c) Degraded image with circular blur function of R=2 and with additive Gaussian noise with 

SNR=20 dB 

(d) Degraded image with circular blur function of R=2 and with additive Gaussian noise with 

SNR=30 dB 

(e) Degraded image with circular blur function of R=2 and with additive Gaussian noise with 

SNR=40 dB 

(f) Degraded image with circular blur function of R=2 and with additive Gaussian noise with 

SNR=50 dB 
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(a)  (b)  (c)  

MSE = 115 MSE = 110 MSE = 108 

   

Fig.(9) Reconstructed images of Fig.(8-b) ( i.e. R= 2 and SNR =10 dB) after: 

(a) 1 iteration      (b) 10  iterations   (c) 30 iterations 
 

   
(a) (b) (c) 

MSE = 73.5 (b) MSE = 66.6 MSE = 65.7 

   

Fig.(10) Reconstructed images of Fig.(8-c)  ( i.e. R= 2 and SNR =20 dB)  after: 

(a) 1 iteration      (b) 10  iterations   (c) 30 iterations 

 

   
(a) (b) (c) 

MSE = 57 (b) MSE = 47.6 MSE = 45.3 

   

Fig.(11) Reconstructed images of Fig.(8-d)  ( i.e. R= 2 and SNR =30 dB)  after: 

(a) 1 iteration      (b) 10  iterations   (c) 30 iterations 
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(a)  (b)  (c)  

MSE = 42 (b) MSE = 30.3 MSE = 27.9 

   

Fig.(12) Reconstructed images of Fig.(8-e)  ( i.e. R= 2 and SNR =40 dB)  after: 

(a) 1 iteration      (b) 10  iterations   (c) 30 iterations 

 

   
(a)  (b)  (c)  

MSE = 30.9 (b) MSE = 15.8 MSE = 13 

   

Fig.(13) Reconstructed images of Fig.(8-f)  ( i.e. R= 2 and SNR =50 dB)  after: 

(a) 1 iteration      (b) 10  iterations   (c) 30 iterations 
 

 

 

 

 

 

 

 

 

 

 

 



Journal of Al-Nahrain University                         Vol.10(1), June, 2007, pp 60-72                                       Science 

 

 72 

 

 

 

 

 

 

 

 

 
(a)  (b) 

 

   
(c) (d) (e) 

Fig. (14) Mean Square Errors (MSE) of the Reconstructed images  

Versus no. of iterations for: 

 

(a) degraded Baghdad image, with circular function of R = 2  and  SNR = 10 dB 

(b) degraded Baghdad image, with circular function of R = 2  and  SNR = 20 dB 

(c) degraded Baghdad image, with circular function of R = 2  and  SNR = 30 dB 

(d) degraded Baghdad image, with circular function of R = 2  and  SNR = 40 dB 

(e) degraded Baghdad image, with circular function of R = 2  and  SNR = 50 dB 

 


