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Abstract  

This paper proposes neural network based forward models in iterative inversion algorithms for 

solving inverse problems .Iterative algorithms are commonly used to solve inverse problem. 
 

Typical iterative inversion approaches use 

a numerical forward model to predict the 

signal for a given input data. The desired 

output can then be found by iteratively 

minimizing energy function. The use of 

numerical models is computationally 

expensive, and therefore, alternative forward 

models need to be explored.  

This study proposes two different neural 

network based iterative inverse problem 

solutions. In addition, specialized neural 

networks forward models are proposed and 

used in place of numerical forward models. 

The first approach uses basis function 

networks (radial basis function (RBFNN)) to 

approximate the mapping from the input space 

to the output space. The back propagation 

training algorithm are then used to estimate the 

network parameter. The second approach 

proposes the use of two networks in a 

feedback configuration.  

 

Introduction  

Three classes of problems may be define: : 
(i) Given input x(k) and system P(w), 

determine the output y(k) 

(ii) Given input x(k)and output y(k), determine 

P(w)  . 
(iii) Given system P(w)and the output y(k), 

determine x(k ) . 
The first case presents the forward problem 

while the second and third cases are related to 

inverse problems. An inverse problem is said 

to be well-posed if the solution satisfies three 

properties:  

Existence, Uniqueness and Continuity: the 

solution depends continuously on the input  

The forward problem in general is well-posed 

and is solved analytically or by means of 

numerical modeling. In contrast, inverse 

problems in general are ill-posed, lacking both 

uniqueness and continuous. The algorithm 

starts with an initial estimate of the parameters 

and solves the corresponding forward problem 

to determine the signal (output). The error 

between the measured and predicted signals is 

minimized iteratively by updating the 

parameters. When the error is below a pre-set 

threshold, the   parameters represent the 

desired solution.  

Iterative techniques for inverse problems 

have been developed using numerical models 

[1] [2] based on integral and differential 

formulations [3] [4] to represent the forward 

process. However, all of these methods have 

certain drawbacks. Iterative methods using 

three-dimensional numerical models are, in 

general, computationally intensive, and 

therefore have limited practical application. In 

addition, updating the parameters is also 

difficult, since gradient-based approaches 

cannot be easily applied to solutions of 

numerical models such as finite element 

models (FEM)[5].  

The major objective of this study is the 

development of solutions to inverse problems. 

The proposed solutions are described below 

with a brief discussion of their advantages and 

disadvantages. In addition, we also compare 

the proposed solution methods to existing 

algorithms presented in the literature, and 

present the differences between the existing 

and proposed algorithms. 

 

Neural Network Based Iterative Inversion 

A single neural network is used instead of 

a numerical model as the forward model in the 

inversion approach. The advantages of this 

approach include its speed and simplicity as 

the forward model inherits many of the 

advantages of neural networks.   
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Feedback Neural Networks 

This approach is a modification of 

section2, and uses two neural networks in 

feedback configuration, with one neural 

network modeling the forward problem while 

the other models the inverse problem.   

The major drawback of section 2, 3 is that 

the performance of the neural networks 

depends on the data used in training and 

testing. Mathematically, each of the neural 

networks approximates the function mapping 

the input to the output, and as long the test 

data is similar to the training data, the network 

can interpolate between the training data 

points to obtain a reasonable prediction. 

However, when the test signal is no longer 

similar to the training data, the network is 

forced to extrapolate and the performance is 

seen to degrade. Alternatively, we have to 

consider the design of neural networks that are 

capable of extrapolation. But the design of an 

extrapolation neural network involves several 

issues. For instance, there are no methods for 

ensuring that the error in the network 

prediction is within reasonable bounds during 

the extrapolation procedure.  

Model based methods for extrapolation use 

numerical models in an iterative approach. 

These models are capable of correctly 

predicting the signal, since they solve the 

underlying governing equations. However, 

numerical models are computationally 

intensive, which limits their application. An 

ideal solution therefore would be to combine 

the power of numerical models with the 

computational speed of neural networks, i.e., 

to create neural networks that are capable of 

solving the underlying partial differential 

equations. The use of Hopfield networks 

makes it difficult to solve the inverse problem, 

especially if derivatives need to be computed 

in the inversion procedure. Such networks are 

therefore not considered in this study.  

Our proposed approach is different in that 

we derive the neural network from the point of 

view of the inverse problem. The neural 

network architecture that is eventually 

developed also makes it easy to solve the 

forward problem. The structure of the neural 

network is also simpler than those reported in 

the literature, making it easier to implement in 

parallel in both hardware and software. 

Furthermore, the neural network is not limited 

to a specific type of domain, and does not 

require any training. In fact, the FFNN weights 

are determined solely by the differential 

equation and associated boundary conditions – 

an advantage in solving inverse problems.  

Two neural networks are used in a feedback 

configuration. The forward network predicts 

the signal corresponding to input of inverse 

network while the inverse (characterization) 

network predicts the output signal. The 

forward network replaces the FEM .The 

overall approach to solving the inverse 

problem is as follows. The signal from a defect 

with unknown shape is input into the forward 

network to obtain the corresponding prediction 

of the signal. On the other hand, if the error 

exceeds a threshold, the training mode is 

invoked and the networks are retrained with 

the back propagation algorithm.   

A radial basis function neural network 

(RBFNN) is used as an inverse network for 

characterizing the desired output. The forward 

and inverse networks are first trained using the 

conjugate gradient (CG) method [6][7]. The 

forward network is tested to ensure that it is 

capable of accurately modeling the forward 

process for the training database, and if 

necessary, the network parameters are 

optimized. In addition, the inverse network is 

also trained and its parameters optimized. This 

process is referred to as the training mode. The 

goal of the optimization step is to minimize the 

error due to the inverse RBFNN. Let f be the 

error between the actual signal (actual output) 

and the prediction of the forward network in 

the feedback configuration. In order for f to be 

zero, the characterization network must be an 

exact inverse of the forward network. While 

the functional form of the forward network can 

be derived easily, obtaining its inverse 

analytically is difficult. This is due to the fact 

that the output of the forward network is a 

function of the number and location of the 

respective basis function centers in each 

network. The inverse is, therefore, estimated 

numerically. Now let 

E   = the error at the output of the inverse 

network .  
wkj = interconnection weight from node j in the 

hidden layer to node k in the output layer  
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cj = center of the basis function (at node j in 

the hidden layer) 

ζj   = spread of the basis function  
y   = the measured signal  

x = (x1,x2,…,xk,…,xn) be the desired output of 

the RBFNN.   

xˆ = (xˆ1,xˆ2,…,xˆk,…,xˆn) be the actual output 

of the RBFNN.  

Then, the error E can be defined as:  
x = (x1,x2,…,xk,…,xn) be the desired output of 

the RBFNN.   

xˆ = (xˆ1,xˆ2,…,xˆk,…,xˆn) be the actual output 

of the RBFNN.  

Then, the error E can be defined as : 

 E = ½║x  xˆ║
2
  =  ½



N

k 1

(xkxˆk)
2
 ........... (1) 

 

Where xˆk is given by :    

xˆk = 


L

j 1

 wkj ф(║ycj║/2ζj
2
  ..................... (2) 

and the basis function is chosen to be Gaussian 

function: 

ф(║ycj║/2ζj
2
) = exp (║ycj║

2 
/ 2ζj

2
) ...... (3) 

Substituting(2)and(3)into(1) and taking the 

derivative with respect to the weights wkj, we 

have:  

∂E / ∂wkj = (xkxˆk) ф(║cj║/ 2ζj
2
 ) .......... (4) 

Similarly, the derivative of the error with 

respect to the other two parameters ( cj and ζj ) 

can be computed as follows: 

∂E / ∂cji =  

n

k 1
-(xk xˆk)[ wkj ф΄(║y-cj║/ 

2ζj
2
) ((yi  cji)/ζj

2
)] .................. (5) 

∂E / ∂ζj =  

n

k 1
 (xk xˆk)[wkj ф΄(║ycj║/ 

2ζj
2
)(║ycj║

2
/ζj

3
)] ..................... (6) 

The derivatives are then substituted into the 

CG equation to derive the update equations for 

the three parameters. The CG equation is given 

by : d
new

  = d
old  

+ ηρk  ,  ρ0 = -g0   and  

ρk = -gk + βk ρk-1 ,   gk = ∂E / ∂dk , 

k  

1k
T

1k

k
T
k

gg

gg



, where d is the parameter of 

interest wkj , cji or ζj .  

 

Sensitivity Analysis Of The Inverse 

Problem  

Intuitively, an error in the parameter w will 

result in an error (which can be large for ill-

posed problems) in the estimate of the xˆ. In 

order to quantify the error in the parameters 

wkj, cj and ζj , we assume that ŵkj = wkj + ∆wkj 

is the measured value of the potentials where 

wkj is the true value of the potential and ∆wkj is 

the error in the measurement at node k and j. 

Let ĉj(n) and ỡj(n) be the corresponding 

estimated values of the parameters in the node 

j at iteration n. We assume that ĉj(n) = cj(n) + 

δj(n) where cj(n)is the corresponding estimate 

of cj when the measurement error in wkj is 

zero. Similarly, let ỡj(n) = ζj(n) + εj(n). The 

corresponding sum-squared error at the output 

of the FBNN is: 

Ē(n) =  ½ 


N

i 1

Ēi
2
(n) (7) 

Then, the CG update equations for ĉ and ỡ are 

given by : 

Ĉj(n) = ĉj(n1) + ηρ1(n1) where ρ1(0) = 

g1(0) , ρ1(n1) = g1(n1) + βk1(n1) ρ1(n2)  

 ............................ (8a) 

ỡj(n) = ỡj(n1) + ηρ2(n1) where ρ2(0) =  

g2(0) , ρ2(n1) =  g2(n-1) + βk2(n1) ρ2(n2)    

 ............................ (8b)  

Then, the error in the estimates ĉ and ỡ can be 

computed according to Theorem I below.  

Theorem I: The following results hold for the 

error in the estimates inĉ and ỡ:  

1- δj(n) = δj(n-1)+f (Ei(n-1), cj(n-1),δj(n-1), 

εj(n-1), βk1(n-1) ρ1(n-2)). 

2- εj(n) = εj(n-1)+h (Ei(n-1),cj(n-1), δj(n-1), 

εj(n-1), βk2(n-1)ρ2(n-2)). 

Proof: In order to prove Theorem I (1), we 

start with (8) :  

ĉj(n) = ĉj(n-1) + ηρ1(n-1) = ĉj(n-1) + η{-g1(n-1) 

+ βk1(n-1)ρ1(n-2)} where ρ1(0) = -g1(0) = - 

∂Ē(0) / ∂ĉj. 

ĉj(n) = ĉj(n-1)+ η(-∂Ē(n-1) / ∂ĉj + βk1(n-1) 

ρ1(n-2)) ......................................... (9) 

substituting (7) in (9) : ĉj(n) =  ĉj(n-1) + 

η(


N

i 1




N

j 1

 Ēi(n-1)фj ŵij + βk1(n-1) ρ1(n-2)) 
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ĉj(n) = ĉj(n-2) + η(


N

i 1




N

j 1

Ēi(n-2)фŵij + 

βk1(n-2)ρ1(n-3)) + ŋ(


N

i 1




N

j 1

Ēi(n-1) фjŵij + 

βk1(n- 1)ρ1(n-2) ) .Continuing with the 

recursion, we get : 

ĉj(n) = cj(0) + η(


N

i 1




N

j 1

Ēi(0)фjŵij) + 

η(


N

i 1




N

j 1

Ēi(1)фjŵij + β11ρ1(0)) + 

η(


N

i 1




N

j 1

Ēi(2)фj ŵij + β21ρ1(1)) +..… +   

η(


N

i 1




N

j 1

Ēi(n-1)фj ŵij + β(n-1)1 ρ1(n-2))  or 

 ĉj(n) = cj(0) + ŋ( 


N

i 1

 


N

j 1

фj ŵij 




1n

ot

Ēi(t) 

+




1

1

n

t

 βt1ρ1(t-1)) ........................................ (10) 

 

From definition of ĉ and (10), we have: 

ĉj(n) = cj(0) + ŋ [


N

ji 1,

 фj ŵij 




1n

ot

{ Ei(t) -


N

k 1

 

∆фk 


1m

( cm(t) ŵijm+ βm(t) ĝijm ) -


N

k 1

фk


1m

 

(δm(t) ŵijm + εm(t)ĝijm )}+




1

1

n

t

βt1ρ1(t-1)] 

 ............................ (11)  

This can be simplified to give : 

ĉj(n) = cj(0) + ŋ[


N

ji 1,

 фj ŵij 




1n

ot

Ei(t) +  




N

ji 1,

βt1ρ1(t-1)]-η[


N

ji 1,

 фjŵij 




1n

ot

 


N

k 1

 ∆фk 




1m

 (cm(t)ŵijm  + βm1(t)ĝijm) +




1

1

n

t

 βt1ρ1(t-1)]-

η[


N

ji 1,

фjŵij




1n

ot




N

k 1

фk


1m

 (δm(t)ŵijm + 

εm(t)ĝijm ) +




1

1

n

t

βt1ρ1(t-1)] ......................... (12) 

 

From the definition ofфi ,we get : 

ĉ(n) = cj(0 + η[


N

ji 1,

фjŵij




1n

ot

Ei(t) +




1

1

n

t

βt1ρ(t-

1)] + η[


N

ji 1,

∆фjŵij 




1n

ot

Ei(t) + 




1

1

n

t

βt1ρ1(t-1)] 

- [


N

ji 1,

фjŵij 




1n

ot




N

k 1

∆фk 


1m

( cm(t)ŵijm + 

βm(t) ĝijm ) + 




1

1

n

t

βt1ρ1(t-1)] – η [


N

ji 1,

фjŵij 






1n

ot




N

k 1

фk 


1m

 (δm(t)ŵijm + εm(t)ĝijm) + 






1

1

n

t

βt1ρ1(t-1)] 

But cj(n) = cj(0) + η[


N

ji 1,

фj ŵij 




1n

ot

 Ei(t) 

+




1

1

n

t

  βt1ρ(t-1)]  

So, ĉj(n) = cj(n) + η [


N

ji 1,

 ∆фj ŵij  




1n

ot

Ei(t) 

+




1

1

n

t

 βt1 ρ1(t-1)] – η[


N

ji 1,

 фj ŵij 






1n

ot




N

k 1

∆фk


1m

 (cm(t) ŵijm + βm1(t) ĝijm ) + 






1

1

n

t

 βt1ρ1(t-1)] - η[


N

ji 1,

 фj ŵij 




1n

ot

 




N

k 1

фk


1m

 (δm(t) ŵijm + εm(t)ĝijm ) +




1

1

n

t

  βt1 

ρ1(t-1)] Or ĉj(n) = cj(n) + δj(n) ................. (13) , 

 where  

δj(n) = η [


N

ji 1,

 ∆фj ŵij  




1n

ot

Ei(t) + 




1

1

n

t

 βt1 

ρ1(t-1)] – η [


N

ji 1,

фj ŵij 




1n

ot

 


N

k 1

   ∆фk 


1m

 

(cm(t) ŵijm+ βm(t) ĝijm ) +




1

1

n

t

βt1ρ1(t-1)]-

η[


N

ji 1,

фjŵij




1n

ot

 


N

k 1

 фk 


1m

( δm(t)ŵijm  + 

εm(t)ĝijm ) + 




1

1

n

t

 βt1ρ1(t-1)] ....................... (14) 

 

with δj(0) = εj(0) = 0. Using this fact and  (14) 

we have : 



Journal of Al-Nahrain University                        Vol.10(2), December, 2007, pp.187-194                                 Science 

 191 

δj(1) = η  


N

ji 1,

∆фj ŵij Ei(0) – η 


N

ji 1,

 фj ŵij  




N

k 1

∆фk 


1m

 ( cm(0) ŵijm + βm1(0) ĝijm ) – 

η


N

ji 1,

фjŵij 


N

k 1

фk 


1m

( δm(0) ŵijm + 

εm(0)ĝijm )  ................................................. (15) 

 

δj(2) = η [


N

ji 1,

 ∆фj ŵij


L

ot

  Ei(t) + β11 ρ1(0)] – 

η [


N

ji 1,

фj ŵij  


L

ot

 


N

k 1

∆фk  


1m

 ( cm(t) ŵijm 

+βm(t) ĝij)+β11ρ1(0)]–η [


N

ji 1,

 фj 

ŵij


L

ot




N

k 1

фk 


1m

 (δm(t)ŵijm + εm(t)ĝijm ) + 

β11ρ1(0) ]  or 

 

δj(2) = δj(1) + η[


N

ji 1,

∆фj ŵij Ei(1) + β11ρ1(0)] - 

η [


N

ji 1,

 фjŵij 


N

k 1

 ∆фk 


1m

(cm(1)ŵijm 

+βm1(1)ĝijm ) + β11ρ1(0)] - η[


N

ji 1,

 фjŵij 


N

k 1

 фk 




1m

 ( δm(1)ŵijm + εm(1)ĝijm )] .................... (16) 

 

This process can be carried out for all n, and 

the recursive relation is given by  

 δj(n) = δj(n-1) + η[


N

ji 1,

 Ei(n-1) Δфj ŵij + β(n-

1)1 ρ1(n-2)] - η[


N

ji 1,

 фjŵij  


N

k 1

 Δфk


1m

 (cm(n-

1)ŵikm +βm(n-1)ĝikm ) + β1(n-1)ρ1(n-2)]-

η[


N

ji 1,

фjŵij


N

k 1

фk 


1m

 (δm(n-1)ŵikm +           

εm(n-1)ĝikm ) + β1(n-1)ρ1(n-2)]orδj(n) = δj(n-1) + 

f ( Ei(n-1) , cj(n-1),δj(n-1), εj(n-1),β1k(n-1) 

ρ1(n-2) ) 

 By a similar process, we can prove Theorem I 

(2). 
 

Theorem I confirms an important and intuitive 

fact: that the error in the estimates of the 

material properties at any iteration depends on 

the error in the material property estimates in 

all previous iterations. This dependence is 

shown explicitly in equation (16). This fact is 

not a drawback of the FENN-based inversion 

algorithm. Rather, it shows the ill-posed nature 

of the inverse problem, and illustrates the point 

that the inversion results are only as good as 

the measured data.   

 
Applications 

Forward And Inverse Problems In 

Two Dimensions : 
  

The general form of Poisson’s equation in 

two dimensions is  

-∂(αx ∂ф / ∂x ) / ∂x - ∂( αy ∂ф / ∂y ) / ∂y            

+ βф = f ..................................................... (17) 

with boundary conditions: ф = p on Γ1 and ( αx 

(∂ф/∂x)xˆ + αy (∂ф/∂y)ŷ )·ñ+ γф = q on Γ2. 
Several forward and inverse problem examples 

based on (17) were solved using the FFNN 

algorithm. These are :  
 

1.Problem I used αx = α y = α x + y, (x,y)Є 

0,1 ×[0,1] , β = γ q = 0 and f = -2 The 

analytical solution to the forward problem is 
ф= x + y  when the Dirichlet boundary 

conditions are: ф =y , x =0, ф =1+ y, x =1,           

ф =x, y = 0, ф =1+x , y = 1. 
Conversely, the inverse problem in this case is 

to estimate α in each element (β =0) given the 

potentials ф = x + y at each of the nodes . 

The inverse problem solution is presented in 

Figure1, with the analytical solution for α ,the 

FFNN inversion and the  error  between  the  

analytical  and  FFNN  results in Figure1(a), 

(b) and (c) respectively. Several different 

discretizations were tested for solving the 

inverse problem , and the results  presented 

here were  obtained using 5 nodes in each

direction. Results obtained from a different 

discretization (11 nodes in each direction) are 

presented in Figure2. The discretization was 

observed to affect the number of iterations 

needed for convergence, with the smaller mesh 

requiring a smaller number of iterations. 
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Fig.(1) : Inverse problem solution for 

Problem I with an 55 discretization            

(a) Analytical solution (b) FFNN inversion         

(c) Error between (a) and (b)  

 
 

 

 

 

 

2.Problem II used αx=α y = α x + y, (x,y)  

Є[0,1 ]×[0,1], β= γ =q =0 and f = -6(x +y). The 

analytical solution to the forward problem is

ф=x
2
+y

2 
when the Dirichlet boundary 

conditions are ф= y
2
, x = 0 , ф =1+ y

2
, x =1 ,  

ф = x
2
, y = 0 , ф =1+ x

2
, y =1.  

Conversely, the inverse problem in this case is 

to estimate α in each element given the 

potentials ф = x
2
 + y

2
 at each of the nodes. The 

inverse problem solution is presented in Figure 

3, with Figure 3(a), (b) and (c) showing 

analytical solution for α the FFNN inversion 

result and the error in the FFNN inversion 

respectively. As in Problem I, several 

discretizations were used for solving the 

inverse problem, and the results presented in 

Fig.(3).  

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

(c) 

 

Fig.(2) : Inversion results for problemI with 

11×11 mesh (a) Analytical solution (b) 

FFNN Inversion (c) Error between (a) and 

(b). 
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were obtained using 11 nodes in each 

direction. 
 

3.Problem III used αx y ,α y = x, (x,y) Є  

0,1 ×[0,1], β = γ q = 0and f = -2(x +y).The 

analytical solution to the forward problem is

ф= x
2 

+ y
2 

when the Dirichlet boundary 

conditions are ф = y
2
, x = 0, ф =1+y

2
 , x =1,       

ф = x
2
 , y =0, ф = 1 + x

2
 , y = 1.

 
Conversely, 

the inverse problem in this case is to estimate 

αx and αy in each element given the potentials 

ф = x
2
 + y

2
  at each of the nodes. 

The inverse problem solution is presented in 

Fig.(4), with Figs. 4(a), (b) and (c) showing 

the analytical solution , the FFNN inversion 

and  the error in the FFNN inversion 

respectively with triangular elements. 
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Fig.(3) : Inversion results for Problem II 

with an 11x11 mesh (a) Analytical solution 

(b) FFNN inversion (c) Error between         

(a) and (b) . 
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(c) 

Fig. (4) : Inversion results for Problem III, 

with an 11x11 mesh (a) Analytical solution 

(b) FFNN Inversion  (c) Error between          

(a) and (b) . 
 

Conclusions  

This study proposed the use of neural network 

based forward models in iterative algorithms 

for inversion problems. The use of neural 

network based forward models offers several 

advantages over numerical models in terms of 

both implementation of gradient calculations 

in the updates of the parameters and overall 

computational cost. Two different types of 

neural networks–radial basis function neural 

networks and ridge basis function neural 

networks–were initially used to represent the 

forward model. These forward models were 

used, in a simple iterative scheme, or in 

combination with an inverse model in 

feedback configuration, to solve the inverse 
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problem. One drawback of these approaches is 

that the forward models are not accurate when 

the inputs are not similar to those used in the 

training database. This paper proposed the 

design of neural networks that are capable of 

solving differential equations and hence does 

not depend on training data. This specialized 

neural network has a weight structure that 

allows both the forward and inverse problems 

to be solved using simple gradient - based 

algorithms. Results of applying the FFNN in 

two-dimensional problems were presented and 

show that the proposed FFNN accurately 

models the forward problem. Application of 

this neural network for inverse problem 

solutions indicates that the solution closely 

matches the analytical solution.  
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