
Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.187-194 Science

 187

DESIGN OF ARTIFICIAL NEURAL NETWORK FOR SOLVING

INVERSE PROBLEMS

L.N.M .Tawfiq

College of Education Ibn Al-Haitham, Baghdad University

Abstract

This paper proposes neural network based forward models in iterative inversion algorithms for

solving inverse problems .Iterative algorithms are commonly used to solve inverse problem.

Typical iterative inversion approaches use

a numerical forward model to predict the

signal for a given input data. The desired

output can then be found by iteratively

minimizing energy function. The use of

numerical models is computationally

expensive, and therefore, alternative forward

models need to be explored.

This study proposes two different neural

network based iterative inverse problem

solutions. In addition, specialized neural

networks forward models are proposed and

used in place of numerical forward models.

The first approach uses basis function

networks (radial basis function (RBFNN)) to

approximate the mapping from the input space

to the output space. The back propagation

training algorithm are then used to estimate the

network parameter. The second approach

proposes the use of two networks in a

feedback configuration.

Introduction

Three classes of problems may be define: :
(i) Given input x(k) and system P(w),

determine the output y(k)

(ii) Given input x(k)and output y(k), determine

P(w) .
(iii) Given system P(w)and the output y(k),

determine x(k) .
The first case presents the forward problem

while the second and third cases are related to

inverse problems. An inverse problem is said

to be well-posed if the solution satisfies three

properties:

Existence, Uniqueness and Continuity: the

solution depends continuously on the input

The forward problem in general is well-posed

and is solved analytically or by means of

numerical modeling. In contrast, inverse

problems in general are ill-posed, lacking both

uniqueness and continuous. The algorithm

starts with an initial estimate of the parameters

and solves the corresponding forward problem

to determine the signal (output). The error

between the measured and predicted signals is

minimized iteratively by updating the

parameters. When the error is below a pre-set

threshold, the parameters represent the

desired solution.

Iterative techniques for inverse problems

have been developed using numerical models

[1] [2] based on integral and differential

formulations [3] [4] to represent the forward

process. However, all of these methods have

certain drawbacks. Iterative methods using

three-dimensional numerical models are, in

general, computationally intensive, and

therefore have limited practical application. In

addition, updating the parameters is also

difficult, since gradient-based approaches

cannot be easily applied to solutions of

numerical models such as finite element

models (FEM)[5].

The major objective of this study is the

development of solutions to inverse problems.

The proposed solutions are described below

with a brief discussion of their advantages and

disadvantages. In addition, we also compare

the proposed solution methods to existing

algorithms presented in the literature, and

present the differences between the existing

and proposed algorithms.

Neural Network Based Iterative Inversion

A single neural network is used instead of

a numerical model as the forward model in the

inversion approach. The advantages of this

approach include its speed and simplicity as

the forward model inherits many of the

advantages of neural networks.

L.N.M .Tawfiq

 188

Feedback Neural Networks

This approach is a modification of

section2, and uses two neural networks in

feedback configuration, with one neural

network modeling the forward problem while

the other models the inverse problem.

The major drawback of section 2, 3 is that

the performance of the neural networks

depends on the data used in training and

testing. Mathematically, each of the neural

networks approximates the function mapping

the input to the output, and as long the test

data is similar to the training data, the network

can interpolate between the training data

points to obtain a reasonable prediction.

However, when the test signal is no longer

similar to the training data, the network is

forced to extrapolate and the performance is

seen to degrade. Alternatively, we have to

consider the design of neural networks that are

capable of extrapolation. But the design of an

extrapolation neural network involves several

issues. For instance, there are no methods for

ensuring that the error in the network

prediction is within reasonable bounds during

the extrapolation procedure.

Model based methods for extrapolation use

numerical models in an iterative approach.

These models are capable of correctly

predicting the signal, since they solve the

underlying governing equations. However,

numerical models are computationally

intensive, which limits their application. An

ideal solution therefore would be to combine

the power of numerical models with the

computational speed of neural networks, i.e.,

to create neural networks that are capable of

solving the underlying partial differential

equations. The use of Hopfield networks

makes it difficult to solve the inverse problem,

especially if derivatives need to be computed

in the inversion procedure. Such networks are

therefore not considered in this study.

Our proposed approach is different in that

we derive the neural network from the point of

view of the inverse problem. The neural

network architecture that is eventually

developed also makes it easy to solve the

forward problem. The structure of the neural

network is also simpler than those reported in

the literature, making it easier to implement in

parallel in both hardware and software.

Furthermore, the neural network is not limited

to a specific type of domain, and does not

require any training. In fact, the FFNN weights

are determined solely by the differential

equation and associated boundary conditions –

an advantage in solving inverse problems.

Two neural networks are used in a feedback

configuration. The forward network predicts

the signal corresponding to input of inverse

network while the inverse (characterization)

network predicts the output signal. The

forward network replaces the FEM .The

overall approach to solving the inverse

problem is as follows. The signal from a defect

with unknown shape is input into the forward

network to obtain the corresponding prediction

of the signal. On the other hand, if the error

exceeds a threshold, the training mode is

invoked and the networks are retrained with

the back propagation algorithm.

A radial basis function neural network

(RBFNN) is used as an inverse network for

characterizing the desired output. The forward

and inverse networks are first trained using the

conjugate gradient (CG) method [6][7]. The

forward network is tested to ensure that it is

capable of accurately modeling the forward

process for the training database, and if

necessary, the network parameters are

optimized. In addition, the inverse network is

also trained and its parameters optimized. This

process is referred to as the training mode. The

goal of the optimization step is to minimize the

error due to the inverse RBFNN. Let f be the

error between the actual signal (actual output)

and the prediction of the forward network in

the feedback configuration. In order for f to be

zero, the characterization network must be an

exact inverse of the forward network. While

the functional form of the forward network can

be derived easily, obtaining its inverse

analytically is difficult. This is due to the fact

that the output of the forward network is a

function of the number and location of the

respective basis function centers in each

network. The inverse is, therefore, estimated

numerically. Now let

E = the error at the output of the inverse

network .
wkj = interconnection weight from node j in the

hidden layer to node k in the output layer

Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.187-194 Science

 189

cj = center of the basis function (at node j in

the hidden layer)

ζj = spread of the basis function
y = the measured signal

x = (x1,x2,…,xk,…,xn) be the desired output of

the RBFNN.

xˆ = (xˆ1,xˆ2,…,xˆk,…,xˆn) be the actual output

of the RBFNN.

Then, the error E can be defined as:
x = (x1,x2,…,xk,…,xn) be the desired output of

the RBFNN.

xˆ = (xˆ1,xˆ2,…,xˆk,…,xˆn) be the actual output

of the RBFNN.

Then, the error E can be defined as :

 E = ½║x  xˆ║
2
 = ½



N

k 1

(xkxˆk)
2
 (1)

Where xˆk is given by :

xˆk = 


L

j 1

 wkj ф(║ycj║/2ζj
2
 (2)

and the basis function is chosen to be Gaussian

function:

ф(║ycj║/2ζj
2
) = exp (║ycj║

2
/ 2ζj

2
) (3)

Substituting(2)and(3)into(1) and taking the

derivative with respect to the weights wkj, we

have:

∂E / ∂wkj = (xkxˆk) ф(║cj║/ 2ζj
2
) (4)

Similarly, the derivative of the error with

respect to the other two parameters (cj and ζj)

can be computed as follows:

∂E / ∂cji =  

n

k 1
-(xk xˆk)[wkj ф΄(║y-cj║/

2ζj
2
) ((yi  cji)/ζj

2
)] (5)

∂E / ∂ζj =  

n

k 1
 (xk xˆk)[wkj ф΄(║ycj║/

2ζj
2
)(║ycj║

2
/ζj

3
)] (6)

The derivatives are then substituted into the

CG equation to derive the update equations for

the three parameters. The CG equation is given

by : d
new

 = d
old

+ ηρk , ρ0 = -g0 and

ρk = -gk + βk ρk-1 , gk = ∂E / ∂dk ,

k 

1k
T

1k

k
T
k

gg

gg



, where d is the parameter of

interest wkj , cji or ζj .

Sensitivity Analysis Of The Inverse

Problem

Intuitively, an error in the parameter w will

result in an error (which can be large for ill-

posed problems) in the estimate of the xˆ. In

order to quantify the error in the parameters

wkj, cj and ζj , we assume that ŵkj = wkj + ∆wkj

is the measured value of the potentials where

wkj is the true value of the potential and ∆wkj is

the error in the measurement at node k and j.

Let ĉj(n) and ỡj(n) be the corresponding

estimated values of the parameters in the node

j at iteration n. We assume that ĉj(n) = cj(n) +

δj(n) where cj(n)is the corresponding estimate

of cj when the measurement error in wkj is

zero. Similarly, let ỡj(n) = ζj(n) + εj(n). The

corresponding sum-squared error at the output

of the FBNN is:

Ē(n) = ½ 


N

i 1

Ēi
2
(n) (7)

Then, the CG update equations for ĉ and ỡ are

given by :

Ĉj(n) = ĉj(n1) + ηρ1(n1) where ρ1(0) =

g1(0) , ρ1(n1) = g1(n1) + βk1(n1) ρ1(n2)

 (8a)

ỡj(n) = ỡj(n1) + ηρ2(n1) where ρ2(0) = 

g2(0) , ρ2(n1) =  g2(n-1) + βk2(n1) ρ2(n2)

 (8b)

Then, the error in the estimates ĉ and ỡ can be

computed according to Theorem I below.

Theorem I: The following results hold for the

error in the estimates inĉ and ỡ:

1- δj(n) = δj(n-1)+f (Ei(n-1), cj(n-1),δj(n-1),

εj(n-1), βk1(n-1) ρ1(n-2)).

2- εj(n) = εj(n-1)+h (Ei(n-1),cj(n-1), δj(n-1),

εj(n-1), βk2(n-1)ρ2(n-2)).

Proof: In order to prove Theorem I (1), we

start with (8) :

ĉj(n) = ĉj(n-1) + ηρ1(n-1) = ĉj(n-1) + η{-g1(n-1)

+ βk1(n-1)ρ1(n-2)} where ρ1(0) = -g1(0) = -

∂Ē(0) / ∂ĉj.

ĉj(n) = ĉj(n-1)+ η(-∂Ē(n-1) / ∂ĉj + βk1(n-1)

ρ1(n-2)) ... (9)

substituting (7) in (9) : ĉj(n) = ĉj(n-1) +

η(


N

i 1




N

j 1

 Ēi(n-1)фj ŵij + βk1(n-1) ρ1(n-2))

L.N.M .Tawfiq

 190

ĉj(n) = ĉj(n-2) + η(


N

i 1




N

j 1

Ēi(n-2)фŵij +

βk1(n-2)ρ1(n-3)) + ŋ(


N

i 1




N

j 1

Ēi(n-1) фjŵij +

βk1(n- 1)ρ1(n-2)) .Continuing with the

recursion, we get :

ĉj(n) = cj(0) + η(


N

i 1




N

j 1

Ēi(0)фjŵij) +

η(


N

i 1




N

j 1

Ēi(1)фjŵij + β11ρ1(0)) +

η(


N

i 1




N

j 1

Ēi(2)фj ŵij + β21ρ1(1)) +..… +

η(


N

i 1




N

j 1

Ēi(n-1)фj ŵij + β(n-1)1 ρ1(n-2)) or

 ĉj(n) = cj(0) + ŋ(


N

i 1

 


N

j 1

фj ŵij 




1n

ot

Ēi(t)

+




1

1

n

t

 βt1ρ1(t-1)) .. (10)

From definition of ĉ and (10), we have:

ĉj(n) = cj(0) + ŋ [


N

ji 1,

 фj ŵij 




1n

ot

{ Ei(t) -


N

k 1

∆фk 


1m

(cm(t) ŵijm+ βm(t) ĝijm) -


N

k 1

фk


1m

(δm(t) ŵijm + εm(t)ĝijm)}+




1

1

n

t

βt1ρ1(t-1)]

 (11)

This can be simplified to give :

ĉj(n) = cj(0) + ŋ[


N

ji 1,

 фj ŵij 




1n

ot

Ei(t) +




N

ji 1,

βt1ρ1(t-1)]-η[


N

ji 1,

 фjŵij 




1n

ot

 


N

k 1

 ∆фk




1m

 (cm(t)ŵijm + βm1(t)ĝijm) +




1

1

n

t

 βt1ρ1(t-1)]-

η[


N

ji 1,

фjŵij




1n

ot




N

k 1

фk


1m

 (δm(t)ŵijm +

εm(t)ĝijm) +




1

1

n

t

βt1ρ1(t-1)] (12)

From the definition ofфi ,we get :

ĉ(n) = cj(0 + η[


N

ji 1,

фjŵij




1n

ot

Ei(t) +




1

1

n

t

βt1ρ(t-

1)] + η[


N

ji 1,

∆фjŵij 




1n

ot

Ei(t) + 




1

1

n

t

βt1ρ1(t-1)]

- [


N

ji 1,

фjŵij 




1n

ot




N

k 1

∆фk 


1m

(cm(t)ŵijm +

βm(t) ĝijm) + 




1

1

n

t

βt1ρ1(t-1)] – η [


N

ji 1,

фjŵij






1n

ot




N

k 1

фk 


1m

 (δm(t)ŵijm + εm(t)ĝijm) +






1

1

n

t

βt1ρ1(t-1)]

But cj(n) = cj(0) + η[


N

ji 1,

фj ŵij 




1n

ot

 Ei(t)

+




1

1

n

t

 βt1ρ(t-1)]

So, ĉj(n) = cj(n) + η [


N

ji 1,

 ∆фj ŵij 




1n

ot

Ei(t)

+




1

1

n

t

 βt1 ρ1(t-1)] – η[


N

ji 1,

 фj ŵij






1n

ot




N

k 1

∆фk


1m

 (cm(t) ŵijm + βm1(t) ĝijm) +






1

1

n

t

 βt1ρ1(t-1)] - η[


N

ji 1,

 фj ŵij 




1n

ot




N

k 1

фk


1m

 (δm(t) ŵijm + εm(t)ĝijm) +




1

1

n

t

 βt1

ρ1(t-1)] Or ĉj(n) = cj(n) + δj(n) (13) ,

 where

δj(n) = η [


N

ji 1,

 ∆фj ŵij 




1n

ot

Ei(t) + 




1

1

n

t

 βt1

ρ1(t-1)] – η [


N

ji 1,

фj ŵij 




1n

ot

 


N

k 1

 ∆фk 


1m

(cm(t) ŵijm+ βm(t) ĝijm) +




1

1

n

t

βt1ρ1(t-1)]-

η[


N

ji 1,

фjŵij




1n

ot

 


N

k 1

 фk 


1m

(δm(t)ŵijm +

εm(t)ĝijm) + 




1

1

n

t

 βt1ρ1(t-1)] (14)

with δj(0) = εj(0) = 0. Using this fact and (14)

we have :

Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.187-194 Science

 191

δj(1) = η 


N

ji 1,

∆фj ŵij Ei(0) – η 


N

ji 1,

 фj ŵij




N

k 1

∆фk 


1m

 (cm(0) ŵijm + βm1(0) ĝijm) –

η


N

ji 1,

фjŵij 


N

k 1

фk 


1m

(δm(0) ŵijm +

εm(0)ĝijm) ... (15)

δj(2) = η [


N

ji 1,

 ∆фj ŵij


L

ot

 Ei(t) + β11 ρ1(0)] –

η [


N

ji 1,

фj ŵij 


L

ot

 


N

k 1

∆фk 


1m

 (cm(t) ŵijm

+βm(t) ĝij)+β11ρ1(0)]–η [


N

ji 1,

 фj

ŵij


L

ot




N

k 1

фk 


1m

 (δm(t)ŵijm + εm(t)ĝijm) +

β11ρ1(0)] or

δj(2) = δj(1) + η[


N

ji 1,

∆фj ŵij Ei(1) + β11ρ1(0)] -

η [


N

ji 1,

 фjŵij 


N

k 1

 ∆фk 


1m

(cm(1)ŵijm

+βm1(1)ĝijm) + β11ρ1(0)] - η[


N

ji 1,

 фjŵij 


N

k 1

 фk




1m

 (δm(1)ŵijm + εm(1)ĝijm)] (16)

This process can be carried out for all n, and

the recursive relation is given by

 δj(n) = δj(n-1) + η[


N

ji 1,

 Ei(n-1) Δфj ŵij + β(n-

1)1 ρ1(n-2)] - η[


N

ji 1,

 фjŵij 


N

k 1

 Δфk


1m

 (cm(n-

1)ŵikm +βm(n-1)ĝikm) + β1(n-1)ρ1(n-2)]-

η[


N

ji 1,

фjŵij


N

k 1

фk 


1m

 (δm(n-1)ŵikm +

εm(n-1)ĝikm) + β1(n-1)ρ1(n-2)]orδj(n) = δj(n-1) +

f (Ei(n-1) , cj(n-1),δj(n-1), εj(n-1),β1k(n-1)

ρ1(n-2))

 By a similar process, we can prove Theorem I

(2).

Theorem I confirms an important and intuitive

fact: that the error in the estimates of the

material properties at any iteration depends on

the error in the material property estimates in

all previous iterations. This dependence is

shown explicitly in equation (16). This fact is

not a drawback of the FENN-based inversion

algorithm. Rather, it shows the ill-posed nature

of the inverse problem, and illustrates the point

that the inversion results are only as good as

the measured data.

Applications

Forward And Inverse Problems In

Two Dimensions :

The general form of Poisson’s equation in

two dimensions is

-∂(αx ∂ф / ∂x) / ∂x - ∂(αy ∂ф / ∂y) / ∂y

+ βф = f ... (17)

with boundary conditions: ф = p on Γ1 and (αx

(∂ф/∂x)xˆ + αy (∂ф/∂y)ŷ)·ñ+ γф = q on Γ2.
Several forward and inverse problem examples

based on (17) were solved using the FFNN

algorithm. These are :

1.Problem I used αx = α y = α x + y, (x,y)Є

0,1 ×[0,1] , β = γ q = 0 and f = -2 The

analytical solution to the forward problem is
ф= x + y when the Dirichlet boundary

conditions are: ф =y , x =0, ф =1+ y, x =1,

ф =x, y = 0, ф =1+x , y = 1.
Conversely, the inverse problem in this case is

to estimate α in each element (β =0) given the

potentials ф = x + y at each of the nodes .

The inverse problem solution is presented in

Figure1, with the analytical solution for α ,the

FFNN inversion and the error between the

analytical and FFNN results in Figure1(a),

(b) and (c) respectively. Several different

discretizations were tested for solving the

inverse problem , and the results presented

here were obtained using 5 nodes in each

direction. Results obtained from a different

discretization (11 nodes in each direction) are

presented in Figure2. The discretization was

observed to affect the number of iterations

needed for convergence, with the smaller mesh

requiring a smaller number of iterations.

L.N.M .Tawfiq

 192

(a)

(b)

(c)

Fig.(1) : Inverse problem solution for

Problem I with an 55 discretization

(a) Analytical solution (b) FFNN inversion

(c) Error between (a) and (b)

2.Problem II used αx=α y = α x + y, (x,y)

Є[0,1]×[0,1], β= γ =q =0 and f = -6(x +y). The

analytical solution to the forward problem is

ф=x
2
+y

2
when the Dirichlet boundary

conditions are ф= y
2
, x = 0 , ф =1+ y

2
, x =1 ,

ф = x
2
, y = 0 , ф =1+ x

2
, y =1.

Conversely, the inverse problem in this case is

to estimate α in each element given the

potentials ф = x
2
 + y

2
 at each of the nodes. The

inverse problem solution is presented in Figure

3, with Figure 3(a), (b) and (c) showing

analytical solution for α the FFNN inversion

result and the error in the FFNN inversion

respectively. As in Problem I, several

discretizations were used for solving the

inverse problem, and the results presented in

Fig.(3).

(a)

(b)

(c)

Fig.(2) : Inversion results for problemI with

11×11 mesh (a) Analytical solution (b)

FFNN Inversion (c) Error between (a) and

(b).

Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.187-194 Science

 193

were obtained using 11 nodes in each

direction.

3.Problem III used αx y ,α y = x, (x,y) Є

0,1 ×[0,1], β = γ q = 0and f = -2(x +y).The

analytical solution to the forward problem is

ф= x
2

+ y
2

when the Dirichlet boundary

conditions are ф = y
2
, x = 0, ф =1+y

2
 , x =1,

ф = x
2
 , y =0, ф = 1 + x

2
 , y = 1.

Conversely,

the inverse problem in this case is to estimate

αx and αy in each element given the potentials

ф = x
2
 + y

2
 at each of the nodes.

The inverse problem solution is presented in

Fig.(4), with Figs. 4(a), (b) and (c) showing

the analytical solution , the FFNN inversion

and the error in the FFNN inversion

respectively with triangular elements.

(a)

(b)

(c)

Fig.(3) : Inversion results for Problem II

with an 11x11 mesh (a) Analytical solution

(b) FFNN inversion (c) Error between

(a) and (b) .

(a)

(b)

(c)

Fig. (4) : Inversion results for Problem III,

with an 11x11 mesh (a) Analytical solution

(b) FFNN Inversion (c) Error between

(a) and (b) .

Conclusions

This study proposed the use of neural network

based forward models in iterative algorithms

for inversion problems. The use of neural

network based forward models offers several

advantages over numerical models in terms of

both implementation of gradient calculations

in the updates of the parameters and overall

computational cost. Two different types of

neural networks–radial basis function neural

networks and ridge basis function neural

networks–were initially used to represent the

forward model. These forward models were

used, in a simple iterative scheme, or in

combination with an inverse model in

feedback configuration, to solve the inverse

L.N.M .Tawfiq

 194

problem. One drawback of these approaches is

that the forward models are not accurate when

the inputs are not similar to those used in the

training database. This paper proposed the

design of neural networks that are capable of

solving differential equations and hence does

not depend on training data. This specialized

neural network has a weight structure that

allows both the forward and inverse problems

to be solved using simple gradient - based

algorithms. Results of applying the FFNN in

two-dimensional problems were presented and

show that the proposed FFNN accurately

models the forward problem. Application of

this neural network for inverse problem

solutions indicates that the solution closely

matches the analytical solution.

References

[1] S. A. Terekhoff and N. Nfedorova

″Cascade Neural Networks in

Variational thods for Boundary Value

Problems ″, Russian Federal Nuclear

Center, 2000.

[2] S.Lawrence, D.Back ,A.Tsoi and C.Lee

Giles,″ On the Distribution of

performance from Multiple Neural

Network Trials″, IEEE Transactions on

Neural Networks, Vol.8, NO. 6, 2000,

P. 1507-1517.

[3] B. Xinzhou and B. Jammes, ″Solving

Steady-State Partial Derivative Equation

with Neural Network″. Application to

Steady-State Heat Transfer Problem-

systems(LAAS), 2001.

[4] J. S. Baras and A. Lavigna, ″Convergence

of a Neural Network Classifier, Systems

Research Center″, University of

Maryland, College Park , 2002.

[5] A. R. Mitchell and R. Wait,″ The Finite

Element Method in Partial Differential

Equations″, 1978.

[6] A. Al-Bayati and N. Al–Assady,

″Conjugate Gradient Methods″,

Technical Research Report, NO.1,

School of Computer Studies, Leeds

University,U.K., 1996.

[7] Q.Wang and T. Aoyama,″A neural network

solver for differential equations ″,

Gakuen Kibanadai–Nishi, Neuron

Computing, Vol. 1, NO. 1, 2001.

RBFNN

