
Journal of Al-Nahrain University                        Vol.10(2), December, 2007, pp.172-177                                 Science 

 172 

GENETIC ALGORITHM VERSUS PARTICLE SWARM 

OPTIMIZATION IN N-QUEEN PROBLEM 
 

*
Azhar W. Hammad, 

**
Dr. Ban N. Thannoon  

 

Al-Nahrain University/ College of Science/ Iraq  
*
azharalrawi@yahoo.com,        

**
drban_2001@yahoo.com 

 
Abstract 

In recent year, particle Swarm Optimization (PSO) which is one of the area of evolutionary 

computations was developed, So in order to compare its performance, another popular optimization 

method Genetic Algorithm (GA) was chosen. The two methods employee different strategies and 

computation efforts.  

In this paper, N-Queens problem was chosen to compare GA with PSO performance. GA with 

its own simple operators is stable in its performance under different search space sizes, while the 

PSO performs well in small search space size and its capabilities when space size becomes larger.  
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Introduction 
In recent years, the area of Evolutionary 

Computation has come into its own. Two of 

the popular developed approaches are GAs and 

PSO, both of which are used in optimization 

problems. Although the two approaches are 

supported to find a solution to a given 

objective function, they employ different 

strategies and computational efforts. Therefore 

it is appropriate to compare their 

implementation. 

The contribution in this work has two 

fields:  

1. To compare the effectiveness of GA and 

PSO (i.e. compare their solution     quality 

or convergence reliability).  

2. To compare the efficiency of GA and PSO 

(i.e. compare their convergence speed). 

The N-Queens problem is the problem of 

putting n queens on an n×n chessboard with 

((n-k)!) search space such that non of them is 

to be able to attack any other. Eight and 

sixteen queens were tried in this 

implementation. 
 

Genetic Algorithms 

Genetic Algorithms are adaptive stochastic 

search algorithms (Stochastic searches are 

those that use probability to help guide their 

search) [1]. 

A GA is a powerful search technique that 

mimics natural selection and genetic operators. 

Its power comes from its ability to combine 

good pieces from different solutions and 

assemble them into a single super solution. GA 

can be distinguished from other search and 

optimization techniques by the fact that it is a 

process, which uses a population of many 

individuals, rather than a single one to solve a 

problem [2]. 

GAs are a family of computational models 

inspired by evolution. These algorithms encode 

a potential solution to a specific problem on a 

simple chromosome-like data structure and 

apply recombination operators to these 

structures so as to preserve critical 

information. They are often viewed as function 

optimizers, although the range of problems to 

which genetic algorithms have been applied is 

quite broad such as pattern recognition, image 

processing, machine learning, etc [3]. 

 

Elements of GAs 

The GAs have the following elements and 

operators: Encoding, selection according to 

fitness, crossover to produce new offspring, 

and inversion [4]. 
 

i. Encoding 

Suppose someone is seeking to find a 

solution to some problem. To apply a GA to 

that problem, the first thing he/she must do is 

to encode the problem as an artificial 

chromosome or chromosomes. These 

chromosomes can be string of 1s and 0s, 

parameter list, integer numbers, or even 

complex computer codes, but the key thing to 

keep in mind is that the genetic machinery will 
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manipulate a finite representation of the 

solution, not the solutions themselves [4]. 
 

ii. Selection 

Another key element of GAs is the 

selection operator which is used to select 

chromosomes (called parents) for mating in 

order to generate new chromosomes (called 

offspring). In addition, the selection operator 

can be used to select elitist individuals. The 

selection process is usually biased toward fitter 

chromosomes. Selection methods are used as 

mechanisms to focus on apparently more 

profitable regions in the search space. One of 

these methods is tournament selection this 

selection way is more commonly used 

approach, a set of chromosomes (known as 

tournament size) are randomly chosen the 

fittest chromosome from the set is then placed 

in mating pool. This process is repeated until 

the mating pool contains a sufficient number of 

chromosomes to start the mating process. 
 

iii. Crossover 

Crossover is “the main explorative operator 

in GAs”. Crossover occurs with a user-

specified probability; called the crossover 

probability Pc. Pc is problem dependent with 

typical values in the range between 0.4 and 

0.8. 

One of the most popular  type of crossover 

Partial Matched Crossover (PMX) is not 

suitable for binary coding problems. Under 

PMX, two strings aligned, and two crossing 

sites are picked uniformly at random along the 

strings. These two points define a matching 

section that is used to affect a cross through 

position-by-position exchange operations.  
 

iv. Mutation 

Mutation is performed after crossover by 

randomly choosing a chromosome in the new 

generation to mutate in order to explore new 

areas in the search space and to add diversity to 

the population of chromosomes to prevent 

being trapped in a local optimum. 

Inversion is a different form of mutation. It 

is sometimes used in appropriate cases. Under 

inversion, two points are chosen along the 

length of the chromosome, the chromosome is 

cut at those points, and the end points of the 

cut switch places.  
 

 

The GA Procedure 

The following pseudo code of the GA 

illustrates the main steps that should be 

performed to produce the required solution. 
 

Create an initial population of strings. 

Calculate the fitness of each string. 

While an acceptable solution is not found 

       Select parent for next generation. 

       Combine the parents to create new offspring. 

       Mutation and Inversion are applied 

according to some probability. 

       Calculate the fitness of each offspring. 

End While. 

Pseudo code of Genetic Algorithm 

 

Particle Swarm Optimization 

Particle Swarm Optimization is one of the 

evolutionary computations, which can be used 

for optimization, developed by Kennedy and 

Eberhart in 1995.  

This algorithm is based on the social 

behavior of individuals living together in 

groups such as bird flocking, fish schooling, 

and swarm of bees (or insects). A population 

of particles exists in the n-dimensional search 

space that the optimization problem lives in. 

Each particle has a certain amount of 

knowledge, and will move about the search 

space based on this knowledge. The particle 

has some inertia attributed to it and so will 

continue to have a component of motion in the 

direction it is moving. It also keeps track of 

the best solution for all the particles achieved 

so far, as well as the best solution achieved so 

far by each particle. The particle will then 

modify its direction such that it has additional 

components towards its own best position and 

towards the overall best position. This will 

provide some form of convergence to the 

search, while providing a degree of 

randomness to promote a wide coverage of the 

search space [5] [6]. 
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PSO Topology 

The common uses of PSOs are either 

global version or local version. In the global 

version of PSO, each particle flies through the 

search space with a velocity that is 

dynamically adjusted according to the particles 

of personal and the best performance achieved 

so far by all the particles. While in the local 

version of PSO, each particle’s velocity is 

adjusted according to its personal best and the 

best performance achieved so far within its 

neighborhood. The neighborhood of each 

particle is generally defined as topologically 

nearest particle to the particle at each side [7]. 

A lot of researches had work on improving 

PSO performance by designing or 

implementing different types of neighborhood 

structures. Each neighborhood structure has its 

strength and weakness. It works better in one 

kind of problems, but worse on the other kind 

of problems. When using PSO to solve a 

problem, not only the problem needs to be 

specified, but the neighborhood structure of the 

PSO utilized, should also be clearly        

specified [7]. 
 

PSO Algorithm  

As described by Kennedy and Eberhart, the 

PSO algorithm is an adaptive algorithm based 

on a social-psychological metaphor; a 

population of individuals (referred to as 

particles) adapts by returning stochastically 

toward previously successful regions. 

Particle Swarm has two primary operators: 

Velocity update and Position update. During 

each iteration, each particle is accelerated 

toward the particle’s previous best position and 

the global best position. At each iteration a 

new velocity value for each particle is 

calculated based on its current velocity, the 

distance from its previous best position, and 

the distance from the global best position. The 

new velocity value is then used to calculate the 

next position of the particle in the search 

space. This process is then iterated a set 

number of times or until a minimum error is 

achieved [5] [8]. 

The PSO algorithm depends on its 

implementation in the following two relations 

[7]: 

The velocity of particle i is updated using 

the following equation [8]: 

vid(t+1) = wvid(t) + c1r1(t)(pid(t) – xid(t)) + 

c2r2(t)(pgd(t) – xid(t)) ............. (1) 
 

The position of particle i, xi is then updated 

using the following equation: 

xid(t+1) =  xid(t) + vid (t+1) ..................... (2) 

where: 

t      is the current time step, t+1 is the next 

time step. 

xid (t) is the current state (position) at site d of 

individual i. 

vid (t) is the current velocity at site d of   

individual i. 

w(t)   is the inertia weight  

           w= ((Tmax - G) * (0.9 - 0.4) / Tmax) + 0.4  

Where Tmax is the maximum number of 

Iterations and G is the current generation 

number. 

pid is the individual’s i best state (position) 

found so far at site d. 

pgd  is the neighborhood best state found far at 

site d. 

c1  cognition parameter 1, a positive constant, 

usually set to 2.0. 

c2  social parameter 2, a positive constant, 

usually set to 2.0. 

r1, r2  is a positive random number drawn from 

a uniform distribution between 0.0 and 

1.0. 
 

 

The pseudo code of the PSO 

The following pseudo code illustrates the 

main steps of the PSO. 
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For each particle 

      Initialize particle 

End 

Repeat 

       For each particle 

              Calculate fitness value 

               If  the fitness value is better than 

best fitness value (Pid) in history 

               Set current value as the new Pid 

        End 

        Choose the particle with the best 

fitness value of all the particles as 

the Pgd 

         For each particle 

                Update particle velocity 

according to equation (1) 

                Update particle position 

according to equation (2) 

         End 

Until Stopping criteria 
 

Pseudo code of PSO 
 

N-Queens Problem 
Problem Definition: The N-Queens 

problem is analogue of the classic 8-Queens 

problem from chess. There is an n×n 

chessboard and the goal is to have N Queens 

placed into board squares so that no queen is 

attacking the other so its search space 

size=((n-k)Ị) where k=1..n-1. 
 

Developing a Coding Scheme 

This problem can be generalized as placing 

n nonattacking queens on an n×n chessboard. 

Since each queen must be on a different raw 

and column, we can assume that queen i is 

placed in i-th
 
column. All solutions to the N-

queens problem can therefore be represented 

as string of n bits (i.e String length =  n). 
 

i. Initialization 
The initial population in each GA and PSO 

algorithm is seeded by randomly generated 

individuals. In our works the maximum 

number of generation is dependent on the 

problem itself. The population/swarm size (i.e. 

individuals/particles numbers) is set to 10, 20, 

30, and 100. Ten runs were performed for each 

population/swarm size, and the 

population/swarm size not changing during the 

evolutionary search 
 

 

Creating a Fitness Function 

The position of a number in the string 

represents queen’s column position, while its 

value represents queen’s row position, so the 

row and column conflicts are already satisfied. 

A fitness function can be designed to count 

diagonal conflicts: more conflicts there are, 

worse the solution. For correct solution, the 

function will return Zero. 

A queen that occupies i-th column and               

qi-th row is located on (i+qi-1) left and (n-i+qi) 

right diagonal. A fitness function first allocates 

counters for all diagonal then, for each queen, 

counters for one left and one right diagonal 

that queen occupies are increased by one. 

After evaluation, if a counter has a value 

greater than 1, there are conflicts on the 

corresponding diagonal. 

 

Results 

Tables (1) and (2) describe the GA and 

PSO operators and parameters that are used in 

solving N-queens problem. 
 

Table (1) 

GA’s operators and parameters for solving 

N-Queens Problem 
 

Initialization Random 

Representation 
Integer String of 

Length= n 

Selection Tournament Selection 

Recombination 
Partial Matched 

Crossover (PMX) 

Mutation Swap 

Mutation Probability 0.5 

Population Size 10, 20, 30,…, 100 

Maximum Number 
of  generations 

(NoG) 

100 

Stopping Condition 
Solution or Number of 

Generations= NoG 

 

 

 

 

 

 

 

 



Journal of Al-Nahrain University                        Vol.10(2), December, 2007, pp.172-177                                 Science 

 176 

Table (2) 

Describes PSO parameters for solving             

N-Queens Problem 
 

Initialization Random 

Representation Integer String of 
Length= n 

w w= ((Tmax - G) * (0.9 - 
0.4) / Tmax) + 0.4 

c1 and c2 2.0 

r1 and r2 Random [0..1] 

Swarm Size or 
Number of Particles 

10, 20, 30,…, 100 

Maximum Number of  
Iterations(Tmax) 

100, 30000 

Stopping Condition Solution or Number of 
iterations= Tmax 

 

For ten times running and for 10, 20, 30, 

…, 100 Population/Swarm size, the average of 

the best three results for 8-queens are 

presented, Table (3) illustrates that PSO give 

us best solutions than GA in number of 

generations and time. 

 

Table (3) 

The average of comparison results between 

GA and PSO to solve   8-Queens. 
 

Pop 

Size 

GA PSO 

No. of 

Genera

-tions 

Time/S

ec 

No. 

of  

Itera-

tions 

Time/Sec 

10 12 1.8485 13 1.1977 

20 7 1.7053 4 1.3741 

30 3 1.5430 2 1.5269 

40 3 1.3966 4 1.4405 

50 5 1.4659 3 1.3814 

60 2 1.4373 3 1.4725 

70 2 1.9066 4 1.6210 

80 3 1.9255 3 1.8541 

90 3 2.3777 4 2.2561 

100 3 2.4925 3 2.1666 

 

But, for 16-queens, table (4) shows that 

solutions found using GA are better than those 

found using PSO. 

 

Table (4) 

The average of comparison results between 

GA and PSO to solve   16-Queens. 

 

Pop 

Size 

GA PSO 

No. of  

Genera

-tions 

Time/

Sec 

No. of  

Itera-

tions 

Time/Sec 

10 60 1.9999 23547 61.9999 

20 70 2.9999 18444 95.9999 

30 39 2.3333 10003 76.9999 

40 31 3 143366 147.6666 

50 25 2.3333 15150 194.6665 

60 24 2.6666 13247 203.9999 

70 35 4.6666 3853 69.6666 

80 36 4.9999 4443 91.3333 

90 30 4.6666 7160 167.3333 

100 39 6.6666 4548 117.6666 

 
Discussion 

The PSO Algorithm shares similar 

characteristic to GA, however manner in 

which the two algorithms traverse the search 

space is fundamentally different. 

Both Genetic Algorithms and Particle 

Swarm Optimizers share common elements: 

1. Both initialize a population in random 

manner. 

2. Both use an evaluation function to 

determine how fit (good) a potential 

solution is. 

3. Both are reproduction of the population 

based on fitness values. 

4. Both are generational, that is both repeat 

the same set of processes for a 

predetermined amount of time. 

5. Both are stopping when requirements are 

met. 
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However, PSO does not have genetic 

operators like crossover and mutation. 

Particles update themselves with internal 

velocity. They also have memory, which is 

important to the algorithm. The information 

sharing mechanism in PSO is significantly 

different. In GAs, chromosomes share 

information with each other. So the whole 

population moves like a one group towards an 

optimal area. In PSO, only best neighborhood 

gives out the information to others. It is a one 

way information sharing mechanism. The 

evolution only looks for the best solution. All 

the particles tend to converge to the best 

solution quickly even in the local version in 

most cases. 

 

Conclusion 

For Non-linear problems (Solving           

N-Queen problem with n=8 and n=16) with             

((8-k)Ị and (16-k)Ị), search space size 

respectively, we conclude that GA with its 

own simple operators (selection, crossover and 

mutation), was stable in its performance under 

different search space sizes, the GA can 

reaches optimal or near optimal solution. 

While the PSO, performs well in small 

search space size but decreases its capabilities 

with more complicated problems, i.e., when it 

has large search space size. 
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