
Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science

 172

GENETIC ALGORITHM VERSUS PARTICLE SWARM

OPTIMIZATION IN N-QUEEN PROBLEM

*
Azhar W. Hammad,

**
Dr. Ban N. Thannoon

Al-Nahrain University/ College of Science/ Iraq
*
azharalrawi@yahoo.com,

**
drban_2001@yahoo.com

Abstract

In recent year, particle Swarm Optimization (PSO) which is one of the area of evolutionary

computations was developed, So in order to compare its performance, another popular optimization

method Genetic Algorithm (GA) was chosen. The two methods employee different strategies and

computation efforts.

In this paper, N-Queens problem was chosen to compare GA with PSO performance. GA with

its own simple operators is stable in its performance under different search space sizes, while the

PSO performs well in small search space size and its capabilities when space size becomes larger.

Keywords: Genetic Algorithm, Particle Swarm Optimization.

Introduction
In recent years, the area of Evolutionary

Computation has come into its own. Two of

the popular developed approaches are GAs and

PSO, both of which are used in optimization

problems. Although the two approaches are

supported to find a solution to a given

objective function, they employ different

strategies and computational efforts. Therefore

it is appropriate to compare their

implementation.

The contribution in this work has two

fields:

1. To compare the effectiveness of GA and

PSO (i.e. compare their solution quality

or convergence reliability).

2. To compare the efficiency of GA and PSO

(i.e. compare their convergence speed).

The N-Queens problem is the problem of

putting n queens on an n×n chessboard with

((n-k)!) search space such that non of them is

to be able to attack any other. Eight and

sixteen queens were tried in this

implementation.

Genetic Algorithms

Genetic Algorithms are adaptive stochastic

search algorithms (Stochastic searches are

those that use probability to help guide their

search) [1].

A GA is a powerful search technique that

mimics natural selection and genetic operators.

Its power comes from its ability to combine

good pieces from different solutions and

assemble them into a single super solution. GA

can be distinguished from other search and

optimization techniques by the fact that it is a

process, which uses a population of many

individuals, rather than a single one to solve a

problem [2].

GAs are a family of computational models

inspired by evolution. These algorithms encode

a potential solution to a specific problem on a

simple chromosome-like data structure and

apply recombination operators to these

structures so as to preserve critical

information. They are often viewed as function

optimizers, although the range of problems to

which genetic algorithms have been applied is

quite broad such as pattern recognition, image

processing, machine learning, etc [3].

Elements of GAs

The GAs have the following elements and

operators: Encoding, selection according to

fitness, crossover to produce new offspring,

and inversion [4].

i. Encoding

Suppose someone is seeking to find a

solution to some problem. To apply a GA to

that problem, the first thing he/she must do is

to encode the problem as an artificial

chromosome or chromosomes. These

chromosomes can be string of 1s and 0s,

parameter list, integer numbers, or even

complex computer codes, but the key thing to

keep in mind is that the genetic machinery will

mailto:drban68@yahoo.com
mailto:drban68@yahoo.com

Azhar W. Hammad

 173

manipulate a finite representation of the

solution, not the solutions themselves [4].

ii. Selection

Another key element of GAs is the

selection operator which is used to select

chromosomes (called parents) for mating in

order to generate new chromosomes (called

offspring). In addition, the selection operator

can be used to select elitist individuals. The

selection process is usually biased toward fitter

chromosomes. Selection methods are used as

mechanisms to focus on apparently more

profitable regions in the search space. One of

these methods is tournament selection this

selection way is more commonly used

approach, a set of chromosomes (known as

tournament size) are randomly chosen the

fittest chromosome from the set is then placed

in mating pool. This process is repeated until

the mating pool contains a sufficient number of

chromosomes to start the mating process.

iii. Crossover

Crossover is “the main explorative operator

in GAs”. Crossover occurs with a user-

specified probability; called the crossover

probability Pc. Pc is problem dependent with

typical values in the range between 0.4 and

0.8.

One of the most popular type of crossover

Partial Matched Crossover (PMX) is not

suitable for binary coding problems. Under

PMX, two strings aligned, and two crossing

sites are picked uniformly at random along the

strings. These two points define a matching

section that is used to affect a cross through

position-by-position exchange operations.

iv. Mutation

Mutation is performed after crossover by

randomly choosing a chromosome in the new

generation to mutate in order to explore new

areas in the search space and to add diversity to

the population of chromosomes to prevent

being trapped in a local optimum.

Inversion is a different form of mutation. It

is sometimes used in appropriate cases. Under

inversion, two points are chosen along the

length of the chromosome, the chromosome is

cut at those points, and the end points of the

cut switch places.

The GA Procedure

The following pseudo code of the GA

illustrates the main steps that should be

performed to produce the required solution.

Create an initial population of strings.

Calculate the fitness of each string.

While an acceptable solution is not found

 Select parent for next generation.

 Combine the parents to create new offspring.

 Mutation and Inversion are applied

according to some probability.

 Calculate the fitness of each offspring.

End While.

Pseudo code of Genetic Algorithm

Particle Swarm Optimization

Particle Swarm Optimization is one of the

evolutionary computations, which can be used

for optimization, developed by Kennedy and

Eberhart in 1995.

This algorithm is based on the social

behavior of individuals living together in

groups such as bird flocking, fish schooling,

and swarm of bees (or insects). A population

of particles exists in the n-dimensional search

space that the optimization problem lives in.

Each particle has a certain amount of

knowledge, and will move about the search

space based on this knowledge. The particle

has some inertia attributed to it and so will

continue to have a component of motion in the

direction it is moving. It also keeps track of

the best solution for all the particles achieved

so far, as well as the best solution achieved so

far by each particle. The particle will then

modify its direction such that it has additional

components towards its own best position and

towards the overall best position. This will

provide some form of convergence to the

search, while providing a degree of

randomness to promote a wide coverage of the

search space [5] [6].

Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science

 174

PSO Topology

The common uses of PSOs are either

global version or local version. In the global

version of PSO, each particle flies through the

search space with a velocity that is

dynamically adjusted according to the particles

of personal and the best performance achieved

so far by all the particles. While in the local

version of PSO, each particle’s velocity is

adjusted according to its personal best and the

best performance achieved so far within its

neighborhood. The neighborhood of each

particle is generally defined as topologically

nearest particle to the particle at each side [7].

A lot of researches had work on improving

PSO performance by designing or

implementing different types of neighborhood

structures. Each neighborhood structure has its

strength and weakness. It works better in one

kind of problems, but worse on the other kind

of problems. When using PSO to solve a

problem, not only the problem needs to be

specified, but the neighborhood structure of the

PSO utilized, should also be clearly

specified [7].

PSO Algorithm

As described by Kennedy and Eberhart, the

PSO algorithm is an adaptive algorithm based

on a social-psychological metaphor; a

population of individuals (referred to as

particles) adapts by returning stochastically

toward previously successful regions.

Particle Swarm has two primary operators:

Velocity update and Position update. During

each iteration, each particle is accelerated

toward the particle’s previous best position and

the global best position. At each iteration a

new velocity value for each particle is

calculated based on its current velocity, the

distance from its previous best position, and

the distance from the global best position. The

new velocity value is then used to calculate the

next position of the particle in the search

space. This process is then iterated a set

number of times or until a minimum error is

achieved [5] [8].

The PSO algorithm depends on its

implementation in the following two relations

[7]:

The velocity of particle i is updated using

the following equation [8]:

vid(t+1) = wvid(t) + c1r1(t)(pid(t) – xid(t)) +

c2r2(t)(pgd(t) – xid(t)) (1)

The position of particle i, xi is then updated

using the following equation:

xid(t+1) = xid(t) + vid (t+1) (2)

where:

t is the current time step, t+1 is the next

time step.

xid (t) is the current state (position) at site d of

individual i.

vid (t) is the current velocity at site d of

individual i.

w(t) is the inertia weight

 w= ((Tmax - G) * (0.9 - 0.4) / Tmax) + 0.4

Where Tmax is the maximum number of

Iterations and G is the current generation

number.

pid is the individual’s i best state (position)

found so far at site d.

pgd is the neighborhood best state found far at

site d.

c1 cognition parameter 1, a positive constant,

usually set to 2.0.

c2 social parameter 2, a positive constant,

usually set to 2.0.

r1, r2 is a positive random number drawn from

a uniform distribution between 0.0 and

1.0.

The pseudo code of the PSO

The following pseudo code illustrates the

main steps of the PSO.

Azhar W. Hammad

 175

For each particle

 Initialize particle

End

Repeat

 For each particle

 Calculate fitness value

 If the fitness value is better than

best fitness value (Pid) in history

 Set current value as the new Pid

 End

 Choose the particle with the best

fitness value of all the particles as

the Pgd

 For each particle

 Update particle velocity

according to equation (1)

 Update particle position

according to equation (2)

 End

Until Stopping criteria

Pseudo code of PSO

N-Queens Problem
Problem Definition: The N-Queens

problem is analogue of the classic 8-Queens

problem from chess. There is an n×n

chessboard and the goal is to have N Queens

placed into board squares so that no queen is

attacking the other so its search space

size=((n-k)Ị) where k=1..n-1.

Developing a Coding Scheme

This problem can be generalized as placing

n nonattacking queens on an n×n chessboard.

Since each queen must be on a different raw

and column, we can assume that queen i is

placed in i-th

column. All solutions to the N-

queens problem can therefore be represented

as string of n bits (i.e String length = n).

i. Initialization
The initial population in each GA and PSO

algorithm is seeded by randomly generated

individuals. In our works the maximum

number of generation is dependent on the

problem itself. The population/swarm size (i.e.

individuals/particles numbers) is set to 10, 20,

30, and 100. Ten runs were performed for each

population/swarm size, and the

population/swarm size not changing during the

evolutionary search

Creating a Fitness Function

The position of a number in the string

represents queen’s column position, while its

value represents queen’s row position, so the

row and column conflicts are already satisfied.

A fitness function can be designed to count

diagonal conflicts: more conflicts there are,

worse the solution. For correct solution, the

function will return Zero.

A queen that occupies i-th column and

qi-th row is located on (i+qi-1) left and (n-i+qi)

right diagonal. A fitness function first allocates

counters for all diagonal then, for each queen,

counters for one left and one right diagonal

that queen occupies are increased by one.

After evaluation, if a counter has a value

greater than 1, there are conflicts on the

corresponding diagonal.

Results

Tables (1) and (2) describe the GA and

PSO operators and parameters that are used in

solving N-queens problem.

Table (1)

GA’s operators and parameters for solving

N-Queens Problem

Initialization Random

Representation
Integer String of

Length= n

Selection Tournament Selection

Recombination
Partial Matched

Crossover (PMX)

Mutation Swap

Mutation Probability 0.5

Population Size 10, 20, 30,…, 100

Maximum Number
of generations

(NoG)

100

Stopping Condition
Solution or Number of

Generations= NoG

Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science

 176

Table (2)

Describes PSO parameters for solving

N-Queens Problem

Initialization Random

Representation Integer String of
Length= n

w w= ((Tmax - G) * (0.9 -
0.4) / Tmax) + 0.4

c1 and c2 2.0

r1 and r2 Random [0..1]

Swarm Size or
Number of Particles

10, 20, 30,…, 100

Maximum Number of
Iterations(Tmax)

100, 30000

Stopping Condition Solution or Number of
iterations= Tmax

For ten times running and for 10, 20, 30,

…, 100 Population/Swarm size, the average of

the best three results for 8-queens are

presented, Table (3) illustrates that PSO give

us best solutions than GA in number of

generations and time.

Table (3)

The average of comparison results between

GA and PSO to solve 8-Queens.

Pop

Size

GA PSO

No. of

Genera

-tions

Time/S

ec

No.

of

Itera-

tions

Time/Sec

10 12 1.8485 13 1.1977

20 7 1.7053 4 1.3741

30 3 1.5430 2 1.5269

40 3 1.3966 4 1.4405

50 5 1.4659 3 1.3814

60 2 1.4373 3 1.4725

70 2 1.9066 4 1.6210

80 3 1.9255 3 1.8541

90 3 2.3777 4 2.2561

100 3 2.4925 3 2.1666

But, for 16-queens, table (4) shows that

solutions found using GA are better than those

found using PSO.

Table (4)

The average of comparison results between

GA and PSO to solve 16-Queens.

Pop

Size

GA PSO

No. of

Genera

-tions

Time/

Sec

No. of

Itera-

tions

Time/Sec

10 60 1.9999 23547 61.9999

20 70 2.9999 18444 95.9999

30 39 2.3333 10003 76.9999

40 31 3 143366 147.6666

50 25 2.3333 15150 194.6665

60 24 2.6666 13247 203.9999

70 35 4.6666 3853 69.6666

80 36 4.9999 4443 91.3333

90 30 4.6666 7160 167.3333

100 39 6.6666 4548 117.6666

Discussion

The PSO Algorithm shares similar

characteristic to GA, however manner in

which the two algorithms traverse the search

space is fundamentally different.

Both Genetic Algorithms and Particle

Swarm Optimizers share common elements:

1. Both initialize a population in random

manner.

2. Both use an evaluation function to

determine how fit (good) a potential

solution is.

3. Both are reproduction of the population

based on fitness values.

4. Both are generational, that is both repeat

the same set of processes for a

predetermined amount of time.

5. Both are stopping when requirements are

met.

Azhar W. Hammad

 177

However, PSO does not have genetic

operators like crossover and mutation.

Particles update themselves with internal

velocity. They also have memory, which is

important to the algorithm. The information

sharing mechanism in PSO is significantly

different. In GAs, chromosomes share

information with each other. So the whole

population moves like a one group towards an

optimal area. In PSO, only best neighborhood

gives out the information to others. It is a one

way information sharing mechanism. The

evolution only looks for the best solution. All

the particles tend to converge to the best

solution quickly even in the local version in

most cases.

Conclusion

For Non-linear problems (Solving

N-Queen problem with n=8 and n=16) with

((8-k)Ị and (16-k)Ị), search space size

respectively, we conclude that GA with its

own simple operators (selection, crossover and

mutation), was stable in its performance under

different search space sizes, the GA can

reaches optimal or near optimal solution.

While the PSO, performs well in small

search space size but decreases its capabilities

with more complicated problems, i.e., when it

has large search space size.

References

[1] K.Grant, ”An Introduction to Genetic

Algorithms”, C++ user Journal, March

1995.

[2] M.Baright, J.Timmins, G.Heliker,

“Multiobjective Optimization of Control

Systems Via Genetic Algorithms”,

University of Illinois, IlliGAL Report NO.

07009, 1997.

[3] D.Whitley,” A. Genetic Algorithms

Tutorial”, Colorado State University,

Fort Collins, Co 80523, 1994,

whitley@cs.colostate.edu.

[4] D. E. Goldberg, Genetic Algorithms in

search, optimization, and Machine

Learning, Addison-Wesley Publishing

company, INC., 1989.

[5] J. Kennedy and R. Eberhart, Swarm

Intelligence. Morgan Kaufmann

Publishers, Inc., San Francisco, CA, 2001.

[6] C.R. Mouser, S.A. Dunn, “Comparing

Genetic Algorithms and Particle Swarm

Optimization for Inverse Problem

Exercise”, Austral. Mathematical Soc,

2005.

[7] Y. Shi, “Particle Swarm Optimization”,

Electronic Data Systems, Inc. Kokomo, IN

46902, USA Feature Article, IEEE Neural

Networks Society, February 2004.

[8] M. Settles, “An Introduction to Particle

Swarm Optimization”, Department of

Computer Science, University of Idaho,

Moscow, Idaho U.S.A. 838, November 7,

2005.

mailto:whitley@cs.colostate.edu

