RANGE -KERNEL ORTHOGONALITY OF ELEMENTARY CHORDAL TRANSFORM

Buthainah Abdul -Hasan Ahmed and ${ }^{ *}$ Sudad Musa Rasheed
*Department of Mathematic, College of Science, University of Baghdad E-mail: Buthainah-Hasan@yahoo.com
** Department of Mathematic, College of Science, University of Sulaimani E-mail: sudadmoosa@yahoo.com

Abstract

. Let $B(H)$ denoted the C^{*}-algebra of all bounded linear operators on a separable Hilbert space H. For $A, B \in B(H)$, the elementary operator $\Delta_{A, B}: B(H) \rightarrow B(H)$ is defined by $\Delta_{A, B}(X)=A X B-X$. We defined the elementary Chordal transform $g_{A, B}$ as an operator on $B(H)$ by $\mathrm{g}_{\mathrm{A}, \mathrm{B}}(\mathrm{X})=\left(\left|\mathrm{A}^{*}\right|^{2}+\mathrm{I}\right)^{-1 / 2} \Delta_{\mathrm{A}, \mathrm{B}}(\mathrm{X})\left(\left.\mathrm{B}\right|^{2}+\mathrm{I}\right)^{-1 / 2}$ for all $X \in B(H)$. In this paper ,the Range -kernel orthogonality of this transform was studied concerning to main rants, the Range - kernel orthogonality of the restrictions of $g_{A, B}$ to Hilbert -Schmidt class and the Range-Kernel orthogonality of restrictions $f_{A, B}$ and $g_{A, B}$ to Schatten p-class.

Keywords: Normal derivation, schatten p-class, unitarily invariant norm, orthogonality, elementary operator, chordal transform.

Introduction

Let ${ }_{B(H)}$ be denoted the C^{*}-algebra of all bounded linear operators on a separable Hilbert space H. For operators $A, B \in B(H)$, the generalized derivation $\delta_{A, B}: B(H) \rightarrow B(H)$ is defined by elementary $\delta_{A, B}(X)=A X-X B$ for all $X \in B(H)$.Also, for $A, B \in B(H)$ define the elementary operator $\Delta_{A, B}: B(H) \rightarrow B(H)$ as an operator on $B(H)$ by $\Delta_{A, B}(X)=A X B-X$ for all $X \in B(H)$. Define the Chordal transformation $f_{A, B}$, as an operator on $B(H)$ by $f_{A, B}(X)=\left(\left(\left.A^{*}\right|^{2}+I\right)^{-1 / 2} \delta_{A, B}(X)\left(\left.B\right|^{2}+I\right)^{-1 / 2}\right.$ for all A, B and $X \in B(H)$ When $A=B$, we simply write f_{A} for $f_{A, A}$. We define the elementary Chordal transform $g_{A, B}$ as an operator on $B(H)$ by $g_{A, B}(X)=\left(\left.A^{*}\right|^{2}+I\right)^{-1 / 2} \Delta_{A, B}(X)\left(\left.B\right|^{2}+I\right)^{-1 / 2}$ for all A, B and $X \in B(H)$, when $A=B$, we simply write g_{A} for $g_{A, A}$. The Chordal transform has some geometric properties that resemble those of the Chordal distance. Recall that the Chordal distance between any two complex numbers a
 easy to see that $d(a, b) \leq 1$ for all complex
number a and b [22].The orthogonality of the range and the kernel of certain derivations has been extensively studied by several authors (see, e.g., [1],[7],[11],[12],[13] and references therein). In addition to the usual operator norm $\|\cdot\|$, which is defined on all of $B(H)$, we are interested in the general class of unitarily invariant (or symmetric) norms. Each unitarily invariant norm $\|\cdot\|$ is defined on a natural subclass $C_{\|\cdot\| \|}$ of ${ }_{B(H)}$ called the norm ideal associated with the norm $\|\cdot\|$ and satisfies the invariance property $\|U A V\|=\|A\|$ for all $A \in C_{\|\cdot\|}$ and for all unitary operators $U, V \in B(H)$. While the usual operator norm $\|\cdot\|$ is defined on all of $B(H)$, the other unitarily invariant norms are defined on norm ideals contained in the ideal of compact operators in $B(H)$. For a compact operator A, let $S_{1}(A) \geq S_{2}(A) \geq \ldots \geq 0$ the singular values of A, i.e., the eigenvalues of $|A|=\left(A^{*} A\right)^{1 / 2}$. There is one - to - one correspondence between symmetric gauge functions defined on sequences of real numbers and unitarily invariant norms defined on norm ideal of operators. More precisely, if $\|\cdot\|$ is a unitarily invariant norm,
then there is unique symmetric gauge function ϕ such that $\|A\|=\phi\left(\left\{s_{j}(A)\right\}\right)$ for all $A \in C_{\|.\|}$. For $1 \leq p \leq \infty$, define $\|A\|_{p}=\left(\sum_{j=1}^{\infty} S_{j}(A)^{p}\right)^{1 / p}$, where, by convention, $\|A\|_{\infty}=S_{1}(A)$ is the usual operator norm of the compact operator A.These unitarily invariant norms are the well-known Schatten P- norms associated with the Schatten P-lasses. $C_{P}, 1 \leq P \leq \infty$. Hence C_{1}, C_{2} and C_{∞} are the trace class, the Hilbert - Schmidt class, and the class of compact operators, respectively. The Hilbert - Schmidt class is a Hilbert spaces under the inner product

$$
\langle A, B\rangle=\operatorname{tr} B^{*} A=\operatorname{tr} A B^{*}, \quad \text { where ' } \operatorname{tr} \text { ' denotes }
$$ the trace functional. So the Hilbert - Schmidt

$$
\|\mathrm{A}\|_{2}=\left(\operatorname{tr} \mathrm{A}^{*} \mathrm{~A}\right)^{1 / 2}
$$

orm is also given by $=\left(\left.\sum_{\mathrm{i}, \mathrm{j}=}^{\infty}\left\langle\mathrm{Af}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}\right\rangle\right|^{2}\right)^{1 / 2}$
where $\left\{e_{j}\right\}$ and $\left\{f_{j}\right\}$ are any orthonormal bases for H [2]. Hirzallah O. and Kittaneh F. studied in [14] the Range -Kernel orthogonality of the Chordal transformation.

Orthogonality of the Range and kernel of $g_{A, B}$.

It has been shown in [4] that if A and B are contractions, then $S \in C_{2}$ and $A S B=S$ imply $\|A X B-X+S\|_{2}^{2}=$ for all $X \in B(H)$.This $\|A X B-X\|_{2}^{2}+\|S\|_{2}^{2}$
says that, in the usual Hilbert -Spaces sense, $\operatorname{ran} \Delta_{A, B} \cap C_{2}$ is orthogonal to $\operatorname{ker} \Delta_{A, B} \cap C_{2}$, where $\operatorname{ran} \Delta_{A, B}$ and $\operatorname{ker} \Delta_{A, B}$ denote the range and the kernel of $\Delta_{A, B}$, respectively.

Moreover, it has been show in [5] that if A, B are normal operators such that $A S B=S$ for some $S \in B(H)$, and if $X \in B(H)$ such that $A X B-X+S \in C_{\|\cdot\| \|}$, then $S \in C_{\|\cdot\| \|}$ and $\|A X B-X+S\| \geq\|S\|$.

That is, with respect to the unitarily invariant norm $\|\cdot\| \|$, ran $\Delta_{A, B} \cap C_{\|\cdot\|} \quad$ is orthogonal, in the sense of [1], to ker $\Delta_{A, B} \cap C_{\| \| \| l}$, In this result and in the sequel, it is assumed that if $T \notin C_{\|\cdot\|}$, then $\|T\|=\infty$.

Our first orthogonality result for $g_{A, B}$ can be stated as follows.

Theorem

Let $A, S \in B(H)$ such that A is normal, $S \in C_{2}$ and $A S B=S$
Then $\left\|g_{A}(X)+S\right\|_{2}^{2}=\left\|g_{A}(X)\right\|_{2}^{2}+\|S\|_{2}^{2}$ such that X is a tenser prodact.

Proof:

If $g_{A}(X)+S \notin C_{2}$, then $g_{A}(X) \notin C_{2}$; so
$\left\|g_{A}(X)+S\right\|_{2}^{2}=\left\|g_{A}(X)\right\|_{2}^{2}+\|S\|_{2}^{2}=\infty$.
Suppose that $g_{A}(X)+S \in C_{2}$.
Then $g_{A}(X) \in C_{2}$ and so $S^{*} g_{A}(X) \in C_{1}$. Since A is normal and $A S A=S$, it follows by the Fuglede theorem that $A^{*} S A^{*}=S$ and $\left(A^{*} S A^{*}\right)^{*}=(S)^{*} \Rightarrow A S^{*} A=S^{*}$. Now
$\mathrm{S}^{*} \mathrm{~g}_{\mathrm{A}}(\mathrm{X})=$
$\mathrm{S}^{*}\left[\left(\left|\mathrm{~A}^{*}\right|^{2}+\mathrm{I}\right)^{-1 / 2}(\mathrm{AXA}-\mathrm{X})\left(|\mathrm{A}|^{2}+\mathrm{I}\right)^{-1 / 2}\right]$
$=S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} A X A\left(|A|^{2}+I\right)^{-1 / 2}-$
$S^{*}\left(\left|\mathrm{~A}^{*}\right|^{2}+\mathrm{I}\right)^{-1 / 2} \mathrm{X}\left(|\mathrm{A}|^{2}+\mathrm{I}\right)^{-1 / 2}$,
$X=f \otimes h$, where f and g are arbitrary vectors in H and $f \otimes h$ the operator define by $(f \otimes h) x=(x, h) f$ for all X trace.

$$
\begin{aligned}
& \operatorname{tr} S^{*} g_{A}(X)= \\
& \operatorname{tr} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} A(f, h) A\left(\left.A\right|^{2}+I\right)^{-1 / 2}- \\
& \operatorname{tr} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X\left(|A|^{2}+I\right)^{-1 / 2} \\
& =\operatorname{tr} S^{*} A\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2}(f, h) A\left(|A|^{2}+I\right)^{-1 / 2}- \\
& \operatorname{tr} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X\left(|A|^{2}+I\right)^{-1 / 2} \\
& =\operatorname{tr}\left(S^{*} A\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} f, A^{*}\left(|A|^{2}+I\right)^{-1 / 2}\right)- \\
& \operatorname{tr} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X\left(|A|^{2}+I\right)^{-1 / 2} \\
& =\operatorname{tr}\left(A S^{*} A\left(\left.A^{*}\right|^{2}+I\right)^{-1 / 2} f,\left(|A|^{2}+I\right)^{-1 / 2} h\right)- \\
& \operatorname{tr} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X\left(|A|^{2}+I\right)^{-1 / 2} \\
& =\operatorname{tr} A S^{*} A\left(\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} f,\left(|A|^{2}+I\right)^{-1 / 2} h\right)- \\
& \operatorname{tr} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X\left(|A|^{2}+I\right)^{-1 / 2} \\
& =\operatorname{tr} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X\left(|A|^{2}+I\right)^{-1 / 2}- \\
& \operatorname{tr} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X\left(|A|^{2}+I\right)^{-1 / 2} \\
& =0 \quad .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left\|g_{A}(X)+S\right\|_{2}^{2}= \\
& \left\|g_{A}(X)\right\|_{2}^{2}+\|S\|_{2}^{2}+2 \operatorname{Re} \operatorname{tr}\left(S^{*} g_{A}(X)\right) \\
& =\left\|g_{A}(X)\right\|_{2}^{2}+\|S\|_{2}^{2}
\end{aligned}
$$

Corollary

Let A, B and X such that A, B are normal, $S \in C_{2}$ and $A S B=S$. Then

$$
\begin{aligned}
& \left\|g_{A, B}(X)+S\right\|_{2}^{2}=\left\|g_{A, B}(X)\right\|_{2}^{2}+\|S\|_{2}^{2} \\
& \quad \text { for all } X \in B(H) .
\end{aligned}
$$

Proof: On $H \oplus H$, let
$L=\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right], \quad T=\left[\begin{array}{ll}0 & S \\ 0 & 0\end{array}\right]$
, and $Y=\left[\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right]$.
Then L is normal (since A and B are normal) and $T \in C_{2}$ (since $S \in C_{2}$), $L T L=T$ and
$\mathrm{g}_{\mathrm{L}}(\mathrm{Y})+\mathrm{T}=\left[\begin{array}{cc}0 & \mathrm{~g}_{\mathrm{A}, \mathrm{B}}(\mathrm{X})+\mathrm{S} \\ 0 & 0\end{array}\right]$
$\left\|g_{L}(Y)+T\right\|_{2}^{2}=$
$\|0\|_{2}^{2}+\left\|g_{A, B}(X)+S\right\|_{2}^{2}+\|0\|_{2}^{2}+\|O\|_{2}^{2}$
$=\left\|g_{A, B}(X)+S\right\|_{2}^{2}$.
Now the result follows by applying (Theorem1) to the operators L, T and Y,
$\left\|g_{L}(Y)+T\right\|_{2}^{2}=\left\|g_{L}(Y)\right\|_{2}^{2}+\|T\|=\left\|g_{A, B}(X)\right\|_{2}^{2}+\|S\|_{2}^{2}$.
It has been pointed out that theorem (1) in [5] can be extended to elementary operators induced by any pair of operators (A, B) that satisfies the Fuglede -Putnam property.In the same way, and again by using an argument similar to that used in the proof of Corollary(1), we can obtain the following orthogonality result for $g_{A, B}$.

Theorem

Let A, B and $S \in B(H) \quad$ such that $\quad(A, B)$ satisfies the Fuglede - Putnam property, $S \in C_{2}$ and $A S B=S$. Then
$\left\|g_{A, B}(X)+S\right\|_{2}^{2}=\left\|g_{A, B}(X)\right\|_{2}^{2}+\|S\|_{2}^{2}$
for all $X \in B(H)$.
For the general class of unitarily invariant norms, we can employ the analysis in [5] to prove the following orthogonality result for $g_{A, B}$.

Theorem

Let A, B and $S \in B(H)$ such thet (A, B) satisfies the Fuglede - Putnam property $S \in C_{\| \| \cdot \|}$ and $A S B=S$. Then
$\left\|g_{A, B}(X)+S\right\| \geq\|S\|$
for all $X \in B(H)$.
We study in the following theorem the range - kernel orthogonality of the restrictions of $g_{A, B}$ to Hilbert-Schmidt class.

Theorem

Let A, B and $S \in B(H)$ such that $S \in C_{2}$
.Then
$\left\|g_{A, B}(X)+S\right\|_{2}^{2}=\left\|g_{A, B}(X)\right\|_{2}^{2}+\|S\|_{2}^{2} \quad$ if and only if for all $X \in B(H)$.
$B S_{1}^{*} A=S_{1}^{*}$,
where
$S_{1}=\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} S\left(|B|^{2}+I\right)^{-1 / 2}$

Proof:

If $B S_{1}^{*} A=S_{1}^{*}$, then
$B\left(|B|^{2}+I\right)^{-1 / 2} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} A$ This, together
$=\left(|B|^{2}+I\right)^{-1 / 2} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2}$.
with the fact that $\operatorname{tr} Y Z=\operatorname{tr} Z Y$ whenever $Y Z, Z Y \in C_{1}$, implies that for every $X \in C_{2}$, we have

$$
\begin{aligned}
& t r S^{*} g_{A, B}(X)= \\
& t r S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2}(A X B-X)\left(\left.B\right|^{2}+I\right)^{-1 / 2} \\
& =r S^{s}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} A X B\left(\left.B\right|^{2}+I\right)^{-1 / 2}- \\
& \left.\operatorname{tr} S^{*}\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X\left(\left.B\right|^{2}+I\right)^{-1 / 2}, \\
& \text { vectors in } H \\
& \operatorname{trS}^{*} \mathrm{~g}_{\mathrm{A}, \mathrm{~B}}(\mathrm{X})= \\
& \operatorname{trS}^{*}\left(\left|\mathrm{~A}^{*}\right|^{2}+\mathrm{I}\right)^{-1 / 2} \mathbf{A}(\mathrm{f}, \mathrm{~h}) \mathrm{B}\left(\left.\mathrm{~B}\right|^{2}+\mathrm{I}\right)^{-1 / 2}- \\
& \operatorname{trS}^{*}\left(\left.\mathrm{~A}^{*}\right|^{2}+\mathrm{I}\right)^{-1 / 2}(\mathrm{f}, \mathrm{~h})\left(\left.\mathrm{B}\right|^{2}+\mathrm{I}\right)^{-1 / 2} \\
& =\operatorname{tr}\left(\mathrm{S}^{*}\left(\left|\mathrm{~A}^{*}\right|^{2}+\mathrm{I}\right)^{-1 / 2} \mathrm{Af}, \mathrm{~B}^{*}\left(|\mathrm{~B}|^{2}+\mathrm{I}\right)^{-1 / 2} \mathrm{~h}\right)- \\
& \operatorname{tr}\left(S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} f,\left(|B|^{2}+I\right)^{-1 / 2} h\right) \\
& \left.=B\left(|B|^{2}+I\right)^{-1 / 2} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} A f, h\right)- \\
& \left.\operatorname{tr}\left(|B|^{2}+I\right)^{-1 / 2} S^{\prime \prime}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} \mathrm{f}, \mathrm{~h}\right) \\
& \left.=\left.\operatorname{trB}\left(\mid \mathrm{B}^{2}+\mathrm{I}\right)^{-1 / 2} \mathrm{~S}^{\prime \prime}| | \mathrm{A}^{\prime \prime}\right|^{2}+\mathrm{I}\right)^{-1 / 2} \mathrm{~A}(\mathrm{f}, \mathrm{~h})- \\
& \left.\left.\operatorname{tr}\left(|B|^{2}+\mathrm{I}\right)^{-1 / 2} \mathrm{~S}^{\prime \prime}| | \mathrm{A}^{\prime \prime}\right|^{2}+\mathrm{I}\right)^{-1 / 2}(\mathrm{f}, \mathrm{~h}) \\
& =\operatorname{tr}\left(\left.B\right|^{2}+I\right)^{-1 / 2} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X- \\
& \operatorname{tr}\left(|B|^{2}+I\right)^{-1 / 2} S^{*}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} \mathrm{X}=0 .
\end{aligned}
$$

Hn H, Now
$\left\|g_{A, B}(X)+S\right\|_{2}^{2}=$
$\left\|g_{A, B}(X)\right\|_{2}^{2}+\|S\|_{2}^{2}+2 \operatorname{Re} \operatorname{tr}\left(S^{*} g_{A, B}(X)\right)$
$=\left\|g_{A, B}(X)\right\|_{2}^{2}+\|S\|_{2}^{2}$.
Conversely, if
$\left\|g_{A, B}(X)+S\right\|_{2}^{2}=\left\|g_{A, B}(X)\right\|_{2}^{2}+\|S\|_{2}^{2}$
for every $X \in C_{2}$,
then
$\operatorname{Re} t r S^{*} g_{A, B}(X)=0$
for every $X \in C_{2}$.
Replacing X by $i X$, we get $\operatorname{Im} \operatorname{tr} S^{*} g_{A, B}(X)=0 \quad$ But by straight forward for every $X \in C_{2}$.
computations, we have

$$
\begin{aligned}
& \operatorname{tr}\left(B S_{1}^{*} A-S_{1}^{*}\right) X=\operatorname{tr} S^{*} g_{A, B}(X) \\
& =0 \quad \text { for every } X \in C_{2} .
\end{aligned}
$$

Consequently $B S_{1}^{*} A-S_{1}^{*}=0, \quad$ and so $B S_{1}^{*} A=S_{1}^{*}$.
3) Range- Kernel Orthogonality of Restrictions z $f_{A, B}$ and $g_{A, B}$ on C_{P}.

We study Range-Kernel orthogonality of restrictions $f_{A, B}$ and $g_{A, B}$ to Schatten p-class, and again by using an argument similar to that used in the proof of lemma (3)[8], we gain the following orthogonality of the restrictions result for $f_{A, B}$ and $g_{A, B}$.

Theorem

Let $A \in B(H)$ and
$S \in C_{P}, 1<p<\infty$, then
$\left\|f_{A}(X)+S\right\|_{P} \geq\|S\|_{P}$
for all $X \in B(H)$
with $f_{A}(X) \in C_{P}$ if and only if $\operatorname{tr}\left(\tilde{S}_{A}(X)\right)=0$.
Proof:
We must show that $\operatorname{tr}\left(\widetilde{S} f_{A}(X)\right)=0$.from lemma (3)in [7],

$$
\begin{aligned}
& \operatorname{tr}\left(\tilde{S} \tilde{f}_{A}(X)\right)= \\
& \operatorname{tr}\left[\tilde{S}\left(\left.A^{*}\right|^{2}+I\right)^{-1 / 2}(A X-X A)\left(\left.A\right|^{2}+I\right)^{-1 / 2}\right] \\
& =\operatorname{tr} \tilde{S}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} A X\left(|A|^{2}+I\right)^{-1 / 2}- \\
& \operatorname{tr} \tilde{S}\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} X A\left(|A|^{2}+I\right)^{-1 / 2} .
\end{aligned}
$$

Use Theorem(1)in[13] to complete the proof.

Theorem

Let $A, B \in B(H)$,
given $S \in C_{P}, 1<P<\infty$,
then $\left\|f_{A, B}(X)+\hat{S}\right\|_{P} \geq\|\hat{S}\|_{P} \quad$ for all $X \in C_{P}$.
if and only if $\tilde{S} \in \operatorname{ker} f_{A, B}$.

Proof:

On $H \oplus H$, where, let
$L=\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right], \quad \hat{S}=\left[\begin{array}{ll}0 & S \\ 0 & 0\end{array}\right]$,
and $Y=\left[\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right]$,
then $Y \in C_{P}$. And
$f_{L}(Y)+\hat{S}=\left[\begin{array}{cc}0 & f_{A, B}(X)+S \\ 0 & 0\end{array}\right]$
$\left\|f_{L}(Y)+\hat{S}\right\|_{P}=\left\|f_{A, B}(X)+S\right\|_{P}$
$\geq\|S\|_{P}=\|\hat{S}\|_{P}$.
Recall that $C_{P}, 1<p<\infty$, is a uniformly convex space, that every non-trivial $\hat{S} \in C_{P}$ is a Smooth point, and support functional $D_{\hat{S}}$ is given by
$D_{\hat{S}}\left(f_{A, B}(X)\right)=\operatorname{tr}\left[\frac{\hat{s} f_{A, B}(X)}{\|\tilde{S}\|_{q}}\right]$
for all $f_{A, B}(X) \in C_{P}$.
Now $\left\|f_{A, B}(X)+\hat{S}\right\|_{P} \geq\|\hat{S}\|_{P}$ is satisfied if and only if $D_{\hat{S}}\left(f_{A, B}(X)\right)=0$ or if and only if $\operatorname{tr}\left(\tilde{S} f_{A, B}(X)\right)=0$. Choose Y to be the rank one operator $f \otimes g$ for some arbitrary elements f and g in $H \oplus H$. Then $\operatorname{tr}\left(\widetilde{S} f_{A, B}(Y)\right)=0$ implies that $\left(f_{A, B}(\tilde{S}) f, g\right)=0 \Leftrightarrow$ Conversely, suppose $\tilde{S} \in \operatorname{ker} f_{A, B}$.
that $\tilde{S} \in \operatorname{ker} f_{A, B}$. Since $\tilde{S} Y$ and $\tilde{S} f_{A, B}(Y)$ are trace, $\operatorname{tr}\left(\widetilde{S}_{A, B}(Y)\right)=0$. Then theorem(6) implies that $\left\|f_{A, B}(X)+\hat{S}\right\|_{P} \geq\|\hat{S}\|_{P}$.

Remark. In the same direction, we have the following characterization of those operators in C_{2} which are orthogonal to rang $g_{A, B} / C_{2}$. Invoking the Gateaux differentiability of the Schatten p-norm and the usual operator norm, enables us to characterize these operator that are orthogonal to the rang $g_{A, B}$ with respect to these norms.

Reference

[1] Anderson, J., On normal derivations, Proc. Amer. Math. Soc., 38(1973)135-140.
[2] Conway j., A course in functional analysis, Springer verlag, New York, 1985.
[3] Duggal B.P., On generalized PutnamFuglede theorems, Mh. Math, 107 (1989) 309-332.
[4] Duggal B.P., A remark on normal derivations of Hilbert-Schmidt type, Monatsh Math., 112 (1991) 265-270.
[5] Duggal B.P., Aremark on normal derivations, Proc. Amer. Math. Soc., 126(1998)2047-2052.
[6] Duggal B.P., A remark on generalized Putnam-Fuglede theorems, Proc. Amer. Math. Soc., 129 (2000) 83-87.
[7] Duggal B.P., Range-Kernel orthogonality of derivations, Linear Alge. Appl. 304 (2000) 103-108.
[8] Duggal B.P., Range-Kernel orthogonality of the elementary operators $X \rightarrow \sum_{i=1}^{n} A_{i} X B_{i}-X$, Linear Alg. Appl., 337 (2001) 79-86.
[9] Joseph G.S. and Bhushan L.W., An Asymmetric Putnam-Fuglede theorem for Dominant operators, Indiana univ. Math. J.,25 (1976) 359-365.
[10] Kittaneh F., On normal derivations of Hilbert-Schmidt type, Glasgow Math. J., 29 (1987) 245-248.
[11] Kittaneh F., Normal derivations in norm ideals, Proc. Amer. Math . Soc., 123 (1995) 1779-1785.
[12] Kittaneh F., Operators that are orthogonal to the range of derivation, J. Math. Anal. Appl., 203 (1997) 868-873.
[13] Kittaneh F. and Hirzallah O., On the Chordal transform of Hilbert space operators, Glasgow Math. J.,44 (2002) 275-284.
[14] Maher P.J., Commutator Approximants, Proc. Amer. Math. Soc., 115 (1992) 9951000.
[15] Rudin W., Functional Analysis, Mc Grow Hill, Inc. New York, 1980.
[16] Schatten R., Norm ideal of completely continuous operators, Springer-Verlag, Heidelberg, Berlin, 1980
[17] Siddiqi A.H., Functional Analysis with Applications.
[18] Turnsek A.,Elementary operators and orthogonality, Linear Alg. Appl. 317 (2000) 207-216.
[19] Weidmann J., Linear operators in Hilbert spaces, Springer-Verlag, New York, Heidlberg, Berlin, 1980.
[20] Weiss G., The Fuglede commutativity theorm module the Hilbert- Schmidt class and generating functions for matrix operators, Tran. Amer. Math. Soc., 246(1978)193-209.
[21] Williams J.P., Operators similar to their adjoints, Proc. Amer. Math. Soc., 20 (1969) 121-123
[22] Mitrinovic D. S., Analytic inequalities (Springer-Verlag, 1970).
الخلاصة
ليكن H فضاء هلبرت القابل للفصل وغير منتهي
البعد على حقل الأعداد العقدية وليكن B(H) جبر بناخ
لكافة المؤثرات الخطية المقيدة المعرفة على H
مؤثر الاشتقاق المعمح $\delta_{A, B}: B(H) \rightarrow B(H)$ بأنه
النطبيق ذو الصيغة
$\delta_{A, B}(X)=A X-X B, \quad X \in B(H)$
δ_{A}
的 $A_{A, B}$
$A \quad \Delta_{A, B}(X)=A X B-X, \quad X \in B(H)$
و B B عنصر في B(H)

لغرض دراسة مدى كل من هذه التطبيقات برهن
Anderson مؤثر سوي فأن $S \quad$ ($B(H)$
. $\left\|\delta_{A}(X)+S\right\| \geq\|S\| \quad, \quad X \in B(H)$
التطبيق يكون عموديا على نواته .بعد ذلك قام عدد من
$\delta_{A, B} \quad$ الباحثين بدر اسة تعامد المدى مع النو اة لكل من
و $\Delta_{A, B}$ كما عرف Fuad Kittaneh التطبيق

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{A}, \mathrm{~B}}(\mathrm{X})=\left(\left|\mathrm{A}^{*}\right|^{2}+\mathrm{I}\right)^{-1 / 2} \delta_{\mathrm{A}, \mathrm{~B}}(\mathrm{X})\left(\left.\mathrm{B}\right|^{2}+\mathrm{I}\right)^{-1 / 2}, \mathrm{X} \in \mathrm{~B}(\mathrm{H}) \\
& \text { ودرس التعامد بين المدى و النو اة لهذا التطبيق وعرفنا }
\end{aligned}
$$

التطبيق
$g_{A, B}(X)=\left(\left|A^{*}\right|^{2}+I\right)^{-1 / 2} \Delta_{A, B}(X)\left(\left.B\right|^{2}+I\right)^{-1 / 2}, X \in B(H)$
ودرسنا التعامد بين مدى هذا التطبيق ونواته . و التعامد بين
المدى والنواة لقصر اللطبيق

