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Abstract

In this paper, we study and discuss the existence and uniqueness of the solution of the discrete —
time Sylvester and Lyapunov operator equations, and more general continuous —time Lyapunov
operator equations. Also, we study the nature of the solution for these operator equation for special
types of operators, as well as the study of the range tag, taand ta are introduced.

Where,

taB(X)=AX-XB™*

Ta(X)=A"X-XA™, and

ta(X)= AX+XA, XeB(H).
for A B and A™ are fixed operators in B(H),and t is any scalar.

Key words: Lyapunov equation, Sylvester Equation, Discrete-time operator equation and continuous-time
operator eguation

Introducation Multiply eq.(2)from the right by B™, then eq,
Operator ~ Sylvester  equations  and (2) becomes:
Lyapunov equations are very important in AXBB'+XB'=xCB™
control theory and many other branches of AX+XB1=ocCB? |
engineering,[1] and [4]. The following are Let CB™ =W ,the above equation becomes
some example of operator equations: AXEXBY=0eW oo (6)
e Continuous-and discrete-time  Sylv- Also, The discrete  time-Lyapunov
ester operator equation : equation can be transform to Continuous- time
AX £ XB=CC ..o (1) Lyapunov equation as follows:
AXB £ X=CC ..o (2 Multiply eq.(4)from the right by A, then eq,
e Continuous-and discrete —time (4) becomes :
Lyapaunov operator equation: AXAALXAT=cCA? | o, (7)
AXAXAZLC oo (3) Let CA™ =W ,the equation (7) becomes :
AXAXZLC oo, (4) AX-XATZCW e, (8)

e More general Continuous- time i i
Lyapaunov operator equation: The Existences and Uniqueness Of The

AXHXAZLC oo 5)  Solution of the Discrete-Time Equations

where A,B and C are given operators defined Recall that, the spectrum of the operator

on a Hilbert space H, X is an operator that A = o(A) ={1eC:(A-Ml) is not invertible} and

. B(H) is the Banach space of all bounded linear
;%SEA??Sda(gj(giw;nsfdAt[%nd « are any scalars, operators defined on the Hilbert space H,[5].

In general ,these operator equations may
have one solution, infinite set of solutions or
no solution. In this paper, existence and
uniqueness of the solution of egs.(2),(4) and
(5), when B is an invertible operator in
eg.(2),and A is an invertible operator in eq.(4).

Sylvester-Rosenblum theorem

If A and B are operators in B(H) (Banach
algebra of all bounded linear operators defined
on a Hilbert space H), such that
o(A)No(B)=¢, then the operator equation

The discrete-time Sylvester equation can ~ A X-XB=aC (continuous-time  Syvester
be transform to Continuous- time Sylvester ~ Operator equation) has a unique solution X, for
equation as follows: every operator C.

The following corollaries give the unigque
solution for the operator eq.(6).
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Corollary

If A and B are operators in B(H), such that
o(A)No(B1)=¢, then the operator equation
AX-XB'=oW, has a unique solution X, for
every operator WeB(H).

Corollary
If A and B are operators in B(H), such that

o(A)N o(-B™)=¢, then the operator equation
AX+XB'=aW, has a unique solution X, for

every operator WeB(H).
Proposition
Consider eq.(6), if o(A)No(BY)=¢, then
A —aW
the operator _q | is defined on H®H s
0 B
.. A 0
similar to the operator { _1].
0 B
Proof:
Since o(A)No(BY)=¢, then by Syvester-
Rosenblum theorem, the equation

AX-XB™=aW has a unique solution X. Also,
|: | X:| A 0 _ A —aW |: | a’W:l
X1 . . ) A 0|
But is invertible, so is
0 1 0 gt

L A —aW
similar to )

o B!

Notes:

(1) The converse of the above proposition is

not true in general.

(2) If the condition o(A)No(B™M)= ¢ , fails to
satisfied then the operator equation AX-
XB™*=aW, may have no solution .

Now, the following corollary gives the
unique solution for the operator eq.(8).

Corollary
If A an operator, such that

o(A)N o(A1)=¢, then the eq.(8) has a unique
solution X, for every operator W.
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Proposition
Consider eq.(6), if o(A)N o(A)=¢, then

—aW

3 is defined on H®H

the operator A
0 A

is similar to the operator A 0 }
0 Al
Proof:
Since o(A")N o(A1)=¢, then by Syvester-
Rosenblum theorem, eq.(8) has a unique
solution. Also,

3 A D PR}

But [(') X} is invertible, so [A 0 } is

.. A* —aW
similar to Nt
0 A

Note :

(1) The converse of the above proposition is
not true in general.

(2) If the condition o(A") N o(A™)= ¢ , fails to
satisfied then eq.(8) may have one
solution, an infinite number of solution or
it may have no solution .

The Nature of the Solution for the
Discrete —Time Lyapunov Equation .

In this section, we study the nature of the
solution for special types of the linear operator
equations ,namely the discrete —time
Lyapunov equation.

Recall that, an operator A is said to be
self —adjoint if A=A, also an operator A is
said to be skew-adjoint if A'=-A,[5]

Remarks

(1) If AA'and W are self —adjoint
operators, then eg.(8), may or may not
have a solution. Moreover, if it has a
solution then it may be non self-adjoint.
This remark can easily be observed in
matrices.

(2) Consider eq.(8) if W is self —adjoint
operator, then it is not necessarily that
X=X".
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(3) If AAYand W are skew-adjoint
operators, then eq.(8) has no solution.
Recall that, an operator A is said to be

normal if AA'=A"A, [5] .

Proposition

(1) If A is self —adjoint operator, then A is
normal .

(2) If A is skew —adjoint operator, then A is
normal .

(3) If A is normal operator and A™ exist, then
A is normal .

Remarks
Consider eq.(8)

(1) If A and W are normal operators, then the
solution X is not necessarily normal
operator.

(2) If W is normal operator and A is any
operator, then it is not necessarily that the
solution X is normal operator.

Recall that, an operator A is said to be
compact incase, given any sequence of vectors

{Xx} such that [IX,llis bounded , {AX.} has a
convergent subsequence,[5].

Remarks (4.3):

(1) consider eq.(8), if W is compact
operator,then A A" , and X are not
necessarily compact operator.

(2) if A or W or A™ compact operator,and the
solution of eq.(8) exists, then it is not
necessarily to be compact.

Note:

Similarly, we can study the nature of the
solution for discrete time- Syvester operator
equation.

On The Range of tap

In This section, we discuss and study the
mapping
ta8:B(H)— B(H), where
©(X)= tas(X)=AX-XB* |, XeB(H)
and A, B™ are fixed in p(H).
Let R be a ring. A linear(additive ) mapping t
from R to R is called a derivation, if
t(ab)=at(b)+ t(a)b, for all a,b in R.
It is clear the map tag is linear map ;in fact
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tap=(aX1+BX2)=A(aX1+PX2)- (aX1+BX2)B™
= aAX;+BAXz-aX; B-pX, B*
= a(AX1-X1Bh)+ B(AX2-X2B™)
= atap(X1)+Btas(X2), for each scalars o
and f.
Also, the map tag is bounded, since

Iitagll=IAX-XBHI<IAXI+IXB™
<IXI[NAI+IB™]
But A,B1eB(H), let M=I|AlI+IIB|l, then

It llI<MIIXI.
S0 tap IS bounded.

The following remark shows that the
mapping tag IS not derivation.
Remark

Since  tap(XY)=A(XY)-(XY)B* for all

X,YeB(H) and tag (Y)=XAY-XYB™. Also,
tas(X)Y=AXY-XB™Y then one can deduce that
TaB(XY)# Xtap (Y)+ 1a8 (X)Y.

Now, let R be * — ring , i.e ,a ring with
involution *. The linear mapping t from R to Ris
called Jordan = — derivation , if for all a,beR,
t(a%)=at(a)+ t(a)a .

Recall that , a Jordan derivation .R—R is
defined to be a dditive mapping satisfying
f(a%) = af(a)+ f(a)a.

If R is a ring with trivial involution, a'=a ,then
the set of all Jordan * —derivations is equal to
the set of all Jordan derivations
It is easily seen that the mapping t:B(H)— B(H)
defined by
1(X)=  tas(X)=AX-XB? is
—derivation .

Now, we have the following simple
proposition:

not Jordan

Proposition
a Rang(tag)= Rang(tas)

Proof:

since o Rang(tas)={o(
XeB(H) }={AaX-aXB™, Xep(H)}
Let X;=aX , then
o Rang(tag)={ AXi-XiB? Xiep(H) }=
Rang(tag).

AX-XB™)



Remarks
Rang(tag) #Rang(tag).

On the Rang of ta
In this section, we discuss and study the
map
A B(H)— B(H), where

7(X)= Ta(X)=A"X-XA? | XeB(H)
It is clear that the map ta is a linear map ;in
fact
TA(0X1+BX2)= A (X1 +BXo) - (X1 +BX)A™
=0t A X1+B A" Xz BXo-o X1 A-PXLAT

= o ( AX-Xg AH+HB(AX-XAT

=o ta( X1)* Bra (X2)
Also, the map ta is bounded , since

Itall=IAX-XAIIA X +IXA™
<IXNLNAN+TA™I
But A A eB(H), let M=l A [I+lIA ]I, then

Itall< M |X]|. So ta is bounded.

The following remark shows that the
mapping ta is not derivation.

Remarks

TA(XY) =A"(XY)- (XY)A™ for X,Y eB(H)
and Xta(Y) =XAY-XYA™
Also ta(X)Y= A"XY-X A™MY. Then one can
deduce that tao(XY)#= Xta(Y)+ ta(X)Y.

It is easily seen that the mapping ta is not
Jordan * —derivation .
Now, we have the following simple
proposition .

Proposition
o Rang(ta)= Rang(ta)

Proof:

Since a Rang(ta)={ o AX-XAY) ,
XeB(H) }={A(aX)-(aX)A™, XeB(H)}
Let X;=aX, then
a Rang(tap)={ A" Xi-X4A' Xiep(H) }=
Rang(ta).

Remarks
Rang(ta)” #Rang(ta).
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More General Continuous-Time Lyapunov
Equations

In this section, we study the nature of the
solution of more general continuous—time
Lyapunov equations for special types of
operations.

Consider the operator equation given by
eq.(5). The question now is pertinent does
eq.(5) have a solution ?

To answer this question, remember the
Sylvester — Rosenblum theorem.

According to it, one can prove the

following proposition.

Proposition

Consider the operator equation
A" X-tXA=aC, where A is an operator such
that o(A")N o(-tA)= ¢, for every scalar t, then
this equation has a unique solution X, for
every operator C and o is any scalar.

Remark

If the condition o(A) N o(-tA)= ¢ , fails
to be satisfied then eq.(5) may have an infinite
number of solutions or may not.

Now, we study the nature of the solution of
eq.(5) for special types of operators.

Remarks

If A and C are self — adjoint operators, teC
then eq.(5) may or may not have a solution.
Moreover, if it has a solution then it may be
non self-adjoint.

This remark can easily be observed in
matrices.

Remark

Consider eq.(5).If A and C are self-adjoint
operators then this equation has no solution.
This remark can easily be verified.

Remark

If A and C are skew — adjoint operators,
then eq.(5) has no solution for every t .

The following remark illustrates that the
solution of eq.(5) is not necessarily a normal
operator in case the known operators A and C
in the equation are normal.

Remark
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Consider eq.(5), while its solution exist. If
A and C are normal operators then this
solution is not necessarily normal.

This remark can easily be seen in matrices

The following remark shows that the
solution X in eq.(5) is not necessarily a
compact operator in case A is a compact
operator for every t.

Remark

Consider eq.(5), while its solution exist. If
A is a compact operator then A’ is also, thus
tXA and A'X are also for every value of t.
Therefore, C is also a compact operator. But
the solution X of this equation needs not be
compact.

The following proposition can easily be
verified by the properties of compact
operators.

Proposition

Consider eq.(5) while its solution exist. If
A is a compact operator then A” is also, thus
tXA and AX is also for each Xep(H).
Therefore C is also a compact operator. But
the solution of this equation needs not be
compact .

On the Range of t¢a
In this section, we discuss and study the
range of ta, Where
7(X)= tea(X)=AX+XA, XeB(H).
where A is fixed in B(H), t is any scalar.
It is clearly that the map ta is a linear map ;in
fact
Tea(aX1+BX2)=A" (X1 +BXo) +t(0X1+BX2) A
=atia(X1)+ Bra(X2)
Also, the map 1 is bounded, since
Ieeall= IAXHXA | < | A+ [t XA <
XU CIAT+ DAL
But ABep(H) and [IA]l = [IAll
[[teall< M| X[], - where
M=(1+]t]) |JAl], 50 tta is bounded.
The following remark shows that the
mapping ta is not a derivation .

thus

Remark
Since  Ta(XY)=A(XY)+t(XY)A for all
X,YeB(H) and Xta(Y)=XAY+XYA. Also
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1a(X)Y=A"XY+tXAY. Then one can deduce
that Ta(XY)#= Xta(Y)+ ta(X)Y.

It is easily seen that the mapping T is not
Jordan *-derivation.

Now, we have the following simple
Proposition.
Proposition

aRang(tin)=Rang(tw).

Proof:
aRang(t) ={a(AX+tXA), Xep(H)}
={A"aX+taXA , XeB(H)}
Let Xi=aX, then:
aRang(t)={A X+tX1A , X1eB(H)}.
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TiacTA¢ TAB
1o dua
tas(X)=AX-XB™
Ta(X)=A"X-XA?, and
ta(X)= A X+XA, XeB(H).
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