TENSOR PRODUCT OF CONTINUOUS OPERATOR

Maysaa, M. Abdul-Munem
Department Of Mathematics, College Of Science, University Of Baghdad

Abstract

In this paper we prove that some properties of tensor product and we show that if A_{1}, A_{2} are θ adjoint then $A_{1} \otimes I+I \otimes A_{2}$ is normal .Also we prove that a continuous operator is invariant under tensor product.

Introduction

Let H be an infinite dimensional separable complex Hilbert space with inner product \langle, and let $B(H)$ be the algebra of all bounded linear operators on H, given $A_{1}, A_{2} \in B(H)$, the tensor product $A_{1} \otimes A_{2}$ on the Hilbert space $H \otimes H$ has been considered variously by many of authors (see [2],[3],[5],[6],[7]).
When $A_{1} \otimes A_{2}$ is defined as follows

$$
\begin{gathered}
\left\langle\mathrm{A}_{1} \otimes \mathrm{~A}_{2}\left(\mathrm{x}_{1} \otimes \mathrm{y}_{1}\right),\left(\mathrm{x}_{2} \otimes \mathrm{y}_{2}\right)\right. \\
\rangle=\left\langle\mathrm{A}_{1} \mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle\left\langle\mathrm{A}_{2} \mathrm{y}_{1}, \mathrm{y}_{2}\right\rangle
\end{gathered}
$$

The operation of taking tensor product $\mathrm{A}_{1} \otimes \mathrm{~A}_{2}$ preserves many properties of A_{1} and $A_{2} \in B(H)$ but by no means all of them , Thus, whereas the binormal property is invariant under tensor product ,the *paranormal property is not [9] .a gain, whereas $A_{1} \otimes A_{2}$ is posinormal if and only if A_{1} and $A_{2} \in B(H)$ are [9] and is similarly for U operator ,pseudo normal ,subnormal and normaloid operators [3],[9],[10] .it was shown in [9]that paranormal is not invariant under tensor product .

In this section we prove some properties of tensor product .

Proposition

If $\mathrm{A} \geq \mathrm{B} \geq 0$ and $\mathrm{C} \geq \mathrm{D} \geq 0$ then $\mathrm{A} \otimes \mathrm{C} \geq \mathrm{B} \otimes \mathrm{D} \geq 0$

Proof:

Sinc e $A \geq B \geq 0$ then $\langle\mathrm{Ax}, \mathrm{x}\rangle \geq\langle\mathrm{Bx}, \mathrm{x}\rangle \forall \mathrm{x} \in \mathrm{H}$
And Since $C \geq D \geq 0$ then $\left\langle\mathrm{Cx}_{1}, \mathrm{x}_{1}\right\rangle \geq\left\langle\mathrm{Dx}_{1}, \mathrm{x}_{1}\right\rangle$ $\forall \mathrm{x}_{1} \in \mathrm{H}$
$\langle\mathrm{Ax}, \mathrm{x}\rangle\left\langle\mathrm{Cx}_{1}, \mathrm{x}_{1}\right\rangle \geq\langle\mathrm{Bx}, \mathrm{x}\rangle\left\langle\mathrm{Dx}_{1}, \mathrm{x}_{1}\right\rangle$
$\left\langle A \otimes C\left(x \otimes x_{1}\right),\left(x \otimes x_{1}\right)\right\rangle \geq\left\langle B \otimes D\left(x \otimes x_{1}\right),\left(x \otimes x_{1}\right)\right\rangle$
$\left\langle\mathrm{A} \otimes \mathrm{C}-\mathrm{B} \otimes \mathrm{D}\left(\mathrm{x} \otimes \mathrm{x}_{1}\right),\left(\mathrm{x} \otimes \mathrm{x}_{1}\right)\right\rangle \geq 0$
$\forall \mathrm{x} \otimes \mathrm{x}_{1} \in \mathrm{H} \otimes \mathrm{H}$
then $A \otimes C \geq B \otimes D \geq 0$.

Proposition

If $\mathrm{A} \geq \mathrm{C} \geq \mathrm{B} \geq 0$ then
$C \otimes A^{2} \otimes B \geq C \otimes B^{2} \otimes B$
proof
Since $\quad A \geq C \geq B \geq 0 \quad$ then
$\langle\mathrm{Ax}, \mathrm{x}\rangle \geq\langle\mathrm{Cx}, \mathrm{x}\rangle \geq\langle\mathrm{Bx}, \mathrm{x}\rangle \geq 0 \quad \forall x \in H$
And $\left\langle\mathrm{A}^{2} \mathrm{x}, \mathrm{x}\right\rangle \geq\left\langle\mathrm{B}^{2} \mathrm{x}, \mathrm{x}\right\rangle \geq 0$
$\langle C x, x\rangle\left\langle A^{2} x, x\right\rangle\langle B x, x\rangle \geq\langle C x, x\rangle\left\langle B^{2} x, x\right\rangle\langle B x, x\rangle \geq 0$
$\left\langle\mathrm{C} \otimes \mathrm{A}^{2} \otimes \mathrm{~B}(\mathrm{x} \otimes \mathrm{x} \otimes \mathrm{x}),(\mathrm{x} \otimes \mathrm{x} \otimes \mathrm{x})\right.$
$\rangle \geq\left\langle\mathrm{C} \otimes \mathrm{B}^{2} \otimes \mathrm{~B}(x \otimes x \otimes x),(x \otimes x \otimes x)\right\rangle \geq 0$
$\left\langle C \otimes A^{2} \otimes B-C \otimes B^{2} \otimes B-\right.$
$(x \otimes x \otimes x),(x \otimes x \otimes x)\rangle \geq 0$
then $C \otimes A^{2} \otimes B \geq C \otimes B^{2} \otimes B$

Proposition

If $A \geq B \geq 0$ then
$\left(B^{\frac{r}{2}} \otimes A^{p} \otimes B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} \otimes B^{p} \otimes B^{\frac{r}{2}}\right)^{\frac{1}{q}} \quad$ and
$\left(A^{\frac{r}{2}} \otimes A^{p} \otimes A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} \otimes B^{p} \otimes A^{\frac{r}{2}}\right)^{\frac{1}{q}} \quad$ for
each $r \geq 0, q \geq 1, p \geq 0$

Proof:

Since $A \geq B \geq 0$ then $\mathrm{A}^{\mathrm{p}} \geq \mathrm{B}^{\mathrm{p}}$ hence $\left\langle\mathrm{A}^{\mathrm{p}} \mathrm{x}_{1}, \mathrm{x}_{1}\right\rangle \geq\left\langle\mathrm{B}^{\mathrm{p}} \mathrm{x}_{1}, \mathrm{x}_{1}\right\rangle$
$\left\langle B^{\frac{r}{2}} x, x\right\rangle\left\langle A^{p} x_{1}, x_{1}\right\rangle\left\langle B^{\frac{r}{2}} x_{2}, x_{2}\right\rangle \geq$
$\left\langle B^{\frac{r}{2}} x, x\right\rangle\left\langle B^{p} x_{1}, x_{1}\right\rangle\left\langle B^{\frac{r}{2}} x_{2}, x_{2}\right\rangle \geq 0$
$\left\langle B^{\frac{r}{2}} \otimes A^{P} \otimes B^{\frac{r}{2}}\left(x \otimes x_{1} \otimes x_{2}\right),\left(x \otimes x_{1} \otimes x_{2}\right)\right\rangle \geq$
$\left\langle B^{\frac{r}{2}} \otimes B^{P} \otimes B^{\frac{r}{2}}\left(x \otimes x_{1} \otimes x_{2}\right),\left(x \otimes x_{1} \otimes x_{2}\right)\right) \geq 0$
$\left\langle B^{\frac{r}{2}} \otimes A^{P} \otimes B^{\frac{r}{2}}-B^{\frac{r}{2}} \otimes B^{p} \otimes B^{\frac{r}{2}}\right.$
$\left.\left(x \otimes x_{1} \otimes x_{2}\right),\left(x \otimes x_{1} \otimes x_{2}\right) \quad\right\rangle \geq 0$
hence $\left(B^{\frac{r}{2}} \otimes A^{p} \otimes B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} \otimes B^{p} \otimes B^{\frac{r}{2}}\right)^{\frac{1}{q}}$
Similarly $\left(A^{\frac{r}{2}} \otimes A^{p} \otimes A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} \otimes B^{p} \otimes A^{\frac{r}{2}}\right)^{\frac{1}{q}}$

Proposition

If $A \geq C \geq B \geq 0$ then for each $r \geq 0, q \geq 1, p \geq 0$
$\left(C^{\frac{r}{2}} \otimes A^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(C^{\frac{r}{2}} \otimes C^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq$
$\left(C^{\frac{r}{2}} \otimes B^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq 0$

Proof:

$\Rightarrow)$ since $A \geq C \geq B \geq 0$ then
$\langle A x, x\rangle \geq\langle C x, x\rangle \geq\langle B x, x\rangle \geq 0 \quad$ and
$\left\langle A^{p} x, x\right\rangle \geq\left\langle C^{p} x, x\right\rangle \geq\left\langle B^{P} x, x\right\rangle \geq 0$
$\forall x \in H$
$\left\langle C^{\frac{r}{2}} x_{1}, x_{1}\right\rangle\left\langle A^{p} x, x\right\rangle\left\langle C^{\frac{r}{2}} x_{2}, x_{2}\right\rangle \geq$
$\left\langle C^{\frac{r}{2}} x_{1}, x_{1}\right\rangle\left\langle C^{p} x, x\right\rangle\left\langle C^{\frac{r}{2}} x_{2}, x_{2}\right\rangle \geq$
$\left\langle C^{\frac{r}{2}} x_{1}, x_{1}\right\rangle\left\langle B^{p} x, x\right\rangle\left\langle C^{\frac{r}{2}} x_{2}, x_{2}\right\rangle \geq 0$
$\left\langle C^{\frac{r}{2}} \otimes A^{p} \otimes C^{\frac{r}{2}}\left(x_{1} \otimes x \otimes x_{2}\right),\left(x_{1} \otimes x \otimes x_{2}\right)\right\rangle \geq$
$\left\langle C^{\frac{r}{2}} \otimes C^{p} \otimes C^{\frac{r}{2}}\left(x_{1} \otimes x \otimes x_{2}\right),\left(x_{1} \otimes x \otimes x_{2}\right)\right\rangle \geq$
$\left\langle C^{\frac{r}{2}} \otimes B^{p} \otimes C^{\frac{r}{2}}\left(x_{1} \otimes x \otimes x_{2}\right),\left(x_{1} \otimes x \otimes x_{2}\right)\right\rangle \geq 0$
then $\left\langle C^{\frac{\mathrm{r}}{2}} \otimes \mathrm{~A}^{\mathrm{p}} \otimes \mathrm{C}^{\frac{\mathrm{r}}{2}}-\mathrm{C}^{\frac{\mathrm{r}}{2}} \otimes \mathrm{C}^{\mathrm{p}} \otimes \mathrm{C}^{\frac{\mathrm{r}}{2}}\right.$
$\left.\left(\mathrm{x}_{1} \otimes \mathrm{x} \otimes \mathrm{x}_{2}\right),\left(\mathrm{x}_{1} \otimes \mathrm{x} \otimes \mathrm{x}_{2}\right)\right\rangle \geq 0$
hence $\left(C^{\frac{r}{2}} \otimes A^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(C^{\frac{r}{2}} \otimes C^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq 0$
and

$$
\begin{aligned}
& \left\langle C^{\frac{r}{2}} \otimes C^{p} \otimes C^{\frac{r}{2}}-C^{\frac{r}{2}} \otimes B^{p} \otimes C^{\frac{r}{2}}\right. \\
& \left.\left(\mathrm{x}_{1} \otimes \mathrm{x} \otimes \mathrm{x}_{2}\right),\left(\mathrm{x}_{1} \otimes \mathrm{x} \otimes \mathrm{x}_{2}\right)\right\rangle \geq 0 \\
& \left(C^{\frac{r}{2}} \otimes C^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(C^{\frac{r}{2}} \otimes B^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq 0 \text { then } \\
& \left(C^{\frac{r}{2}} \otimes A^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(C^{\frac{r}{2}} \otimes C^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq
\end{aligned}
$$

$$
\left(C^{\frac{r}{2}} \otimes B^{p} \otimes C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq 0
$$

The following example to show that how to find the Log - operator on a Hilbert space

Example

Let H be a Hilbert space and let A, B be positive operator matrices such that $B=\left(\begin{array}{cc}e^{2} & 0 \\ 0 & e\end{array}\right)$ and $A=V\left(\begin{array}{cc}e^{4} & 0 \\ 0 & e^{3 / 2}\end{array}\right) V^{*}$ where $\mathrm{V}=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}\sqrt{3} & \sqrt{2} \\ \sqrt{2} & -\sqrt{2}\end{array}\right)$ (unitary), then we have $\log (\mathrm{B})=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ and $\log (A)=\left(\begin{array}{cc}2 & \sqrt{3 / 2} \\ \sqrt{3 / 2} & 5 / 2\end{array}\right)$ and $\log (\mathrm{A})-\log (\mathrm{B}) \geq 0$.

Theore

Let A, B, C be a positive operator if $\log (A) \geq \log (C) \geq \log (B) \geq 0$ then
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(A^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right) \geq$
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(C^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right) \geq$
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(B^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right) \geq 0$

Proof:

Since $\log (A) \geq \log (C) \geq \log (B)$ then $\underbrace{\log (\mathrm{A})+\ldots+\log (\mathrm{A})}_{\text {Ptime }} \geq \underbrace{\log (\mathrm{C})+\ldots .+\log (\mathrm{C})}_{\text {Pime }} \geq$ $\underbrace{\log (\mathrm{B})+\ldots+\log (\mathrm{B})}_{\text {Ptime }}$
$\mathrm{pLog}(\mathrm{A}) \geq \mathrm{pLog}(\mathrm{C}) \geq \mathrm{pLog}(\mathrm{B})$
$\log \left(A^{p}\right) \geq \log \left(C^{p}\right) \geq \log \left(B^{p}\right)$
$\left\langle\log \left(\mathrm{A}^{\mathrm{p}}\right) \mathrm{x}_{1}, \mathrm{x}_{1}\right\rangle \geq\left\langle\log \left(\mathrm{C}^{\mathrm{p}}\right) \mathrm{x}_{1}, \mathrm{x}_{1}\right\rangle \geq \mathrm{X}_{1} \in \mathrm{H}$ $\left\langle\log \left(\mathrm{B}^{\mathrm{p}}\right) \mathrm{X}_{1}, \mathrm{X}_{1}\right\rangle$
$\left\langle\log \left(C^{\frac{r}{2}}\right) x, x\right\rangle\left\langle\log \left(A^{p}\right) x_{1}, x_{1}\right\rangle\left\langle\log \left(C^{\frac{r}{2}}\right) x_{2}, x_{2}\right\rangle \geq$
$\left\langle\log C^{\frac{r}{2}} x, x\right\rangle\left\langle\log \left(C^{p}\right)_{x_{1}, x_{1}}\right\rangle\left\langle\log \left(C^{\frac{r}{2}}\right)_{x_{2}, x_{2}}\right\rangle \geq$
$\left\langle\log \left(C^{\frac{r}{2}}\right) x, x\right\rangle\left\langle\log \left(B^{p}\right) x_{1}, x_{1}\right\rangle\left\langle\log \left(C^{\frac{r}{2}}\right) x_{2}, x_{2}\right\rangle \geq 0$
$\left\langle\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(A^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right)\right.$ $\left.\left(\mathrm{x} \otimes \mathrm{x}_{1} \otimes \mathrm{x}_{2}\right),\left(\mathrm{x} \otimes \mathrm{x}_{1} \otimes \mathrm{x}_{2}\right)\right\rangle \geq$
$\left\langle\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(C^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right)\right.$
$\left.\left(\mathrm{x} \otimes \mathrm{x}_{1} \otimes \mathrm{x}_{2}\right),\left(\mathrm{x} \otimes \mathrm{x}_{1} \otimes \mathrm{x}_{2}\right)\right\rangle \geq$
$\left\langle\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(B^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right)\right.$
$\left.\left(\mathrm{x} \otimes \mathrm{x}_{1} \otimes \mathrm{x}_{2}\right),\left(\mathrm{x} \otimes \mathrm{x}_{1} \otimes \mathrm{x}_{2}\right)\right\rangle \geq 0$ then
$\left\langle\log \left(\mathrm{C}^{\frac{\mathrm{r}}{2}}\right) \otimes \log \left(\mathrm{A}^{\mathrm{p}}\right) \otimes \log \left(\mathrm{C}^{\frac{\mathrm{r}}{2}}\right)-\right.$
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(C^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right)$
$\left.\left(\mathrm{x} \otimes \mathrm{x}_{1} \otimes \mathrm{x}_{2}\right),\left(\mathrm{x} \otimes \mathrm{x}_{1} \otimes \mathrm{x}_{2}\right)\right\rangle \geq 0$
$\forall \mathrm{x} \otimes \mathrm{x}_{1} \otimes \mathrm{x}_{2} \in H \otimes H \otimes H$
Then
$\log \left(\mathrm{C}^{\frac{\mathrm{r}}{2}}\right) \otimes \log \left(\mathrm{A}^{\mathrm{p}}\right) \otimes \log \left(\mathrm{C}^{\frac{\mathrm{r}}{2}}\right) \geq$
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(C^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right)$
Similarly
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(C^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right) \geq$
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(B^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right)$
Hence
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(A^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right) \geq$
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(C^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right) \geq$
$\log \left(C^{\frac{r}{2}}\right) \otimes \log \left(B^{p}\right) \otimes \log \left(C^{\frac{r}{2}}\right)$
recall that an operator $A \in B(H)$ is $\boldsymbol{\theta}$ adjoin if $\mathrm{A}^{*}=\mathrm{e}^{\mathrm{i} \theta} \mathrm{A}, \theta \in \mathrm{R} .[4]$

Theorem

If $\mathrm{A}_{1} \otimes \mathrm{I}+\mathrm{I} \otimes \mathrm{A}_{2}$ is θ-adjoin then $\mathrm{A}_{1}, \mathrm{~A}_{2}$ are θ-adjoin.

Proof:

Since $A_{1} \otimes I+I \otimes A_{2}$ is θ-adjoin then $\mathrm{A}_{1}^{*} \otimes \mathrm{I}+\mathrm{I} \otimes \mathrm{A}_{2}^{*}=\mathrm{e}^{\mathrm{i} \theta}\left(\mathrm{A}_{1} \otimes \mathrm{I}+\mathrm{I} \otimes \mathrm{A}_{2}\right)$
$A_{1}^{*} \otimes I+I \otimes A_{2}^{*}-e^{i \theta} A_{1} \otimes I-I \otimes e^{i \theta} A_{2}^{*}=0$
$\mathrm{A}_{1}^{*}, \mathrm{I}, \mathrm{e}^{\mathrm{i} \theta} \mathrm{A}_{1}$ are linear independent
then $I=A_{1}^{*}=e^{i \theta} A_{1}=0$ see [2] hence $I=0$ contradiction then $\mathrm{A}_{1}^{*}, \mathrm{I}, \mathrm{e}^{\mathrm{i} \theta} \mathrm{A}_{1}$ are linear dependent hence $A_{1}^{*}=r e^{i \theta} A_{1},\left|\frac{1}{r}\right|=e^{i \theta}$ and $\mathrm{A}_{2}^{*}, \mathrm{I}, \mathrm{e}^{\mathrm{i} \theta} \mathrm{A}_{2}$ are linear independent then $\mathrm{I}=\mathrm{A}_{2}^{*}=\mathrm{e}^{\mathrm{i} \theta} \mathrm{A}_{2}=0$ hence $I=0$ contradiction .
then $\mathrm{A}_{2}^{*}, \mathrm{I}, \mathrm{e}^{\mathrm{i} \theta} \mathrm{A}_{2}$ are linear dependent then $\mathrm{A}_{2}^{*}=\mathrm{re}^{\mathrm{i} \theta} \mathrm{A}_{2},|\mathrm{r}|=\mathrm{e}^{\mathrm{i} \theta}$ then $\mathrm{r}=1$, hence $\theta=0$ $\mathrm{A}_{1}=\mathrm{A}_{1}^{*}, A_{1}$ is θ-adjoin (since every self adjoint is θ-adjoin where $\theta=0$). and $A_{2}^{*}=e^{i \theta} A_{2}, A_{2}$ is θ-adjoin.

Theorem

If $\mathrm{A}_{1}, \mathrm{~A}_{2}$ are θ-adjoint then $\mathrm{A}_{1} \otimes \mathrm{I}+\mathrm{I} \otimes \mathrm{A}_{2}$ is normal.

Proof:

Since A_{1}, A_{2} are θ-adjoin then $A_{1}^{*}=e^{i \theta_{1}} A_{1}$ and $A_{2}^{*}=e^{i \theta_{2}} A_{2}, \theta_{1}, \theta_{2} \in R$ $A_{1} A_{1}^{*} \otimes I+I \otimes A_{2} A_{2}^{*}-A_{1}^{*} A_{1} \otimes I-I \otimes A_{2}^{*} A_{2}=$ $\mathrm{e}^{-\mathrm{i} \theta_{1}} \mathrm{~A}_{1}^{*} \mathrm{e}^{\mathrm{i} \theta_{1}} \mathrm{~A}_{1} \otimes \mathrm{I}+\mathrm{I} \otimes \mathrm{e}^{-\mathrm{i} \theta_{2}} \mathrm{~A}_{2}^{*} \mathrm{e}^{\mathrm{i} \theta_{2}} \mathrm{~A}_{2}-$
$A_{1}^{*} A_{1} \otimes I-I \otimes A_{2}^{*} A_{2}=0$
hence $A_{1} \otimes I+I \otimes A_{2}$ is normal
In this section we may assume that $\mathrm{A} \notin \mathrm{B}(\mathrm{H})$ If $\mathrm{A}: \mathrm{H} \rightarrow \mathrm{H}$ let $x \in H, A$ is continuous at x incase $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ impels $\mathrm{Ax}_{\mathrm{n}} \rightarrow \mathrm{Ax}$ [1]

Proposition

If $A_{i}, i=1, \ldots, n \quad$ are operator and $\mathrm{A}_{1} \otimes \mathrm{~A}_{2} \otimes \cdots \otimes \mathrm{~A}_{\mathrm{n}} \quad$ on \quad Hilbert \quad space $\mathrm{H}_{1} \otimes \mathrm{H}_{2} \otimes \cdots \mathrm{H}_{\mathrm{n}}, A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n}$ is
continuous operator if each $\mathrm{A}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$ is continuous operator.

Proof:

By induction it is enough to show that $\mathrm{A}_{1} \otimes \mathrm{~A}_{2}$ is continuous if A_{1} and A_{2} are
If $\quad\left\|x_{n} \otimes y_{m}-x \otimes y\right\|=0$ we prove that $\left\|A_{1} x_{n} \otimes A_{2} y_{m}-A_{1} x \otimes A_{2} y\right\|=0$
since A_{1} is continuous if $x_{n} \rightarrow x$ then $\mathrm{A}_{1} \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{A}_{1} \mathrm{X}$
and A_{2} is continuous if $y_{m} \rightarrow y$ then
$\mathrm{A}_{2} \mathrm{y}_{\mathrm{m}} \rightarrow \mathrm{A}_{2} \mathrm{y}$
$\left\|A_{1} x_{n} \otimes A_{2} y_{m}-A_{1} x \otimes A_{2} y\right\|=$
$\| A_{1} x_{n} \otimes A_{2} y_{m}-A_{1} x \otimes A_{2} y-$
$A_{1} x_{n} \otimes A_{2} y+A_{1} x_{n} \otimes A_{2} y \|=$
$\left\|A_{1} x_{n} \otimes\left(A_{2} y_{m}-A_{2} y\right)+\left(A_{1} x_{n}-A_{1} x\right) \otimes A_{2} y\right\|=0$
then $\mathrm{A}_{1} \otimes \mathrm{~A}_{2}$ is continuous .

Proposition

If $A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n} \neq 0$ is continuous operator and A_{1} is continuous then $A_{j}, j=2, \cdots, n \quad$ are continuous operators .

Proof:

By induction ,it is suffices to show that $\mathrm{A}_{1} \otimes \mathrm{~A}_{2}$ then $\mathrm{A}_{1} \otimes \mathrm{~A}_{2} \otimes \cdots \otimes \mathrm{~A}_{\mathrm{n}} \neq 0$
Let $A_{1} \otimes A_{2}$ is continuous.

$$
\text { if } x_{n} \otimes y_{m} \rightarrow x \otimes y \text { then }
$$

$\left\|A_{1} x_{n} \otimes A_{2} y_{m}-A_{1} x \otimes A_{2} y\right\|=0$
since $\left\|A_{1} x_{n} \otimes A_{2} y_{m}\right\|-\left\|A_{1} x \otimes A_{2} y\right\| \leq$

$$
\left\|\mathrm{A}_{1} \mathrm{x}_{\mathrm{n}} \otimes \mathrm{~A}_{2} \mathrm{y}_{\mathrm{m}}-\mathrm{A}_{1} \mathrm{x} \otimes \mathrm{~A}_{2} \mathrm{y}\right\|=0
$$

then $\left\|A_{1} x_{n} \otimes A_{2} y_{m}\right\|-\left\|A_{1} x \otimes A_{2} y\right\|=0$
$\left\|A_{1} x_{n}\right\|\left\|A_{2} y_{m}\right\|-\left\|A_{1} x\right\|\left\|A_{2} y\right\|=0$
$\left\|A_{1} x_{n}\right\|\left\|A_{2} y_{m}\right\|-\left\|A_{1} x\right\|\left\|A_{2} y_{m}\right\|+$
$\left\|A_{1} x\right\|\left\|A_{2} y_{m}\right\|-\left\|A_{1} x\right\|\left\|A_{2} y\right\|=0$
$\left(\left\|A_{1} x_{n}\right\|-\left\|A_{1} x\right\|\right)\left\|A_{2} y_{m}\right\|-$
$\left\|A_{1} x\right\|\left(\left\|A_{2} y_{n}\right\|-\left\|A_{2} y\right\|\right)=0$
since A_{1} is continuous if $x_{n} \rightarrow x$ then $\mathrm{A}_{1} \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{A}_{1} \mathrm{X}$
then $\left\|A_{1} x\right\|\left(\left\|A_{2} y_{n}\right\|-\left\|A_{2} y\right\|\right)=0$ hence A_{2} is continuous.

References

[1] Beberian,S.K "Introduction to Hilbert space"Second ed.,Chelsea Publishing Company,New York, N.Y.1976.
[2] Duggal, B.P." Tensor product of operators' strong stability and p-hyponormality "Glasgow Math. J. 42 (2000)371-381.
[3] Duggal,B.P.and Jeon,H."On operator with an absolute value condition " J.Korean Math. Soc. [to appear].
[4] Hamed,N."Jordan *-derivations on $B(H)$ " PhD Thesis ,college of Science, University 2002.
[5] Jinchuan,H."On the tensor product of operators "Act .Math. Sin.New series V.9,No.2(1993) 195-202.
[6] Ropert, I."Tensor product of operators "University of British Golumbia (2004)
http://math.forum.org/kb/plain text. spa.Massage ID=174789 (23-4-1999).
[7] Teishirosaito," $N u m e r i c a l ~ r a n g e s ~ o f ~ t e n s o r ~$ product of operator " Tokoku , Math.Jou.V.19,No.1(1967)98-100.
[8] M.Cho,T.Huruya and M.Itoh ."Spectra of completely Log-hyponormal operators " Integer.equ.oper.theory ,V. 37 ,No . 1 (2000)1-8.
[9] Maysaa,M.Abdul-Munem and Buthanah ,A. Ahmad." On the tensor product of operator on Hilbert space "Accepted for publication on Al -Nahrain University Journal for Science
[10] Lectures on operator a algebras " Springer-Verlag Berlin ,Heidelberg ,New York 1970-1971.

الخلاصة

نبرهن في هذا البحث بعض خواص الجداء التنسوري
ونوضح ان المؤثر المستمر يحافظ على خواصه تحت تأثير الجداء التنسوري.

