DERIVATION OF TRIDIAGONAL THREE-STAGES IMPLICIT RUNGEKUTTA METHOD

Arshed A. Ahmed, Fadhel S .Fadhel and Akram M. Al-Abood
Department of Mathematics, College of Science, Al-Nahrain University, Baghdad, Iraq.

Abstract

In this paper, the main objective is to introduce a new modified approach for deriving of implicit Runge-Kutta methods by construction a tridiagonal implicit matrices of unknown coefficients.

Keywords: Runge-Kutta methods, Implicit Runge-Kutta methods.

Introduction

The idea of extending Euler method by allowing for a multiplicity of evolutions of a function within each step was originally proposed by Runge (1895). Further contributions were made by Heun (1900) and by Kutta (1901). The latter completely characterized the set of Runge-Kutta method of order 4 and proposed the first methods of order 5. Special methods for second-order differential equations were proposed by Nyström (1925) who also contributed to the development of methods for first-order equations.

Since the advent of digital computers, fresh interest had been focused on RungeKutta methods, and a large number of research workers have contributed to recent extensions to the theory and the development of particular methods. Although, early studies were devoted entirely to explicit Runge-Kutta methods, interest has now extended to implicit methods, which are now recognized as appropriate for stiff differential equations [5].

The general form of an r-stages RungeKutta methods is given by:

$$
\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\mathrm{h} \sum_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{c}_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}
$$

where $k_{i}=f\left(x_{n}+h a_{i}, y_{n}+h \sum_{j=1}^{r} b_{i j} k_{j}\right) \quad, h$ is step length , $a_{i}=\sum_{j=1}^{r} b_{i j}$,
and c_{i}, a_{i} and $b_{i j}$, for all $i, j=1,2, \ldots, r$; are constants to be determined.

For convenience, we design the process by an array of constants, as follows [6]:

b_{11}	$\mathrm{~b}_{12}$	\ldots	$\mathrm{~b}_{1 \mathrm{j}}$	a_{1}
$\mathrm{~b}_{21}$	$\mathrm{~b}_{22}$	\ldots	$\mathrm{~b}_{2 \mathrm{j}}$	a_{2}
\vdots	\vdots	\ddots	\vdots	\vdots
$\mathrm{~b}_{\mathrm{i} 1}$	$\mathrm{~b}_{\mathrm{i} 2}$	\cdots	$\mathrm{~b}_{\mathrm{ij}}$	a_{i}
c_{1}	c_{2}	\cdots	c_{j}	

It is easy to classify Runge-Kutta methods, in three categories:

1. If $\mathrm{b}_{\mathrm{ij}}=0, \forall \mathrm{i}<\mathrm{j}$, then the method is called semi-explicit.
2. If $\mathrm{b}_{\mathrm{ij}}=0, \forall \mathrm{i} \leq \mathrm{j}$, then the method is called explicit.
3. Otherwise it is called implicit.

The next results could be found in [2, 3, 4] either as statement or proof.

Theorem

Consider the system:

$$
\begin{equation*}
y^{\prime}(x)=f(y), y=y_{0} \text { at } x=x_{0} . \tag{1}
\end{equation*}
$$

then $\phi=\frac{1}{\gamma}$, where ϕ is a constant depends on γ, where $\gamma=\frac{i \beta}{\alpha}, \forall i=1,2, \ldots, r$ and $\alpha, \beta \neq 0$ are numerical coefficients independent of the form of $f(y)$.

Theorem

Consider the system:

$$
\mathrm{y}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{y}), \mathrm{y}=\mathrm{y}_{0} \text { at } \mathrm{x}=\mathrm{x}_{0}
$$

If $\phi=\frac{1}{\gamma}, \mathrm{r} \leq \xi$, then $\sum_{j=1}^{\mathrm{r}} \mathrm{c}_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}^{\mathrm{k}-1}=\frac{1}{\mathrm{k}}$, for $\mathrm{k} \leq$ $\xi, \xi \geq 1$, where $\mathrm{k}=1,2, \ldots, \mathrm{r}$, and r is the number of stages of Runge-Kutta method and ξ is the order of the considered method.

Remark

It is will known that the following formula $\sum_{j=1}^{r} b_{i j} a_{j}^{k-1}=\frac{a_{j}^{k}}{k}$ could be obtained to evaluate a_{j} 's for $\mathrm{i}=1,2, \ldots, \mathrm{r}$ and $\mathrm{k} \leq \xi$.

Derivation of Tridiagonals Three-Stages Implicit Runge-Kutta Method:

In this section, a new modification is made in order to derive a new formula of triadiagonals implicit Runge-Kutta method with the property that the elements of each diagonal are equal, for simplicity, the parameters related by this method are presented in the following design of process:

Design of process (1)

ω	σ	0	a_{1}
δ	ω	σ	a_{2}
0	δ	ω	a_{3}
c_{1}	c_{2}	c_{3}	

One can find the values of a_{1}, a_{2} and a_{3} by solving the third degree Legendre polynomial, the obtained results are:

$$
a_{1}=\frac{1}{2}, a_{2}=\frac{1}{2}+\frac{\sqrt{15}}{10} \text { and } a_{3}=\frac{1}{2}-\frac{\sqrt{15}}{10}
$$

Similarly, using theorem (2), we can find $\mathrm{c}_{1}, \mathrm{c}_{2}$ and c_{3}, where:

$$
\sum_{\mathrm{j}=1}^{3} \mathrm{c}_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}^{\mathrm{k}-1}=\frac{1}{\mathrm{k}}, \text { for } \mathrm{k}=1,2,3
$$

hence for $\mathrm{k}=1,2$ and 3 , we have:

$$
\begin{align*}
& \mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}=1 \ldots \ldots \ldots \ldots . \ldots \tag{2}\\
& \mathrm{c}_{1} \mathrm{a}_{1}+\mathrm{c}_{2} \mathrm{a}_{2}+\mathrm{c}_{3} \mathrm{a}_{3}=\frac{1}{2} \ldots \ldots . \tag{3}\\
& \mathrm{c}_{1} \mathrm{a}_{1}^{2}+\mathrm{c}_{2} \mathrm{a}_{2}^{2}+\mathrm{c}_{3} \mathrm{a}_{3}^{2}=\frac{1}{3} . \tag{4}
\end{align*}
$$

Solving the above system for $\mathrm{c}_{1}, \mathrm{c}_{2}$ and c_{3}, we have:

$$
\mathrm{c}_{1}=4 / 9 \text { and } \mathrm{c}_{2}=\mathrm{c}_{3}=5 / 18
$$

Finally to find, ω, δ and σ use is made as given in remark (1) in which the consistent equations for integer k , are:

$$
\begin{aligned}
& b_{11} a_{1}^{k-1}+b_{12} a_{2}^{k-1}+b_{13} a_{3}^{k-1}=\frac{a_{1}^{k}}{k}, \text { for } i=1 \\
& b_{21} a_{1}^{k-1}+b_{22} a_{2}^{k-1}+b_{23} a_{3}^{k-1}=\frac{a_{2}^{k}}{k} \text {, for } i=2 \\
& b_{31} a_{1}^{k-1}+b_{32} a_{2}^{k-1}+b_{33} a_{3}^{k-1}=\frac{a_{3}^{k}}{k}, \text { for } i=3
\end{aligned}
$$

Hence for $\mathrm{k}=1$, we have:

$$
\left.\begin{array}{l}
\mathrm{b}_{11}+\mathrm{b}_{12}+\mathrm{b}_{13}=\mathrm{a}_{1} \tag{5}\\
\mathrm{~b}_{21}+\mathrm{b}_{22}+\mathrm{b}_{23}=\mathrm{a}_{2} \\
\mathrm{~b}_{31}+\mathrm{b}_{32}+\mathrm{b}_{33}=\mathrm{a}_{3}
\end{array}\right\} .
$$

For $\mathrm{k}=2$, we have:

$$
\left.\begin{array}{l}
\mathrm{b}_{11} \mathrm{a}_{1}+\mathrm{b}_{12} \mathrm{a}_{2}+\mathrm{b}_{13} \mathrm{a}_{3}=\frac{\mathrm{a}_{1}^{2}}{2} \tag{6}\\
\mathrm{~b}_{21} \mathrm{a}_{1}+\mathrm{b}_{22} \mathrm{a}_{2}+\mathrm{b}_{23} \mathrm{a}_{3}=\frac{\mathrm{a}_{2}^{2}}{2} \\
\mathrm{~b}_{31} \mathrm{a}_{1}+\mathrm{b}_{32} \mathrm{a}_{2}+\mathrm{b}_{33} \mathrm{a}_{3}=\frac{\mathrm{a}_{3}^{2}}{2}
\end{array}\right\} .
$$

and for $\mathrm{k}=3$, we have:

$$
\left.\begin{array}{l}
\mathrm{b}_{11} \mathrm{a}_{1}^{2}+\mathrm{b}_{12} \mathrm{a}_{2}^{2}+\mathrm{b}_{13} \mathrm{a}_{3}^{2}=\frac{\mathrm{a}_{1}^{3}}{3} \\
\mathrm{~b}_{21} \mathrm{a}_{1}^{2}+\mathrm{b}_{22} \mathrm{a}_{2}^{2}+\mathrm{b}_{23} \mathrm{a}_{3}^{2}=\frac{\mathrm{a}_{2}^{3}}{3} \tag{7}\\
\mathrm{~b}_{31} \mathrm{a}_{1}^{2}+\mathrm{b}_{32} \mathrm{a}_{2}^{2}+\mathrm{b}_{33} \mathrm{a}_{3}^{2}=\frac{\mathrm{a}_{3}^{3}}{3}
\end{array}\right\}
$$

Since $b_{11}=b_{22}=b_{33}=\omega, b_{12}=b_{23}=\sigma$, $\mathrm{b}_{21}=\mathrm{b}_{32}=\delta$ and $\mathrm{b}_{13}=\mathrm{b}_{31}=0$

From equations (5), we have:

$$
\begin{align*}
& \omega+\sigma+0=\frac{1}{2} \ldots \ldots \tag{8}\\
& \delta+\omega+\sigma=\frac{1}{2}+\frac{\sqrt{15}}{10} \tag{9}\\
& 0+\delta+\omega=\frac{1}{2}-\frac{\sqrt{15}}{10} . \tag{10}
\end{align*}
$$

Solving equations (8), (9) and (10) for ω, δ and σ, we have:

$$
\omega=\frac{1}{2}-\frac{\sqrt{15}}{5}, \sigma=\frac{\sqrt{15}}{5} \text { and } \delta=\frac{\sqrt{15}}{10}
$$

Accordingly the design of process(1) become

$\frac{1}{2}-\frac{\sqrt{15}}{5}$	$\frac{\sqrt{15}}{5}$	0	$\frac{1}{2}$
$\frac{\sqrt{15}}{10}$	$\frac{1}{2}-\frac{\sqrt{15}}{5}$	$\frac{\sqrt{15}}{5}$	$\frac{1}{2}+\frac{\sqrt{15}}{10}$
0	$\frac{\sqrt{15}}{10}$	$\frac{1}{2}-\frac{\sqrt{15}}{5}$	$\frac{1}{2}-\frac{\sqrt{15}}{10}$
$\frac{4}{9}$	$\frac{5}{18}$	$\frac{5}{18}$	

Stability of Tridiagonal Three-Stages
 Implicit Runge-Kutta Method:

To obtain intervals of stability of 3-stages Runge-Kutta method, we consider the test problem $\mathrm{y}^{\prime}=\lambda \mathrm{y}$, where $\operatorname{Re}(\lambda)<0$. Recall the tridiagonals three steps implicit Runge-Kutta method:

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\mathrm{h}\left(\mathrm{c}_{1} \mathrm{k}_{1}+\mathrm{c}_{2} \mathrm{k}_{2}+\mathrm{c}_{3} \mathrm{k}_{3}\right) . \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{k}_{1}=\lambda\left(\mathrm{y}_{\mathrm{n}}+\mathrm{hb}_{11} \mathrm{k}_{1}+\mathrm{hb}_{12} \mathrm{k}_{2}+\mathrm{hb}_{13} \mathrm{k}_{3}\right) \\
& \mathrm{k}_{2}=\lambda\left(\mathrm{y}_{\mathrm{n}}+\mathrm{hb}_{21} \mathrm{k}_{1}+\mathrm{hb}_{22} \mathrm{k}_{2}+\mathrm{hb}_{23} \mathrm{k}_{3}\right) \\
& \mathrm{k}_{3}=\lambda\left(\mathrm{y}_{\mathrm{n}}+\mathrm{hb}_{31} \mathrm{k}_{1}+\mathrm{hb}_{32} \mathrm{k}_{2}+\mathrm{hb}_{33} \mathrm{k}_{3}\right) \\
& \text { Now, let } \hbar=\lambda \mathrm{h}, \text { we have: }
\end{aligned}
$$

$$
\begin{array}{r}
\mathrm{k}_{1}=\lambda \mathrm{y}_{\mathrm{n}}+\hbar\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \mathrm{k}_{1}+\hbar \frac{\sqrt{15}}{5} \mathrm{k}_{2}, \\
\hbar=\lambda \mathrm{h} \ldots . ~ \tag{12}
\end{array}
$$

$$
\mathrm{k}_{2}=\lambda \mathrm{y}_{\mathrm{n}}+\hbar \frac{\sqrt{15}}{10} \mathrm{k}_{1}+\hbar\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \mathrm{k}_{2}+
$$

$$
\begin{equation*}
\hbar \frac{\sqrt{15}}{5} \mathrm{k}_{3} . \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{k}_{3}=\lambda \mathrm{y}_{\mathrm{n}}+\hbar \frac{\sqrt{15}}{10} \mathrm{k}_{2}+\hbar\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \mathrm{k}_{3} \tag{14}
\end{equation*}
$$

Substituting equations (12) and (14) in equation (13), we get:

$$
\begin{gathered}
\mathrm{k}_{2}=\lambda \mathrm{y}_{\mathrm{n}}+\hbar \frac{\sqrt{15}}{10}\left[\frac{\lambda \mathrm{y}_{\mathrm{n}}+\hbar \frac{\sqrt{15}}{5} \mathrm{k}_{2}}{1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar}\right]+ \\
\hbar\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \mathrm{k}_{2}+\hbar \frac{\sqrt{15}}{5}\left[\frac{\lambda \mathrm{y}_{\mathrm{n}}+\hbar \frac{\sqrt{15}}{10} \mathrm{k}_{2}}{1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right)} \hbar\right]
\end{gathered}
$$

Then after some simplifications, we have:

$$
\mathrm{k}_{2}=\lambda \mathrm{y}_{\mathrm{n}}\left[\frac{1-\left(\frac{1}{2}-\frac{\sqrt{15}}{2}\right) \hbar}{\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]^{2}-\frac{3}{5} \hbar^{2}}\right],
$$

$$
\text { provided that }\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]^{2}-\frac{3}{5} \hbar^{2} \neq 0
$$

Substituting k_{2} in equation (12), yields:

$$
\mathrm{k}_{1}=\frac{\lambda \mathrm{y}_{\mathrm{n}}+\lambda \mathrm{y}_{\mathrm{n}} \frac{\sqrt{15}}{5} \hbar\left[\frac{1-\left(\frac{1}{2}-\frac{\sqrt{15}}{2}\right) \hbar}{\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]^{2}-\frac{3}{5} \hbar^{2}}\right]}{1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar}
$$

Then after some simplification, we get:

$$
\mathrm{k}_{1}=\lambda \mathrm{y}_{\mathrm{n}}\left[\frac{1+\left(\frac{3 \sqrt{15}}{5}-1\right) \hbar+\left(\frac{7}{4}-\frac{3 \sqrt{15}}{10}\right) \hbar^{2}}{\left[1-\left(1-\frac{2 \sqrt{15}}{5}\right) \hbar+\left(\frac{1}{4}-\frac{\sqrt{15}}{5}\right) \hbar^{2}\right]\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]}\right]
$$

, provided that

$$
\left[1-\left(1-\frac{2 \sqrt{15}}{5}\right) \hbar+\left(\frac{1}{4}-\frac{\sqrt{15}}{5}\right) \hbar^{2}\right]\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right] \neq 0
$$

substituting k_{2} in equation (14)

$$
\mathrm{k}_{3}=\frac{\lambda \mathrm{y}_{\mathrm{n}}+\lambda \mathrm{y}_{\mathrm{n}} \frac{\sqrt{15}}{10} \hbar\left[\frac{1-\left(\frac{1}{2}-\frac{\sqrt{15}}{2}\right) \hbar}{\left.\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]^{2}-\frac{3}{5} \hbar^{2}\right]}\right]}{1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar}
$$

Hence, after some simplifications:

$$
\mathrm{k}_{3}=\lambda \mathrm{y}_{\mathrm{n}}\left[\frac{1+\left(\frac{\sqrt{15}}{2}-1\right) \hbar+\left(1-\frac{\sqrt{15}}{4}\right) \hbar^{2}}{\left[1-\left(1-\frac{2 \sqrt{15}}{5}\right) \hbar+\left(\frac{1}{4}-\frac{\sqrt{15}}{5}\right) \hbar^{2}\right]\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]}\right],
$$

provided that

$$
\left[1-\left(1-\frac{2 \sqrt{15}}{5}\right) \hbar+\left(\frac{1}{4}-\frac{\sqrt{15}}{5}\right) \hbar^{2}\right]\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right] \neq 0
$$

Therefore equation (11),become:

$$
\begin{aligned}
\mathrm{y}_{\mathrm{n}+1}= & \mathrm{y}_{\mathrm{n}}+ \\
& \mathrm{hy}_{\mathrm{n}}\left[\frac{4}{9} \overline{\left[1-\left(1-\frac{2 \sqrt{15}}{5}\right) \hbar+\left(\frac{1}{4}-\frac{\sqrt{15}}{5}\right) \hbar^{2}\right]\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]}\right. \\
& +\frac{5}{18} \frac{1-\left(\frac{1}{2}-\frac{\sqrt{15}}{2}\right) \hbar}{\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]^{2}-\frac{3}{5} \hbar^{2}}+ \\
& \left.\frac{5}{18} \frac{1+\left(\frac{\sqrt{15}}{2}-1\right) \hbar+\left(1-\frac{\sqrt{15}}{4}\right) \hbar^{2}}{\left[1-\left(1-\frac{2 \sqrt{15}}{5}\right) \hbar+\left(\frac{1}{4}-\frac{\sqrt{15}}{5}\right) \hbar^{2}\right]\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]}\right]
\end{aligned}
$$

Hence, as a result, we have:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}} \\
1+\frac{13 \hbar+\left(\frac{73 \sqrt{15}}{10}-13\right) \hbar^{2}+\left(19-\frac{49 \sqrt{15}}{20}\right) \hbar^{3}}{18\left[1-\left(\frac{1}{2}-\frac{2 \sqrt{15}}{5}\right) \hbar+\left(\frac{1}{4}-\frac{\sqrt{15}}{5}\right) \hbar^{2}\right]\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]} \\
+\frac{5 \hbar+\left(\frac{5}{2}-\frac{5 \sqrt{15}}{2}\right) \hbar^{2}}{\left.18\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]^{2}-\frac{54}{5} \hbar^{2}\right]}
\end{array} . . \text { where } \mathrm{y}_{\mathrm{n}}=\mathrm{r}^{\mathrm{n}}\right.}
\end{aligned}
$$

Hence the corresponding root is given by:

$$
\begin{aligned}
\mathrm{r}= & 1+\frac{13 \hbar+\left(\frac{73 \sqrt{15}}{10}-13\right) \hbar^{2}+\left(19-\frac{49 \sqrt{15}}{20}\right) \hbar^{3}}{18\left[1-\left(\frac{1}{2}-\frac{2 \sqrt{15}}{5}\right) \hbar+\left(\frac{1}{4}-\frac{\sqrt{15}}{5}\right) \hbar^{2}\right]\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]} \\
& +\frac{5 \hbar+\left(\frac{5}{2}-\frac{5 \sqrt{15}}{2}\right) \hbar^{2}}{18\left[1-\left(\frac{1}{2}-\frac{\sqrt{15}}{5}\right) \hbar\right]^{2}-\frac{54}{5} \hbar^{2}}
\end{aligned}
$$

using computer facilities, one can find the values of \hbar, by solving the inequality $|\mathrm{r}|<1$, and the following interval of absolute stability is obtained, which is $\hbar \in(-9.5,-1) \cup$ ($-0.637,0$).

Example:

Consider the first order differential equation:

$$
y^{\prime}=-y+x+1
$$

with initial condition $\mathrm{y}(0)=1$.
In order to give a comparison and describe the precision of the previously derived methods of Runge-Kutta, we can easily find the exact solution, which is:

$$
y(x)=e^{-x}+x
$$

Therefore using the 2 -stage explicit, 2 stage semi-explicit, 2 -stage implicit and triadiagonal implicit Runge-Kutta methods, we get the results presented in tables (4.1)) with step lengths $\mathrm{h}=0.1$.
From the results, it is easily noticed that the triadiagonal Runge-Kutta method has less accuracy than the other methods, but still it has more simplified form than the other methods and more simple than the other methods in applications.

Table (1)
Numerical results of example with step length $h=0.1$.

$\boldsymbol{x}_{\boldsymbol{i}}$	Exact	Explicit		Semi-explicit		Two stages implicit		Triadiagonal method	
		Numerical solution	Error						
0.0	1.00000000	1.00000000	0.00000000	1.00000000	0.00000000	1.00000000	0.00000000	1.00000000	0.00000000
0.1	1.00483741	1.00500000	0.00016258	1.00482757	0.00000984	1.00483743	0.00000001	1.00466161	0.00017580
0.2	1.01873075	1.01902500	0.00029424	1.01871293	0.00001781	1.01873077	0.00000002	1.01841263	0.00031811
0.3	1.04081822	1.04121762	0.00039940	1.04079403	0.00002418	1.04081825	0.00000003	1.04038650	0.00043171
0.4	1.07032004	1.07080195	0.00048190	1.07029087	0.00002917	1.07032008	0.00000003	1.06979924	0.00052079
0.5	1.10653065	1.10707576	0.00054510	1.10649766	0.00003299	1.10653070	0.00000004	1.10594167	0.00058898
0.6	1.14881163	1.14940356	0.00059193	1.14877580	0.00003582	1.14881168	0.00000004	1.14817217	0.00063946
0.7	1.19658530	1.19721022	0.00062492	1.19654748	0.00003782	1.19658535	0.00000004	1.19591032	0.00067498
0.8	1.24932896	1.24997525	0.00064629	1.24928985	0.00003911	1.24932901	0.00000005	1.24863103	0.00069793
0.9	1.30656965	1.30722760	0.00065794	1.30652984	0.00003981	1.30656971	0.00000005	1.30585927	0.00071038
1.0	1.36787944	1.36854098	0.00066154	1.36783941	0.00004002	1.36787949	0.00000005	1.36716530	0.00071413

Concluding remarks

1. One can see from error estimation of the results that (2 -stage implicit) is the more accurate. Also three stages implicit tridiagonal gives reasonable agreement exact solution.
2. The improved tridiagonal method is so easy to drive which are indeed implicit method and therefore to drive improved method with five diagonal and proving its stability.
3. Using Runge-Kutta method for solving delay differential equations.

References

[1] Ahmed A. A., "A Novel Approach for Deriving Some Runge-Kutta Methods", M.Sc. Thesis, Department of Mathematics, Al-Nahrain University, Baghdad, Iraq, 2005.
[2] AL-Exander. R., "Diagonally Implicit Runge-Kutta Methods for Stiff Ordinary Differential Equations", Siam. J. Numer Anal. V.14, No.6, pp. 1006-1021, 1977.
[3] Bickart T. A., "An Efficient Solution Process for Implicit Runge-Kutta Methods", Siam J. Numer Anal. V.14, No.6, pp1022-1037, 1977.
[4] Butcher J.C., "Implicit Runge-Kutta Processes", J. of Math. Comp., V.18, pp. 50-64, 1964.
[5] Butcher J.C., "The Numerical Analysis of Ordinarily Differential Equations", John Wiley, and Sons, Ltd., 1987.
[6] Lambert J.D., "Computational Methods in Ordinary Differential Equations", John Wiley and Son, Ltd., 1973.

$$
\begin{aligned}
& \text { الخلاصة } \\
& \text { في هدا البحث، الهدف الرئيسي هو أستحداث أسلوب } \\
& \text { جديد لأشتقاق طر ائق رانك كوتا الضمنية ودلك عن طريق } \\
& \text { أستخدام مصفوفات ثلاثية الاقطار والتي تعطي معاملات } \\
& \text { الطريقة. }
\end{aligned}
$$

