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Abstract 

The main result of this paper is to present a new method to approximate multidimensional 

function by using Radial Basis Neural Network with application of Radon Transform, and its 

inverse, to reduce the dimension of the space. This method consist of four stages: First, by using the 

Radon Transform, the multidimensional function can be reduced to several simpler one dimensional 

functions. Second, each of the one dimensional functions is approximated by using neural network 

technique into neural subnetworks. Third, these neural subnetworks are combined together to form 

the final approximation neural network. Four, using the inverse of  Radon Transform to this final 

approximation neural network to get the approximation to the given function. Also, in this paper 

presenting a suitable adjusting to the parameters of the method to reduce the 2L  approximate error. 

Also, we apply the above method to an example and a comparison is made with those in [2], and 

our numerical results are superior to those in [2]. 

 

Introduction:  

Approximations of multidimensional 

function have been studied by many 

researchers such as Baxter (et al.) [1], 

Ciesielski and Sacha [2], Ellacott [4], Niyogi 

and Girosi [6] and Orr [7]. 

Baxter (et al.), [1], it is known that the 

interpolation matrix   n 

1k , jkj )xh(x A


  is 

invertible ( where h is a radial function), they 

computed an upper bounds for the 

, 1p  ,    A 
p

1   and they show that when A 

is symmetric and positive definite then h 

decays sufficiently quickly. Ciesielski and 

Sacha, [2], focused on a development of a 

constructive formula for the upper bound of  

L  error approximation. Ellacott, [4], proved 

that a semilinear feedforward network with 

one hidden layer can uniformly approximate 

any continuous function in C(K) where  K  is a 

compact set in 
sR  and s is a positive integer. 

Niyogi and Girosi [6], they derived a bound to 

generalization error for radial basis functions 

which apply to any approximation technique. 

Orr, [7], gave an introduction to radial 

basis function (RBF) neural networks with 

least squares bound. 

Johann Radon, [8], showed that if f is 

continuous and has a compact support, then 

the Radon Transform of f is uniquely 

determined by integrating along all lines in the 

domain )K(CX . 

The main result of this paper is the 

construction of new method for approximating 

a multidimensional function by using radial 

basis neural network with one hidden layer 

with linear output. Also, we present an upper 

bound of the 2L  error approximation. The 

method consists of four stages: First: By the 

use of discrete Radon transform, [8], the 

problem of multidimensional approximation is 

replaced by, several simpler, one dimensional 

problems. Second: For each of the one 

dimensional problems the approximation 

subnetworks is found. Third: The subnetworks 

are combined together to form the final 

approximation network. Fourth: Using inverse 

of Radon Transform to the final approximation 

network to get the approximation of the given 

problem. 
 

Approximation of 1-D Functions: 

This section consider the approximation of 

one dimensional function Xf   (X is a 

normed linear space). 
 

Definition  

Let X be a normed linear space. A function 

RX:f   is said to be radial if there exists a 

function RR:h 
 such that   x h)x(f   

for all xX, R
+
 is a set of all positive real 

numbers. 
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A radial basis function is any translate of  f ; 

that is, a function of the form 

    xh)x(f)x(  , ....................... (1) 

where   is any prescribed point of  X, [5]. 

Such a function depends on the distance 

   x  ,  .  usually is taken to be Euclidean 

norm, and this function is symmetric with 

respect to a center point  . Some examples of 

radial basis functions in one dimensional space 

are shown in Fig.(1). 

 

    
 

 
 

Fig.(1) : Three examples of one dimensional 

radial basis functions 

 

Radial basis functions are a special class of 

functions that has the following characteristic 

feature: Their response decrease (or increase) 

monotonically with distance from a central 

point. A common use of such functions is for 

interpolation (to approximate a given 

function). In this context, one usually has data 

prescribed at points  ,  ,  , n21   in X and 

attempts to interpolate these data by function 

of the form 

  X     x  x h c x
n

1j

jj 


 , .......... (2) 

Radial basis functions can be employed in 

the neural computation for approximating 

continuous functions.  

 

Radial Basis Neural Network  

An artificial neural network is a 

mathematical model of the human brain. Many 

different types of neural network models are 

studied, but this paper describes a radial basis 

neural network with input layer, one hidden 

layer and output layer. A radial basis neural 

network is a feedforward neural network with 

the radial basis function as an activation 

function. The idea of radial basis function 

(RBF) network derive from the theory of 

function approximation, and this network 

consists of a large number of computing units 

arranged schematically in three layers as 

shown in Fig.(2). Each unit of the input layer 

can be connected to each unit of the hidden 

layer. This connection has associated with it a 

weight, which is a real number. The weight 

attached to the link from input unit j to unit i 

on the hidden layer is denoted by ijw , and is 

known as the radial basis function (RBF) 

center. In a typical operation, each unit on the 

input layer will contain a real number. Let the 

j
th

 input unit contain the real number jx . Then 

unit i on the hidden layer will receive from 

unit j on the input layer the quantity 

 2ijj wx  . The total input that unit i receives 

from all the input units is then 





s

1j

2
ijjijji )wx( w xc . Unit i on the 

hidden layer now processes this input with a 

radial basis  function RR:    which is a 

given fixed univariate function ( called the 

activation function) and the outputs are the 

real numbers   w x ijjij   where (i=1, 2, 

…, k and j=1, 2, …, s). This output ij  is then 

transmitted, with a weight ia , to the output 

unit. The total output is then have the form 

 



k

1i
iii  w x  a)x(g . ..................... (3) 

 

It is know from definition (2.1), any 

continuous function of s variables can be 

approximated by a function of the form g 

given in equation (3). For our radial basis 

function (RBF) neural network the function i  

and the centers iw  are assumed to have been 

fixed. Thus by suitable adjusting of the 

parameters ia , this can be reproduce 

approximately, to any accuracy, any desired 

output with the use of artificial neural network. 

From above analysis we can approximate 

any complicated type functions by simple 

x 

 
 

 
x 

 

 

 

x 

 
 

 
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functions. For the simplification of the 

computational complexity take the case (one 

input, one hidden layer with n processing units 

and one output). 

Thus to approximate a continuous function 

RR:   is by considering the 

approximation form of the neural network 

RR:  as: 





n

1i
iii ) w x ( a)x( , .................... (4) 

  is a linear combination of radial basis 

functions (RBF) and the corresponding 

network is known as a radial basis function 

network (RBF). Let us assume that the 

activation (transfer) function is the Gaussian 

function 




















2

2

2

x
exp)x( , ................................ (5) 

where 0  is a parameter whose value 

controls the smoothness properties of the 

interpolating function. 

The following theorem, from [7], presents 

an adjusting to the parameters ia  but this 

paper gives a different proof so as to be 

suitable for our problem. 

 

 
Fig.(2) : Layers in a neural network 

 

Theorem 

Let the function RR:   be continuous 

on the compact set K in R. The approximation 

error of the function   by the network   

given in (3) is defined as  

 
2s

1j
jjj )x()x()x(E 



 ,  .................. (6) 

The error E is minimum if and only if  

   H Aa T1  ,  ..................................... (7) 

where A is the variance matrix and H is the 

neural net matrix. 

 

Proof: 

It is well known from calculus that to find 

an extreme point of a function we need  

1- differentiate the  function with respect 

to the free variable(s). 

2- equate the result(s) with zero,  

3- solve the resulting equation(s). 

want to minimize the error 

 
2s

1j
jjj )x()x()x(E 



 , 

Where    



n

1i
iii ) w x ( a)x( ,  ........... (8) 

and the free variables are the weights  n
1iia  . 

Now, for the i
th

 weight, differentiating the 

error function in (6) with respect to ia  


 






 s

1j
j

i
jj

i

)x(
a

))x()x((2
a

E
,  ....... (9) 

and from (8) get that 

)x()x(
a

jij
i





 ......................................  (10) 

(for simplicity, write     w x ijjij   as 

)x( ji ), substitute (10) in (9) and equating the 

result to zero leads to the equation 

 n , 2, 1,i        )(x )(x 

)(x )(x 

s

1j

jij

ji

s

1j

j















 ....... (11) 

There are n such equations, each 

representing one constraint on the solution. 

Since there are exactly as many constraints as 

there are unknowns, the system of equations 

has a unique solution.  

In matrix form equation (11) becomes: 

n , 2, 1,i     ,   
T

i
T

i   ................... (12)  

Where 

 

wks w11 

x1 xs 

a1 ak 

g(x) 

 

ck 

 

 c1 

Input Layer 

Hidden Layer 

Output Layer 
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

























)x(

    

)x(

)x(

si

2i

1i

i


θ , 



























)x(

   

)x(

)x(

s

2

1


 , 



























)x(

   

)x(

)x(

s

2

1


              

 ............................. (13) 

 

The above system, of n equations, can be 

written as  

 THTH   , ................................... (14)  

Where H is called the design matrix of the 

neural net and has the form  

 



























)x(       )x(   )x(

                               

)x(      )x(   )x(

)x(      )x(    )x(

sns2s1

2n2221

1n1211

H









, ........ (15) 

Now, back to equation (8), the j
th

 

component of  , when the weights are at their 

optimal values, has the form 

s , 2, 1,j     ,a

s , 2, 1,j     ,   )x( a 

)x(

T

j

n

1i

jii

jj














 θ

 .......... (16) 

Where 





























)x(

    

)x(

)x(

jn

j2

j1

j


θ , .............................. (17) 

Thus iθ  is one of the columns of  H and jθ  is 

one of its rows. Thus equation (16) becomes 

a H

 
T

s

   

 
T

2

 
T

1

s

 

2

1























































aθ

aθ

aθ


 ...................... (18) 

substitute (18) in equation (14), get 

a H H  H  H TTT  . ........................... (19) 

Since H HT  is positive definite and thus its 

non-singular then a is solution of normal 

equation (20) 

   H A H ) H (Ha T1T1T   .......... (20).  
 

Numerically to compute a just need to find 

the inverse of the matrix HHT . Now since  

(H)KH)K(H 2T  , K is the condition number , 

which is defined to be 1H   H K(H)  , and 

thus the computation of 1T )HH(   could be 

sensitive to the rounding error. Therefore, use 

the least square method, assume HHT  is of 

full rank, to find a. 

Our numerical results shows that as 

increasing the dimension of  HHT  the 

condition number become bigger and thus will 

have an ill-condition system. However, this is 

not the case when use least square method or 

conjugate gradient method.  

If the matrix arise from using the above 

method, neural radial basis function, is not of 

full rank that is rank( HHT
) < n then we use 

the singular value decomposition technique. 

 

The Singular Value Decomposition  
The ideas that lead to the spectral 

decomposition can be extended to provide a 

decomposition for a rectangular, rather than a 

square, matrix. It can be decompose a matrix 

that is not square nor symmetric by first 

considering a matrix A that is of dimension           

mn where m  n. This assumption is made 

for convenience only; all the results will also 

hold if m < n. As it turns out, the vectors in the 

expansion of A are the eigenvectors of the 

square matrices AA
T
 and A

T
A. The former is a 

outer product and results in a matrix that is 

spanned by the row space of A. The latter is a 

inner product and results in a matrix that is 

spanned by the column space (i.e., the range) 

of A. 

The singular values are the nonzero 

square roots of the eigenvalues from AA
T
 and 

A
T
A. The eigenvectors of AA

T
 are called the 

"left" singular vectors (U) while the 

eigenvectors of A
T
A are the "right" singular 

vectors (V). By retaining the nonzero 

eigenvalues k = min(m, n), a singular value 

decomposition (SVD) can be constructed. That 

is 

A = UV
T
, .......................................... (21) 

where U is an mm orthogonal matrix             

(U
T
U =I), V is an nn orthogonal matrix                  

(V
T
V = I), and  is an mn matrix whose off-

diagonal entries are all 0's and whose diagonal 

elements satisfy 
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0n21    .......................... (22) 

It can be shown that the rank of A equals 

the number of nonzero singular values and that 

the magnitudes of the nonzero singular values 

provide a measure of how close A is to a 

matrix of lower rank. That is, if A is nearly 

rank deficient (singular), then the singular 

values will be small. In general, the SVD 

represents an expansion of the original data A 

in a coordinate system where the covariance 

matrix A is diagonal. 

Remember, this is called the singular value 

decomposition because the factorization finds 

values or eigenvalues or characteristic roots 

(all the same) that make the the following 

characteristic equation true or singular. That is 

0 I  A  , .................................... (23) 

Using the determinant this way helps solve the 

linear system of equations thus generating an 

n
th

 degree polynomial in the variable . This 

polynomial, that yields n-roots, is called the 

characteristic polynomial. 

Equation (23) actually comes from the more 

generalized eigenvalue equation which has the 

form 

Ax = x , ............................................. (24) 

which, when written in matrix form, is 

expressed as  

AX=X ,............................................. (25) 

This implies 

Ax x = 0, ......................................... (26) 

Or (A I )x = 0, ................................. (27) 

The theory of simultaneous equations tells 

us that for this equation to be true it is 

necessary to have either x = 0 or 0 I  A  . 

Thus the motivation to solve equation (23). 

 

Solving A System of Linear Equations  
A set of linear algebraic equations can be 

written as 

Ax = b, ................................................ (28) 

where A is a matrix of coefficients (mn), 

and b (m1) is some form of a system output 

vector. The vector x is what usually solve for. 

If m = n then there are as many equations as 

unknowns, and there is a good chance of 

solving for x. That is 

A
1

Ax = A
1

b, ..................................... (29) 

x = A
1

b, ............................................. (30) 

Here, simply compute the inverse of A. 

This can prove to be a challenging task, 

however, for there are many situations where 

the inverse of A does not exist. In these cases 

the approximating of the inverse via the SVD 

which can turn a singular problem into a non-

singular one. 

Vector x in equation (28) can also be 

solved for by using the transpose of A. That is 

A
T
Ax = A

T
b ,....................................... (31) 

x = (A
T
A)

1
A

T
b , ................................. (32) 

This is the form of the solution in a least-

squares sense from standard multivariate 

regression theory where the inverse of A is 

express as 

A
*
 = (A

T
A)

1
A

T
,  ................................. (33) 

where A* is called the More-Penrose 

pseudoinverse. The use of the SVD can aid in 

the computation of the generalized 

pseudoinverse. 

 
Decompose of multidimensional functions 

This section describe briefly how to reduce 

the dimension of the multidimensional 

function by using the Radon Transform and 

select the function  f  from a class D of C  

functions with compact support. The functions 

in class D has a nice properties: the Radon 

transform of  f  may differentiated as often as 

desired, and changes in the order of various 

integrations may be made with full confidence. 

Let  be an open subset of 
sR  with a 

smooth bounded boundary  . Then the 

compact support of a function  f  is defined as 

follows: 

 

Definition  

Let R:f  . Let fK  be the closure of 

the set fK , where 0}f(x)  x{K f   is 

called the support of  

f , denoted by supp f. f is said to have compact 

support if it is zero outside a compact subset of 

 , i.e. fK  is compact. 
 

Remark 
)(D   is the space of infinitely 

differentiable functions with compact support 

in   and thus )(D . 
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Definition 

The Dirac mass concentrated at the point  

or the Dirac delta function concentrated at the 

point , which is denoted by  )x(   or  , 

is defined by 

)D(f  ),f(dx f(x) )x(f) , (  



 

 ............................. (34) 

where (. , .) is an inner product defined on 

)D( .  

In particular, for =0, the Dirac mass 

concentrated at the origin denoted by   is 

defined as 

)D(f  f(0),dx f(x) )x(f) , (  


 

 ............................. (35) 

Actually delta mass concentrated at  is not a 

function but a distribution. 

 

Definition 

Let  RR:f s   be C  function with 

compact support. The continuous Radon 

Transform of the function f represents an 

image of a collection of projections along 

various directions (angels) in 
sR . In general 

case, given a function f defined on 
sR , the 

Radon Transform of f, designated by f̂ , is 

determined by integrating over each 

hyperplane in the space 
sR  and is defined by 

 

sR

d )(p )(fRf) ,p(f̂ xξ.xxξ  ............. (36) 

where  dx=dx1dx2 … dxs . 

              is the Dirac delta function. 

 is a unit vector in 
sR  that defines the 

orientation of a hyperplane with equation 

ss2211 xxxp  ξ.x   (p is the 

orientation of the hyperplane). 

Thus ) ,p(f̂ ξ  must be known for all p and . 
 

Remark 
The discretisation is a major difficulty in 

applying Radon Transform in general. The 

simplest form of discrete Radon Transform is 

to select finite number on the angular variable 

of projection to produce the unit 

vector j ( j = 1, 2, …, L where L, L is the 

number of projection), then take the 

summation on the discrete data xi ( i =1,2, 

…, m where mN and sRix ) of the 

function )R(Cf s .  

Then the discrete Radon Transform is defined 

by, [9] 






m

1i

j ) (p )f( ),p(ĝ ijij x ξxξ  .............. (37) 

 

Example 3: 

Let 
22 yxey) ,x(f  . Then  

 








  dydx  )yx(p e      Rff̂ 21

  yx 22

 

 ............................. (38) 

Now make the orthogonal linear 

transformation (in matrix notation) 































y

x
 

       

          

v

u

12

21
 ...................... (39) 

The vector  ) , ( 21   is still a unit vector. 

Following the change of variables, 

 








  dvdu   )u(p  e     ) , p(f̂
22 vu

   

           




 dv e   e 
22 v p

 ...................... (40) 

Hence, have the important result 
222 pyx e  e R  









 .................. (41) 

 

From the above remark (3.5) use the 

discrete Radon Transform will decompose a 

multidimensional function into scalar 

functions for each p and . These functions 

RR:f )(  ( L , 2, ,1   where L is the 

number of projections) are approximated using 

the function )x( given in the preceding 

section, see equation (4). Now each function 

RR:f )(   is approximated by a subnetwork  

RR:)(   , given in (4), and these 

subnetworks )(  are combines into the final 

approximation network which have the form 

 



L

1

)()(  w x  )x(N



 ................ (42) 

which is an approximation to the discrete 

Radon Transform ) ,p(ĝ ξ of the function f(x). 
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It is necessary to invert the Radon Transform, 

that is, to solve for  f  in terms of  f̂ . 

 

Definition  

The Radon Transform inversion formula 

has the form 

 

even is  s if                     dp  
p

 ) ,p(f̂
p

   d  
i)(2 2

1

 odd is  s if                                 d ) ,p(f̂  
pi)(2 2

1

)(f

1 

1s

s

1 

2

1s

1s



















































 

















ξ.x

ξ

ξ

ξξ

x

 ............................. (43) 

where  1i  . 

 

Thus often using the inverse Radon 

Transform to the network N(x) in equation 

(42) to get back to the dimension of the space 

that begin with and this will lead us to the 

approximation of the function f(x), where 
sRx . 

 
The Algorithm: 

Step1:  Input  a- The vector 
sRx  . 

     b- The network target Ry . 

     c- The error goal.  

     d- The angles  of the 

projections. 

Step 2: Compute the discrete Radon Transform 

to the input vector x  and the angles  to get 

the function )(f  . 

Step 3: Applied a radial basis neural network 
)( for each of the Radon Transform )(f   

using equation (4). 

Step 4: Combine these subnetworks )( , 

which is found in Step3, into final neural 

network N(x) by using (42). 

Step5: Compute the discrete inverse Radon 

Transform to the neural network N(x), which 

has been computed in Step4, and thus get 

the approximate to the given function. 

 

5- Example, [2]: 
Let us consider the following two 

dimensional function RR:f 2  . 

                    

]2
1

x2)1
1

x([ exp 
3

1
                        

 ]2
2

x2
1

x[ exp 5
2

x3
1

x
1

x
5

1
10

]2)1
2

x(2
1

xexp[2)
1

x1(3)
2

x,
1

x(fz















 ............................. (44) 

A three dimensional plot of the function f 

for 4x4 1   and 4x4 2   is shown in 

Fig.(3). A two dimensional problem is chosen 

so that to explain how the steps of the 

algorithm can be illustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3) : Function f(x1, x2) 
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Fig. (4) : Approximation with L = 6  

 

The above algorithm has been, 

numerically, implemented with the use of  

MATLAB version (7.0), the radial basis 

function neural network use the Gaussian 

function in the hidden layer and pureline 

function in the output layer. The numerical 

procedure as follows: 
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Step1: initially put the input angles 

{0

,30


,60


,90


,120


,150


} i.e L=6 , error 

goal 510 . Fig.(4)  show 

           approximation of function 

)x,x(f 21 using above ’s.  

Step2: Compute The discrete Radon 

Transform to the function )x,x(f 21  using ’s 

and input vector x and thus get the one 

dimensional functions )(f  . 

Step3: Each of the one dimensional functions 

)(f   are approximated by using a single hidden 

layer radial basis neural networks. See the  

illustrated in figures. (5) to (7), where star 

points represent functions )(f   and circle 

points represent their approximation with 

neural network output )( . 

Step4: The networks approximating functions 

)(f   are combined together, using equation 

(42), to form the final neural network 

approximation N(x). 

Step5: Compute the discrete inverse Radon 

Transform to N(x) and thus get the 

approximation to the function )x,x(f 21 . 

Examples for the approximating of the 

function )x,x(f 21 with L=10 and L=15 are 

shown in figure(8) and  figure(9) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5) : Function )(f   at  = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(6) : Function )(f   at  = 60

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.(7) : Function )(f   at  = 90


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Fig. (8) : Approximation with L=10 
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Fig. (9) :Approximation with L=15 

 

Conclusion: 

This paper develops a method, with the aid 

of neural network technique, to approximate 

function of several variables. Our numerical 

results are more accurate than those given in 

[2] and this can be concluded  from Figs. (4) to 

(9) which represents the approximation 

functions to the function given in the example 

by the new method while Figs. (12) to (14) 

(see Appendix) represents the approximation 

functions to the same example by the method 

in [2]. Also, Figs. (10) and (11) show the 

compare error between the exact data of the 

example and the approximation data for both 

the new method and the method in [2] 

respectively. Computationally our method is 

more easy to be use with less flops than the 

method in [2]. 
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Fig. (10) : Compare between exact and  

approximation data of the new method 
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Fig. (11) : Compare between exact and 

approximation data of the method in [2] 

 

Appendix 

For comparison we present the results in 

[2]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12) : Approximation with L=6 and n=9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13) : Approximation with L=12 and 

n=9 
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Fig.(14) : Approximation with L=12 and 

n=18 
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