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Abstract 

In this paper, we consider fractional differential equations of the form: 

y
(q)

(x)  F(x, y), x  [a, b] 

 ............. (1) 

y(a)   

where n < q < n + 1 and n is a positive integer number. 

The aim of this paper is to approximate the solution of fractional differential equations using 

linear multi-step methods with the cooperation of G-spline interpolation. 
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Introduction: 

The subject of fractional calculus has a 

long history whose infancy dates back to the 

beginning of classical calculus and it is an area 

having interesting applications in real life 

problems. This type of calculus has its origin 

in the generalizations of the differential and 

integral calculus, [Oldham, 1998]. 

The traditional integral and derivative are, 

to say the least, a stable for the technology 

professional, essential as a means of 

understanding and working with natural and 
artificial systems, [Loverro, 2004]. 

Fractional calculus is a field of mathe-

matics that grows of the traditional definitions 

of the calculus of the integral and derivative 

operators in which the same way fractional 

exponents is an outgrowth of exponents with 

integer value. According to our primary school 

teachers exponents provide a short notation for 

what is essentially a repeated multiplication of 

a numerical value. While any one can verify 

that x
3
  xxx, how might one describe the 

physical meaning of x
3.4

, or moreover the 

transcendental exponent x

. One can not 

conceive what it might like to multiply a 

number or quantity by itself 3.4-times or -

times, and yet these expressions have a 

definite value for any value x, verifiable by 

infinite series expansion, or more practically 
by calculator, [Loverro, 2004]. 

Now, in the same way, consider the 

integral and derivative. Although they are 

indeed concepts of a higher complexity by 

nature, it is still fairly easy to physically 

represent their meaning. 

The analytical solution of fractional 

differential equations, in general, has many 

difficulties, therefore numerical methods may 
be suitable for approximating the solution. 

Once mastered, the idea of completing 

numerous of these operations, integrations or 

differentiations follows naturally. Given the 

satisfaction of a very few restrictions (e.g., 

function continuity) completing n integrations 

can become as methodical as multiplication. 

Fractional calculus follows quite naturally 

from our traditional definitions. And just as 

fractional exponents, such as the square root 

may find their way into innumerable equations 

and applications, it will become apparent that 

integrations of order 1/2 and beyond ca find 

practical use in many modern problems. 

Nearly 60 years ago, I. J. Schoenberg 

[Schoenberg, 1946] introduced the subject of 

"Spline Functions". Since then splines, have 

proved to be enormously important in various 

branches of mathematics, such as approxima-

tion theory, numerical analysis, numerical 

treatment of ordinary, integral, partial 
differential equations, and statistics, etc. 
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There are several types of splines [deBoor, 

1978], [Powel, 1981] and [Stephen, 2002]. The 

most important of these types of splines which 

is necessary to the work of this paper is the so 
called G-spline interpolation. 

Ahlberg and Nilson [Ahlberg, 1966] and 

Schoenberg [Schoenberg, 1968] have treated 

the best approximation of linear functionals 

using G-spline interpolation formula. There-

fore, we shall use their techniques to solve 

problem (1) which gives the best approxima-
tion in the sense of Sard [Sard, 1963]. 
 

G-Spline Interpolation Formula: 

G-spline interpolation was first present-ed 

by Schoenberg [Schoenberg, 1968] as a tool 

used to specify the interpolatory conditions: 

f
(j)

(xi)  
( j)
i

y , for (i, j)  e 

which is so called the Hermite-Birkhoff 

problem (and abbreviated by HB-problem), 

where e is a certain set of ordered pairs  

Schoenberg in 1968, extended the idea of 

Hermite for splines to specify that the orders 

of the derivatives specified may vary from 

knot to knot. Again, Schoenberg has defined 

G-spline as a smooth piecewise poly-nomials, 

where the smoothness is governed by the 

incidence matrix E, which will be defined later 

in this section and then he proved that G-

splines, satisfies what we call the "minimum 

norm property", which is used for the 

optimality of the G-spline functions, which is 
given mathematically by the inequality: 

2
(m)

I

f (x) dx 
   > 

2
(m)

I

S (x) dx 
   

where the function S is called a G-spline 

function and it is a polynomial of degree  

2m  1 over the interval I.  

If the only polynomial that solves the 

homogeneous HB-interpolation problem is 

identically the zero polynomial, then the 

problem is said to be m-poised, [Mohammed, 
2006]. 

The consideration of the HB problem to be 

m-poised problem will play an important role 
for the uniqueness of the HB-problem. 

 

The HB-Problem, [Schoenberg, 1968], 

[Ahlberg, 1966]: 

It is convenient in this subsection to 

discuss the HB-problem, before; we give the 

tractable formal definition of the natural G-

spline interpolation. Let us consider the knots 

points: 

x1 < x2 < … < xk 

to be distinct and real and let  be the 

maximum of the orders of the derivatives to be 
specified at the knots.  

Define an incidence matrix E, by: 

E  [aij], i  1, 2, …, k; j  0, 1, …,  

where: 

aij  
1, if (i, j) e

0, if (i, j) e





 

Here e  {(i, j): i  1, 2, …, k; j  0, 1, …, 

} has been chosen in such a way that i takes 

the values 1, 2, …, k; one or more times, while 

j  {0, 1, …, } and j   is attained in at 

least one element (i, j) of e, assume also that 

each row of the incidence matrix E and last 

column of E should contain some element 
equals 1.  

Let 
( j)
i

y  be prescribed real numbers for 

each (i, j)  e. The HB-problem is to find  

f(x)  C

, which satisfies the interpolatory 

condition: 

f
(j)

(xi)  
( j)
i

y , for (i, j)  e ...................... (2) 

The matrix E will likewise describes the 

set of equations (2) if we define the set e by: 

e  {(i, j) | aij  1} 

then the integer n  ij

i, j

a , really is the 

number of interpolatory conditions required to 

constitute the system (2). 
 

Definition 

Let m be a natural number, then the HB-

problem (2) is said to be m-poised provided 
that if: 

p(x)  m1 

p
(j)

(xi)  0 if (i, j)  e 

then: 

p(x)  0. 
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(m1 is the class of polynomials of degree  

m  1 or less). 

At this point, the G-spline interpolant of 

order m to f can be given in terms of the 
fundamental G-spline Lij, by: 

Sm(x)  
( j)

ij i
(i, j) e

L (x)y



  ....................... (3) 

where: 

(s)
rij

L (x )   
0, if (r,s) (i, j)

1, if (r,s) (i, j)





 

The definition of G-spline is facilitated by 

defining a matrix E* which is obtained from 

the incidence matrix E by adding m    1 

columns of zeros to the matrix E. Let  

E*  [ *
ija ], where (i  1, 2, …, k; j  0, 1, …, 

m  1), and: 

*
ija   

ija , if j

0, if j 1, 2,...,m 1

 


     
 

If j   + 1, then E*  E.  
 

Definition  

A function S(x) is called natural G-spline 

for the knots x1, x2, …, xk and the matrix E* of 

order m provided that it satisfies the following 

conditions: 

1. S(x)  2m1 in (xi, xi+1), i  1, 2, …, k  1. 

2. S(x)  m1 in (, x1) and in (xk, ). 

3. S(x)  C
m1

(, ). 

4. If *
ija   0, then S

(2mj1)
(x) is continuous at 

x  xi. 

Let S (E*; x1, x2, …, xk) denotes the class 

of all G-spline of order m. 

 

Approximation of Linear Functionals with 

the Sense of G-Spline Formula, 

[Schoenberg, 1968]: 

Let I  [a,b] be a finite interval contain-ing 

the knots points x1, x2, …, xk and let us 
consider a linear functional: 

Lf : C

 [a, b]    

of the form: 

Lf  

b
( j)

j

j 0 a

a (x)f (x)dx





  + 

jn

( j)
ji ji

j 0 i 1

b f (x )



 

  ...................... (4) 

where the aj(x) are piecewise continuous 

functions in I, xji  I and bji are real constants, 

we can approximate the functional (4) using 
the formula: 

Lf  ( j)
ij i

(i, j) e

f (x )



  + Rf ................. (5) 

Therefore, in order to find the approximation 

Lf given by (5), which is best in some sense, 

we propose to determine the reals ij. 

I. J. Schoenberg [Schoenberg, 1968] states 

two procedures to determine ij. One of them 

is the so called Sard procedure, which can be 
summarized by the following theorem: 

 

Theorem , [Schoenberg, 1968]: 

If  < m < n and the HB-problem (2) is m-

poised, then Sard's best approximation (5) to 

LF of order m is obtained by operating with L 

on both sides of the G-spline interpolation 
formula (3) of order m.  

In other words, the coefficients ij are 

given by: 

ij  LLij(x) 

where Lij(x) are the fundamental functions 

of (3). 

 

G-Spline Interpolation Techniques for 

Approximating the Solution of 

Fractional Differential Equations: 

The definition of the fractional derivatives 

and some well known results of fractional 

calculus tell us that we interpret fractional 
differential equations such as, [Oldham, 1998]: 

D
q
y(x)  F(x, y(x)), y(a)   .................. (6) 

where n < q < n + 1 and D
q
 : 

qd

dx
. Hence, 

upon carrying D
1q

 to the both sides of (6), 
yields: 

D
1q

D
q
y(x)  D

1q
F(x, y(x)), y(a)   ..... (7) 

with n < q < n + 1, n   . 



Osama H. Mohammed 

 121 

Equation (7) can be simplified using 

formulas and definitions of the fractional 
derivatives, to get: 

y(x)  g(x, y), y(a)  , x  [a, b] ......... (8) 

The exact solution of (8) evaluated at xk  a + 
kh, as: 

Y(xk)Y(x  )

kx

x

g(x, y) dx


, 0     k ..... (9) 

and then replacing g by its G-spline Interpol-
ant. 

An m-th order linear multistep formula of 

the general type can be given by, [Chi, 1972]: 

p k
j 1 ( j)

n k n ij n i n i

j 0 i 0

y y h g (x , y )
   

 

  
 

 ........... (10) 

where yj is an approximation to Y(xj) and  

[xn, xn+k]  [a, b]. 

Now, we pick k and  along with the m-

poised HB-problem corresponding to the n 

values: 

{
( j)
i

   
(j)

(i), (i, j)  e} 

where (s)  g(xn + sh, Y(xn + sh)), for 0  s  k. 

Then as we mention previously in section 

two, the G-spline interpolant to  can be given 

in terms of the fundamental G-splines Lij(x), 
by: 

Sm(s)  
( j)

ij i
(i, j) e

L (s)



  

Referring again to our HB-problem, there 

is a unique G-spline Sm in S (E*; x1, x2, …, xk), 

such that 
( j)
mS (i)   

( j)
i

 , [Schoenberg, 1968]. 

In order to determine the coefficients ij in 

(10), we replace g in (9) by its G-spline 

interpolant, make a change of variables, 

integrate and compare the results with (10). 

As a consequence of the uniqueness of the 

G-spline interpolant, and the sense of theorem 

(1) it follows that: 

ij  

k




Lij(s) ds .................................... (11) 

Finally, it is the time to summarize the 
above results as follows: 

Equation (10) can have approximate 

solution using linear multistep methods in 
terms of G-spline interpolation, as follows: 

j 1 ( j)
n k n ij n i n i

(i, j) e

y(x ) y(x ) h g (x , y )
   



  
 

where ij are presented in equation (11). 

 

Illustrative Examples: 

Next, we give two examples as an 

illustration to the above discussed approach for 

solving fractional differential equations. The 

obtained results are compared with the exact 

solution which are available in these two 
examples. 

 

Example (1): 

Consider the fractional differential 

equation: 

y
(1/2)

(x)  y(x) + x
2
 + 

3/ 22x

(5 / 2)
 

y(0)  0 

where the exact solution is given by Y(x)  x
2
. 

Consider it is required that a three-step 

method be constructed in such a way that it is 

exact for Y  4. 

To construct such a method via G-splines, 

an HB-problem must be first chosen. The 

choice: 

  {0, 1, 2} 

are taken to be the knote points and let: 

e  {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0)} 

We shall seek for S4(s)  S4(E*, ), with: 

E  

1 1 0

1 1 0

1 0 0

 
 
 
  

 

and for which: 

( j)
4S (i)   

(j)
(i), (i,j )  e 

Integrating S4(s) over [1, 2] yields the closed 

formula: 

yn+2  yn+1 + [h{00g(xn, yn) + 10g(xn+1, 

yn+1) + 20g(xn+2, yn+2)} + h
2
{01g(xn, 

yn) + 11g(xn+1, yn+1)}]................. (12) 

where: 
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00  

2

00

1

L (s) ds   
503

3072
,  

10  

2

10

1

L (s) ds   
1748

3072
, 

20  

2

20

1

L (s) ds   
821

3072
, 

01  

2

01

1

L (s) ds   
150

3072
, 

11  

2

11

1

L (s) ds   
1068

3072
. 

and 

g(x, y)  D
1/2

3/ 2
2 2x

y x
(5 / 2)

 
   

  
 

  y(x)  x
2
 + 2x 

g(x, y)  y  x
2
 + 2 

where the fundamental G-spline functions are 
defined by: 

L00(s)  [128  494s
2
 + 411s

3
 + 25 7s   

70 6s   20 7(s 1)   140 6(s 1)  

 5 7(s 2) ]/128. 

L01(s)  [64s  150s
2
 + 95s

3
 + 5 7s   

14 6s   4 7(s 1)   28 6(s 1)   

7(s 2) ]/64. 

L10(s)  [118s
2
  95s

3
  5

7s  + 14
6s  + 

4
7(s 1)  + 28

6(s 1)  + 

7(s 2) ]/32. 

L11(s)  [54s
2
 + 63s + 5

7s   14
6s   

4
7(s 1)   28

6(s 1)   

7(s 2) ]/32. 

L20(s)  [22s
2
  31s

3
  5

7s  + 14
6s  + 

4
7(s 1)  + 28

6(s 1)  + 

7(s 2) ]/128. 

where: 

n
n (s a) ,     if    s>a

(s a)
0,               if    s a



 
  



 

Figure (1) illustrate the approximated results 

obtained by using eq.(12) and its comparison 

with the exact solution Y(x)  x
2
. 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

y

The approximate solution.

The exact solution.

 
Fig. (1):  Results of example (1). 

 

Example (2): 

Consider the previous fractional 

differential equation given in example (1), 

with the same initial condition, but we take the 

fundamental G-splines for the HB-problem 

with the HB-set: 

e  {(0, 0), (1, 0), (2, 0)} 

and knots 0, 1, 2. Integrating from 1 to 2 with 

h  0.1, then we get a closed formula of the 
two step implicit method as: 

yn+2  yn+1 + h[00g(xn, yn) + 10(xn+1, yn+1) 

+ 20g(xn+2, yn+2)] 

where: 

00  

2

00

1

L (s) ds   0.063,  

10  

2

10

1

L (s) ds   0.625, 

20  

2

20

1

L (s) ds   0.438. 

and the fundamental G-spline functions are 

given by: 
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L00(s)  1  5/4s + 1/4 3(s 0)   

1/2 3(s 1)  + 1/4 3(s 2) . 

L10(s)   3/2s  1/2 3(s 0)  + 3(s 1)   

1/2 3(s 2) . 

L20(s)  1/4s + 1/4 3(s 0)   

1/2 3(s 1)  + 1/4 3(s 2) . 

Figure (2) illustrate the approximated results 

obtained by using eq.(12) and its comparison 

with the exact solution Y(x)  x
2
. 
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5.0

y

The approximate solution.

The exact solution.

 
Fig. (2):  Results of example (2). 

 

Conclusions 

1. One can notice that the error increases 

when xi approaches to 2, because of the 

accumulation error. An approach to avoid 

this problem is to decrease the step size h. 

2. In this paper, we had used the one step 

method to calculate the predictor value of 

yn+k in order to evaluate the corrector value 
of yn+k in equation (10). 
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y
(q)

(x)  F(x, y), x  [a, b], y(a)   

n < q < n + 1n

G 


