مقارنة مقدرات بيز مع مقدر الأمكان الأعظم في تقدير دالة البقاء للتوزيع الطبيعي اللوغاريتمي باستخدام بيانات مراقبة من النوع الثاني

تهانی مهدی عباس * ، سمیرة مزهر حمید * و قتیبة نبیل نایف * * *

- * Instructor of Statistics, College of Science, University of Baghdad.
- ** Instructor of Statistics, College of Fine Art Computer Center, University of Baghdad.
- *** Instructor of Statistics, Department of Statistics, University of Baghdad

المستخلص:

يهدف هذا البحث الى مقارنة مقدرات بيز والمتمثلة بمقدر بيز بالأعتماد على دالة لا معلوماتية مسبقة ومقدر بيز بالأعتماد على دالة معلوماتية مرافقة مسبقة ، مع مقدر الأمكان الأعظم لدالة البقاء للتوزيع الطبيعي اللوغاريتمي وبالأعتماد على بيانات مراقبة من النوع الثاني وتمت المقارنة بالأعتماد على اسلوب المحاكاة.

1- مقدمة : Introduction

أن للتوزيع الطبيعي اللوغاريتمي أهمية كبيرة في دراسة دالة البقاء وخاصة للمرضى المصابين بمرض السرطان والذين يخضعون لجرعات من العلاج الكيميائي، أضافة لذلك له أهمية في موضوع الرقابة على جودة الأنتاج وكذلك يدخل في الدراسة المتعلقة بعلم الحشرات والكيمياء الحيانية [1]، لذلك في هذا البحث سوف يتم التطرق الى طرائق تقدير دالة البقاء لهذا التوزيع ولبيانات مراقبة من النوع الثاني، إذ سيتم إستخدام طريقة الامكان الأعظم في التقدير لما تتصف به هذه الطريقة من خاصية الثبات وكذلك سيتم الأعتماد على اسلوب بيز في تقدير دالة البقاء من خلال توظيف المعلومات الأولية والمتمثلة بالدالة غير المعلوماتية المسبقة (Non) وسيتم المقارنة بين الطرائق بأستخدام اسلوب المحاكاة .

2- التوزيع الطبيعي اللوغاريتمي [5]

Log - Normal Distribution

إذا كان المتغير العشوائي
$$\mathbf{y} \sim \mathrm{N}\!\left(\mu,\sigma^2
ight)$$
 وأن

نوريع طبيعي $t=e^{y}$ عندئذ يقال أن المتغير العشوائي $t=e^{y}$ لوغاريتمي بالمعلمتين μ,σ^{2} وكما يلي:

$$t = e^y \implies y = \ln t$$
; $dy = \frac{dt}{t}$, $t > 0$

إذن:

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\} \frac{dt}{t} = 1$$

وهذا يعني أن دالة الكثافة الأحتمالية للمتغير t تكون حسب الصبغة التالية:

$$\begin{split} f\left(t;\mu,\sigma^2\right) &= \frac{1}{t\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left\{-\frac{1}{2} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left(\frac{\ln t - \mu}{\sigma}\right)^2\right\}; t > 0 \cdots (1) \\ &= \frac{1}{t\sqrt{2\pi\sigma^2}} \left(\frac{\ln t - \mu}{\sigma}\right)^2$$

 $t \sim \log N(\mu, \sigma^2)$

إما الدالة التجميعية Cumulative Distribution التجميعية Function التوزيع الطبيعي اللوغاريتمي تكون حسب الصبغة التالية :

$$\begin{split} F(t) &= p\left(T \leq t\right) = p\left(\ln T \leq \ln t\right) \\ &= p\left(Y \leq \ln t\right) \; ; \; y \sim N\left(\mu,\,\sigma^2\right) \\ &= p\left(\frac{Y - \mu}{\sigma} \leq \frac{\ln t - \mu}{\sigma}\right) \\ &= p\left(Z \leq \frac{\ln t - \mu}{\sigma}\right) \; ; \; Z \sim N\left(0,1\right) \\ F(t) &= p\left(T \leq t\right) = \phi\left(\frac{\ln t - \mu}{\sigma}\right) \;(2) \\ &= \exp\left(\frac{1}{\sigma}\right) \; \text{ in the lie cut of } \left(\frac{1}{\sigma$$

حساب التراكم الأحتمالي للتوزيع الطبيعي اللوغاريتمي.

تهانی مهدی عباس

:Failure Function h(t) دالة المخاطرة –ii

في التوزيع الطبيعي اللوغاريتمي من الصعوبة تحديد صيغة كاملة لدالة المخاطرة h(t) ولكن يمكن تحديد صيغة تقريبية لها وكما يلي [5]:

$$\because h(t) = \frac{f(t)}{S(t)}$$

$$\therefore h(t) = \frac{\frac{1}{(2\pi)^{1/2} \sigma t} \exp\left\{-\frac{(\ln t - \mu)^2}{2\sigma^2}\right\}}{1 - \int_0^t \frac{1}{(2\pi)^{1/2} \sigma u} \exp\left\{-\frac{(\ln u - \mu)^2}{2\sigma^2}\right\} du} \dots (6)$$

iii- بيانات المراقبة من النوع الثاني [4]:

Type II Censoring Data

يستخدم هذا النوع من البيانات بصورة رئيسة في الحالات السريرية ، وتكون الفكرة هنا هو أختيار r من الوحدات بحيث أن n ، r < n تمثل حجم العينة قيد الدراسة، وأن دالة الأمكان لهذا النوع من البيانات المرتبة تصاعدياً تكون حسب

$$L(\mu, \sigma^2/\underline{t}) = \frac{n!}{(n-r)!} \left[\prod_{i=1}^r f(t_i) \right] \left[1 - F(t_r) \right]^{n-r} \dots (7)$$

وبالنسبة للتوزيع الطبيعي اللوغاريتمي تصبح الصيغة

: كما يلى (7)

$$\begin{split} L\Big(\mu,\sigma^2/\underline{t}\Big) &= \frac{n!}{(n-r)!} \left[(2\pi)^{-\frac{r}{2}} \sigma^{-r} \Bigg(\prod_{i=1}^r t_i^{-1} \Bigg) exp \left\{ -\frac{\sum_{i=1}^r (\ln t_i - \mu)^2}{2\sigma^2} \right\} \right] \times \\ & \left(1 - \phi \bigg(\frac{\ln t_r - \mu}{\sigma} \bigg) \bigg)^{n-r} \end{split}$$

3-طرائق تقدير دالة البقاء للتوزيع الطبيعي اللوغاريتمي [2],[3].

بصورة عامة سيتم تقدير المعالم μ , σ^2 في الصيغة S(t) ومن ثم تعوض هذه المعالم المقدرة في دالة البقاء S(t) وأن الطرائق المستخدمة هي:

أولاً: طريقة الأمكان الأعظم [3]

Maximum Likelihood Method

تعتمد هذه الطريقة على دالة الأمكان ، والتي تعرف على أنها دالة الكثافة الأحتمالية المشتركة

The joint Probability Density Function للعينة

كذلك فأن العزم من من المرتبة r حول نقطة الأصل التوزيع الطبيعي اللوغاريتمي يكون حسب الصيغة التالية:

$$\mu'_{r} = \exp\left(\mu_{r} + \frac{1}{2}r^{2}\sigma^{2}\right)$$
....(3)

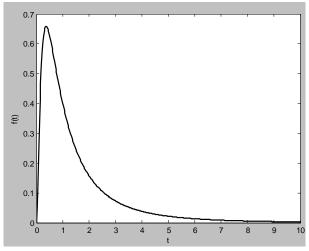
وكذلك فان الوسيط Median لهذا التوزيع هو:

$$F(t) = \frac{1}{2} \Rightarrow \phi \left(\frac{\ln t_{\text{Med}} - \mu}{\sigma} \right) = \frac{1}{2}$$

$$\because \phi(0) = \frac{1}{2}$$

$$\therefore \frac{\ln t_{\text{med}} - \mu}{\sigma} = 0 \Rightarrow \ln t_{\text{Med}} = \mu$$

$$\therefore t_{Med} = e^{\mu} \quad ... \tag{4}$$



شكل رقم (1)

مخطط دالة التوزيع الطبيعي اللوغاريتمي.

وبما أن هدف البحث هو دراسة سلوك دالة البقاء (S(t) للتوزيع الطبيعي اللوغاريتمي وخاصة لبيانات المراقبة من النوع الثاني، لذلك سوف نوضح بعض المفاهيم المتعلقة بهذا التوزيع وخاصة لدالة البقاء (S(t).

:Survival Function S(t) دالة البقاء

$$:: S(t) = Pr(T > t) = 1 - F(t) = 1 - \phi\left(\frac{\ln t - \mu}{\sigma}\right) ... (5)$$

$$:: \phi\left(\frac{\ln t - \mu}{\sigma}\right) = 1 - S(t)$$

$$\frac{\ln t - \mu}{\sigma} = Z_{(1 - S(t))}$$

$$\Rightarrow \ln t = \mu + \sigma Z_{(F(t))}$$

$$\therefore t = exp\left(\mu + \sigma Z_{(F(t))}\right)$$

العشوائية t_1,t_2,\dots,t_n وعلية فأن هذه الطريقة تعتمد على أختيار قيم المعالم التي تجعل دالة الأمكان أعظم ما يمكن، وللبيانات المراقبة من النوع الثاني وله r من المشاهدات فأن تقدير معالم التوزيع الطبيعي اللوغاريتمي μ , σ^2 ، يكون كما يلي :

بأخذ اللوغاريتم الطبيعي للصيغة (8):

$$\begin{split} & \ln L \Big(t_1, t_2, \dots, t_r; \mu \;,\; \sigma^2 \Big) = \ln \Bigg(\frac{n\,!}{(n-r)\,!} \Bigg) - \\ & \frac{r}{2} \Big(\ln 2\pi + \ln \sigma^2 \Big) + \sum_{i=1}^r \ln t_i^{-1} - \frac{\sum_{i=1}^r \left(\ln t_i - \mu \right)^2}{2\sigma^2} + \\ & \Big(n-r \Big) \ln \Bigg(1 - \phi \bigg(\frac{\ln t_r - \mu}{\sigma^2} \bigg) \Bigg) - \dots (9) \\ & \text{i.e.} \qquad (9) \\ & \text{i.e.} \qquad (9) \\ & \text{i.e.} \qquad (9) \\ & \text{o.e.} \qquad (1) \\ & \text{o.e.} \qquad (1) \\ & \text{o.e.} \qquad (2) \\ & \text{o.e.} \qquad (3) \\ & \text{o.e.} \qquad (4) \\ & \text{o.e.} \qquad (5) \\ & \text{o.e.} \qquad (6) \\ & \text{o.e.} \qquad (7) \\ & \text{o.e.} \qquad (8) \\ & \text{o.e.} \qquad (9) \\ & \text{o.e.} \qquad (1) \\ & \text{o.e.} \qquad (2) \\ & \text{o.e.} \qquad (3) \\ & \text{o.e.} \qquad (4) \\ & \text{o.e.} \qquad (4) \\ & \text{o.e.} \qquad (5) \\ & \text{o.e.} \qquad (6) \\ & \text{o.e.} \qquad (7) \\ & \text{o.e.} \qquad (8) \\ & \text{o.e.} \qquad (9) \\$$

$$\phi\bigg(\frac{\ln t_{\rm Med} - \mu}{\sigma}\bigg) = \frac{1}{2}$$
 : إذاً فأن الصيغة (9) سوف تكون كما يلي

$$\ln L(t_1, t_2, ..., t_r; \mu, \sigma^2) = \ln \left(\frac{n!}{(n-r)!}\right) -$$

$$\frac{r}{2} \Big(\ln 2\pi + \ln \sigma^2 \Big) + \sum_{i=1}^r \ln t_i^{-1} - \frac{\sum_{i=1}^r \left(\ln t_i - \mu \right)^2}{2\sigma^2} +$$

$$(n-r)\ln\frac{1}{2}$$
(10)

بإيجاد المشتقة الجزئية لكل من μ , σ^2 يتم الحصول على المعادلتين التاليتين :

$$\begin{aligned} &\frac{\partial \ln L\left(t_{1},t_{2},\ldots,t_{r};\mu,\sigma^{2}\right)}{\partial \mu} = 0 \\ &\frac{\partial \ln L\left(t_{1},t_{2},\ldots,t_{r};\mu,\sigma^{2}\right)}{\partial \sigma^{2}} = 0 \end{aligned} \end{aligned} \text{ when } \sigma^{2} = \hat{\sigma}^{2},\mu = \hat{\mu}$$

 μ , σ^2 يتم الحصول على تقدير وبحل المعادلتين أعلاه يتم الحصول على وكما يلي :

$$\hat{\mu}_{ML} = \frac{1}{r} \sum_{i=1}^{r} \ln t_i$$
 (11)

$$\hat{\sigma}_{ML}^2 = \frac{1}{r} \sum_{i=1}^{r} \left(\ln t_i - \frac{1}{r} \sum_{i=1}^{r} \ln t_i \right)^2 \dots (12)$$

وعلية فان تقدير دالة البقاء S(t) بالأعتماد على مقدر الأمكان الأعظم حسب الصيغة التالية:

$$\hat{S}_{ML}(t) = 1 - \phi \left(\frac{\ln t - \hat{\mu}_{ML}}{\hat{\sigma}_{ML}} \right)$$
.....(13) ثانياً : أسلوب بيز في التقدير

Bayesian procedure in Estimation

 μ . σ^2 تكون حسب الصبغة التالية ولكل من المعالم

وبعد تحديد دالة الخسارة يتم أيجاد التوقع لهذه الدالة حيث يطلق على الدالة الناتجة بدالة المخاطرة ولكل من المعلمة σ^2 ستكون الصيغه لهما كما يلي :

تهانی مهدی عباس

$$\exp\left[-\frac{1}{2\sigma^2}\left\{(r-1)s^2 + r\left(\frac{1}{r}\sum_{i=1}^r \ln t_i - \mu\right)^2\right\}\right] \tag{21}$$

$$s^{2} = \frac{1}{r-1} \sum_{i=1}^{r} \left(\ln t_{i} - \frac{1}{r} \sum_{i=1}^{r} \ln t_{i} \right)^{2} \dots (22)$$

وللحصول على الدالة اللاحقة الحدية للمعلمة μ ، يتم أجراء التكامل على الصيغة (21) بالنسبة للمعلمة σ^2 وكما يلي :

$$f\left(\mu/t_1,t_2,...,t_r\right) \propto \int_0^\infty f\left(\mu,\sigma^2/t_1,t_2,...,t_i\right) d\sigma^2$$

 $z=rac{A}{2\sigma^2}$ على فرض أن $z=rac{A}{2\sigma^2}$ وأن

$$A = (r-1)s^{2} + r\left(\mu - \frac{1}{r}\sum_{i=1}^{r}\ln t_{i}\right)^{2}$$

$$\therefore f\left(\mu/t_{1}, t_{2}, ..., t_{r}\right) \propto A^{-\frac{r}{2}} \int_{0}^{\infty} z^{\frac{(r-1)}{2}} \exp(-z)dz$$

$$\infty \left[(r-1)s^{2} + r \left(\mu - \frac{1}{r} \sum_{i=1}^{r} \ln t_{i} \right)^{2} \right]^{-\frac{1}{2}}$$

$$\propto \left[1 + \frac{r(\mu - \overline{t})}{(r-1)s^2}\right]^{-\frac{r}{2}} \dots (24)$$

وأن الصيغة (24) ما هي الا توزيع

وعلية $\left(\overline{t} \;,\, s^2/r\right)$ بالمعالم $t_{\left(r-l\right)}(t\text{-distribution})$

وبالأعتماد على الصيغة (16) فان المتوسط الشرطي لهذا

$$E(\mu/t_1,...,t_r) = \hat{\mu}_{B1} = \overline{t} = \frac{1}{r} \sum_{i=1}^{r} \ln t_i$$
 (25)

وللحصول على الدالة اللاحقة الحدية للمعلمة σ^2 يتم أجراء التكامل على الصيغة (21) بالنسبة للمعلمة μ وكما يلي :

$$f\left(\sigma^{2}/t_{1},t_{2},...,t_{r}\right)\propto\int\limits_{-\infty}^{\infty}f\left(\sigma^{2}/t_{1},t_{2},...,t_{r}\right)d\mu$$

بالنسبة للمعلمة σ^2 وكذلك الدالة الحدية اللاحقة $f\left(\sigma^2/t_1,t_2,\dots,t_r\right)$ في الصيغة $f\left(\sigma^2/t_1,t_2,\dots,t_r\right)$ عليها من تكامل الصيغة (14) بالنسبة للمعلمة μ , وعلية فأن مقدر بيز للمعالم μ , σ^2 هو μ , σ^2 الذي يجعل الصيغة (17) والصيغة (16) أقل ما يمكن ، وبصورة أخرى ، فأن مقدر بيز للمعالم μ , σ^2 ماهو الا التوقع الشرطي ، فأن مقدر بيز للمعالم μ , σ^2 و التوقع الشرطي للدالة الحدية $\int_{0}^{\infty} (\sigma^2/t_1,t_2,\dots,t_r)$ على التوالي.

في هذا البحث سوف نتطرق الى نوعين من الدوال المسبقة التي سوف يتم أستخدامهما في تقدير المعالم μ , σ^2

i – مقدر بيز لدالة البقاء (S(t) بالأعتماد على دالة المعلوماتية مسبقة: Noninformative prior

$$f(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$$
 (18)

دالة لا معلوماتية مشتركة مسبقة للمعالم μ , σ^2 وكما اقترحها الباحث Jeffrey ، وبعد دمج الصيغة (18) مع دالة الأمكان للمشاهدات يتم الحصول على الدالة اللاحقة المشتركة وكما يلى :

$$f\left(\mu,\sigma^{2}/t_{1},t_{2},...,t_{r}\right) \propto \sigma^{-\left(r+1\right)} \exp \left[-\frac{\displaystyle\sum_{i=1}^{r} \left(\ln t_{i}-\mu\right)^{2}}{2\sigma^{2}}\right] \times$$

$$\left(1 - \phi \left(\frac{\ln t_r - \mu}{\sigma}\right)\right)^{n-r} \dots (19)$$

وبنفس الأسلوب المعتمد في أولاً لطريقة الأمكان الأعظم في التقدير يتم الحصول على ما يلي:

$$f\left(\mu,\sigma^2/t_1,...,t_r\right) \propto \sigma^{-(r+1)} \exp \left[-\frac{\displaystyle\sum_{i=1}^r \left(\ln t_i - \mu\right)^2}{2\sigma^2}\right]$$

.....(20)

وبتبسيط الصيغة (20) نحصل على ما يلي
$$f\left(\mu,\sigma^2/t_1,t_2,...,t_r\right)\!\propto\!\sigma^{-\left(r+l\right)}$$

$$\begin{split} & \underset{-\infty}{\overset{\infty}{\int}} \sigma^{-r-2} \exp \Biggl(-\frac{1}{2\sigma^2} \Biggl[(r-1)s^2 + r \Biggl(\frac{1}{r} \sum_{i=1}^r \ln t_i - \mu \Biggr)^2 \Biggr] \Biggr) d\mu \\ & \underset{\infty}{\overset{\infty}{\int}} \sigma^{-r-2} \exp \Biggl(-\frac{1}{2\sigma^2} (r-1)s^2 \Biggr) \sqrt{2\pi\sigma^2/r} \\ & \underset{\infty}{\overset{\infty}{\int}} \Biggl(\sigma^2 \Biggr)^{-(r+1)/2} \exp \Biggl(\frac{(r-1)s^2}{2\sigma^2} \Biggr) \dots (26) \end{split}$$

وأن الصيغة χ^2 المقي اس scale inverse chi – square

$$(\sigma^2/t_1, t_2, ..., t_r) \sim \text{Inv} - \chi^2 (r-1, s^2)$$
 وبالأعتماد على الصيغة (17) فان المتوسط الشرطي لهذا التوزيع هو :

$$E(\sigma^2/t_1, t_2, ..., t_r) = \hat{\sigma}_{B1}^2 = \frac{r-1}{r-3} s^2$$
 (27)

 $e^2 = \frac{r-1}{r-3} s^2$ (27)

$$\hat{S}_{B1}\left(t\right) = 1 - \phi \left(\frac{\ln t - \hat{\mu}_{B1}}{\hat{\sigma}_{B1}}\right)(28)$$

ii – مقدر بيز لدالة البقاء S(t) بالأعتماد على دالةمرافقة مسبقة: Conjugate Prior

على فرض ان المعلمة μ تمتلك دالة مرافقة طبيعية مسبقة $^{[2]}$:

$$\left(\mu/\sigma^2\right) \sim N\left(\mu_0, \frac{\sigma^2}{k_0}\right) \dots$$
 (29)

: [2] مسبقة مسبقة مسبقة وأن المعلمة σ^2

$$\sigma^2 \sim \text{Inv} - \chi^2 \left(v_0, \sigma_0^2 \right)$$
 (30)

وبدمج الصيغتين (29) و (30) يتم الحصول على دالة مرفقة مشتركة مسبقة للمعالم μ , σ^2

$$f\left(\mu,\sigma^{2}\right) \propto \sigma^{-1} \left(\sigma^{2}\right)^{-\left(\frac{V_{0}}{2}+1\right)}$$

$$\exp\left(-\frac{1}{2\sigma^{2}}\left[v_{0}\sigma_{0}^{2}+k_{0}\left(\mu_{0}-\mu\right)^{2}\right]\right) \dots (31)$$

وأن الصيغة (31) هي توزيع طبيعي – معكوس مربع كاي $\left(\mu_0 \,, \sigma_0^2 \,, k_0 \,, \nu_0 \right) \text{ hyper parameters }$ التي تحسب من المعلومات الأولية أي أن :

$$(\mu, \sigma^2) \sim N - Inv - \chi^2 (\mu_0, \sigma_0^2 / k_0; \nu_0, \sigma_0^2)$$
.....(32)

وبدمج الصيغة (32) مع دالة الأمكان للمشاهدات يتم الحصول على الدالة اللاحقة المشتركة وكما يلي:

وبنفس الأسلوب المعتمد في ثانياً في الفقره (i) للدالة لا معلوماتية مسبقة في التقدير يتم الحصول على ما يلى:

$$\begin{split} \left(\mu, \sigma^2/t_1, t_2, ..., t_r\right) &\sim N - Inv - \\ \chi^2 \left(\mu_n \,, \sigma_n^2/k_n \,; \nu_n \,, \sigma_n^2\right) \end{aligned} \tag{35}$$
 elicit

$$\mu_{n} = \frac{k_{0}}{k_{0} + r} \mu_{0} + \frac{r}{k_{0} + r} \cdot \frac{1}{r} \sum_{i=1}^{r} \ln t_{i} \quad \quad (36)$$

حيث أن:

$$k_n = k_0 + r$$
$$v_n = v_0 + r$$

وكذلك فأن :

$\nu_{n}\sigma_{n}^{2} = \nu_{0}\sigma_{0}^{2} + (r-1)s^{2} + \frac{k_{0}r}{k_{0} + r} \left(\frac{1}{r}\sum_{i=1}^{r}\ln t_{i} - \mu_{0}\right)^{2}$

وللحصول على الدالة للاحقة الحدية للمعلمة μ ، يتم أجراء التكامل على الصيغة (34) بالنسبة للمعلمة σ^2 وكما يلى :

$$f\left(\mu/t_1,t_2,...,t_r\right) \propto \int_0^\infty f\left(\mu,\sigma^2/t_1,t_2,...,t_i\right) d\sigma^2$$

$$\propto \left[1 + \frac{k_n (\mu - \mu_n)^2}{\nu_n \sigma_n^2} \right]^{-(\nu_n + 1)/2} \dots (38)$$

 t_{ν_n} (t-distribution) وأن الصيغة (38) ما هي الا توزيع (μ_n , σ_n^2/k_n بالمعالم المعالم (μ_n , σ_n^2/k_n) وعلية وبالأعتماد على الصيغة

(16) فان المتوسط الشرطى لهذا التوزيع هو:

$$E(\mu/t_1,t_2,...,t_r) = \hat{\mu}_{B2} = \mu_n$$
 (39) وللحصول على الدالة اللاحقة الحدية للمعلمة σ^2 يتم أجراء

التكامل على الصيغة (34) بالنسبة للمعلمة µ وكما يلي:

$$f\left(\sigma^{2}/t_{1}, t_{2}, ..., t_{r}\right) \propto \int_{-\infty}^{\infty} f\left(\sigma^{2}/t_{1}, t_{2}, ..., t_{r}\right) d\mu$$

$$\propto \left(\sigma_{n}^{2}\right)^{-\left(\frac{v_{n}}{2}+1\right)} \exp\left(-\frac{v_{n}s^{2}}{2\sigma^{2}}\right)(40)$$

scale وأن الصيغة (40) هي معكوس χ^2 المقيس inverse chi – square

$$\therefore \left(\sigma^2/t_1,t_2,...,t_r\right) \sim \text{Inv} - \chi^2 \left(\nu_n\;,\,\sigma_n^2\right)$$
 وبالأعتماد على الصيغة (17) فان المتوسط الشرطي لهذا التوزيع هو :

$$E\left(\sigma^{2}/t_{1},t_{2},...,t_{r}\right)=\hat{\sigma}_{B2}=\frac{v_{n}}{v_{n}-2}\;\sigma_{n}^{2}\;....\;\;(41)$$
وعلية فان تقدير دالة البقاء $S(t)$ بالأعتماد على مقدر بيز وبالأعتماد على دالة مرفقة مسبقة يكون حسب الصيغة

$$\hat{S}_{B2}(t) = 1 - \phi \left(\frac{\ln t - \hat{\mu}_{B2}}{\hat{\sigma}_{B2}} \right) \dots$$
 (42)

Simulation : المحاكاة

لغرض معرفة كفاءة طرائق التقدير لدالة البقاء للتوزيع الطبيعي اللوغاريتمي لبيانات مراقبة من النوع الثاني تم محاكاة تقدير دالة البقاء ودراسة تأثير تغير حجوم العينات ونسب المراقبة على هذه المقدرات إذ تم محاكاة احجام العينة (100 , 50 , 50 = (r = 30)) ونسب مراقبة مربعات الخطأ MSE للمقارنة بين طرائق التقدير ولكل (r = 30) المنازم وحسب الصيغة التالية :

MSE
$$(\hat{S}(t)) = \frac{1}{R} \sum_{i=1}^{R} (\hat{S}_i(t) - S(t))^2$$
 (43)

حيث R تمثل عدد تكرار التجربة .

وبما أن MSE يحسب لكل t_i ، فأن متوسط مربعات الخطأ التكاملي IMSE يمثل بمثابة تكامل للمساحة الكلية لوأختزالها بقيمة واحدة تعتبر عامة للزمن ، أو معبرة عن الزمن الكلى وحسب الصبغة التالية :

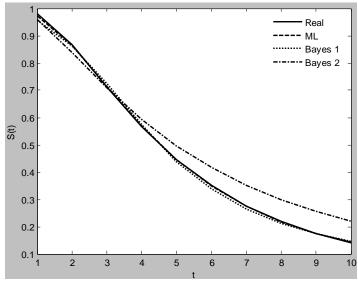
$$IMSE(\hat{S}(t)) = \frac{1}{R} \sum_{i=1}^{R} \left[\frac{1}{n_t} \sum_{j=1}^{n_t} (\hat{S}_i(t_j) - S(t_j))^2 \right]$$

حيث أن n_t هي معبرة عن حدود المتغير t_i أي من الحد الأدنى الى الحد الأعلى .

وقد تم تكرار كل تجربة R = 1000 مرة. والجداول الأثية تمثل تقدير دالة البقاء S(t) بأستخدام مقدر الأمكان الأعظم ML ومقدر بيز بالأعتماد على دالة لا معلومانية مسبقة Bayes1 ومقدر بيز بالأعتماد على دالة مرافقة مسبقة Bayes2 ، اضافة لحساب MSE لهذه المقدرات و لكل فترة زمنية وحساب MSE للمساحة الكلية للفترة الزمنية، ولجميع نسب المراقبة وحجوم العينات.

 $n=25\ \&\ r=30\%$ عند التقدير عند IMSE و IMSE يوضح مقدرات (S(t)

		S	(t)		MSE			
t	Real	ML	Bayes1	Bayes2	ML	Bayes1	Bayes2	
10	0.98033	0.97182	0.95746	0.95927	0.0012719	0.0041675	0.00059002	
20	0.86757	0.86435	0.86151	0.83925	0.0089269	0.0132110	0.00138930	
30	0.71288	0.71559	0.72534	0.70848	0.0181730	0.0243740	0.00081370	
40	0.56724	0.56867	0.57421	0.59258	0.0228190	0.0297210	0.00145560	
50	0.44629	0.44484	0.43934	0.49591	0.0233600	0.0311760	0.00323060	
60	0.35057	0.34792	0.33808	0.41682	0.0213420	0.0285070	0.00509640	
70	0.27623	0.27413	0.26506	0.35237	0.0181690	0.0243080	0.00644350	
80	0.2188	0.21828	0.21229	0.29972	0.0149080	0.0200240	0.00713670	
90	0.1744	0.17586	0.17396	0.25650	0.0120360	0.0166300	0.00727560	
100	0.13993	0.14335	0.14537	0.22081	0.0096639	0.0139490	0.00702550	
		IMSE			0.0150670	0.0206070	0.00404570	

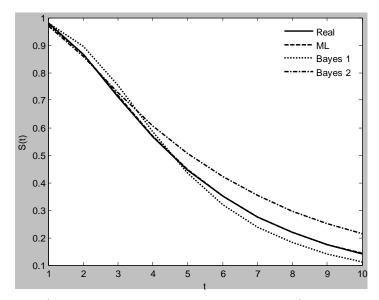


 $n=25\ \&\ r=30\%$ عند حجم عينة كل رقم (2): يوضح مقدرات دالة البقاء S(t) لجميع طرائق التقدير

جدول رقم (2) جدول رقم (1) جدول رقم (2) جدول و IMSE و MSE و S(t) يوضح مقدرات (1) و MSE و

		S	(t)		MSE		
t	Real	ML	Bayes1	Bayes2	ML	Bayes1	Bayes2
10	0.98033	0.97559	0.97937	0.96895	0.00057982	0.0010710	0.00026008
20	0.86757	0.86744	0.89732	0.85866	0.00438390	0.0076138	0.00077051
30	0.71288	0.71672	0.75382	0.72782	0.00840340	0.0152740	0.00123020
40	0.56724	0.57040	0.58585	0.60745	0.01018400	0.0170750	0.00265780
50	0.44629	0.44751	0.43502	0.50538	0.01032900	0.0172290	0.00446280
60	0.35057	0.35062	0.31990	0.42135	0.00963700	0.0169250	0.00589160
70	0.27623	0.27619	0.23858	0.35286	0.00853380	0.0154420	0.00666940
80	0.21880	0.21942	0.18178	0.29709	0.00728110	0.0129800	0.00685110
90	0.17440	0.17603	0.14150	0.25157	0.00605570	0.0104370	0.00660670
100	0.13993	0.14264	0.11234	0.21424	0.00495660	0.0082365	0.00610730
		IMSE			0.00703450	0.0122280	0.00415070

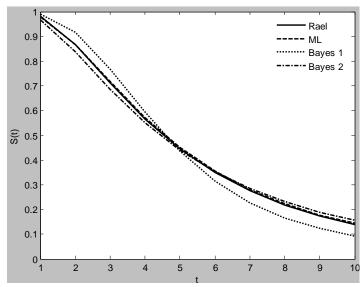
تهاني مهدي عباس



n=50~&~r=30% عند حجم عينة S(t) لجميع طرائق التقدير عند حجم عينة جدول دالة البقاء البقاء و S(t)

عند %n = 100 & r = 30 عند	IMSE لها لجميع طرائق التقدير	یوضح مقدرات $S(t)$ و MSE و
---------------------------	------------------------------	----------------------------

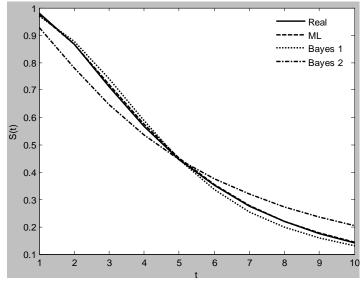
		S	(t)		MSE		
t	Real	ML	Bayes1	Bayes2	ML	Bayes1	Bayes2
10	0.98033	0.97781	0.98987	0.96685	0.00026593	0.00031848	0.00030462
20	0.86757	0.86824	0.91583	0.83791	0.00256210	0.00575460	0.00163550
30	0.71288	0.71716	0.76848	0.68568	0.00493820	0.01162900	0.00193560
40	0.56724	0.57236	0.59417	0.55022	0.00584680	0.01117800	0.00164520
50	0.44629	0.45094	0.43720	0.43993	0.00577260	0.01024400	0.00140970
60	0.35057	0.35459	0.31554	0.35284	0.00525350	0.01045600	0.00130910
70	0.27623	0.27984	0.22788	0.28469	0.00456680	0.01018400	0.00126490
80	0.21880	0.22225	0.16638	0.23135	0.00385240	0.00903030	0.00121770
90	0.17440	0.17785	0.12333	0.18939	0.00318380	0.00744960	0.00114670
100	0.13993	0.14347	0.09293	0.15618	0.00259520	0.00586860	0.00105320
		IMSE			0.00388370	0.00821120	0.0012922



n=100~&~r=30% عينة عند حجم عينة S(t) لجميع طرائق التقدير عند حجم عينة «4): يوضح مقدرات دالمة البقاء

جدول رقم (4) جدول رقم (8) .n = 25 & r = 40% يوضح مقدرات (18 و IMSE و IMSE و يوضح مقدرات (19 و IMSE و IMSE و التقدير عند

		S	(t)		MSE		
t	Real	ML	Bayes1	Bayes2	ML	Bayes1	Bayes2
10	0.98033	0.97396	0.96854	0.92788	0.00089159	0.0023253	0.00292330
20	0.86757	0.86800	0.87884	0.78069	0.00691210	0.0103050	0.00801510
30	0.71288	0.72096	0.74200	0.64507	0.01423300	0.0210100	0.00519640
40	0.56724	0.57570	0.58764	0.53435	0.01748400	0.0265150	0.00173250
50	0.44629	0.45184	0.44607	0.44610	0.01713300	0.0251330	0.00066876
60	0.35057	0.35353	0.33477	0.37577	0.01530400	0.0224960	0.00130010
70	0.27623	0.27803	0.25500	0.31930	0.01311500	0.0193100	0.00250060
80	0.21880	0.22071	0.19915	0.27354	0.01097800	0.0163140	0.00361070
90	0.17440	0.17715	0.15948	0.23609	0.00905430	0.0135280	0.00438260
100	0.13993	0.14381	0.13047	0.20516	0.00740490	0.0111500	0.00479050
		IMSE			0.01125100	0.0168090	0.00351200

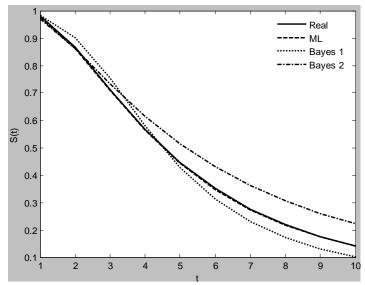


 $n=25\ \&\ r=40\%$ عند حجم عينة S(t) لجميع طرائق التقدير عند حجم عينة أياء S(t)

جدول رقم (5) جدول رقم (5) جدول (5 MSE و MSE و MSE بوضح مقدرات (14 و MSE و MSE و MSE و MSE و MSE و بوضح مقدرات (14 و MSE و MS

		S	(t)		MSE			
t	Real	ML	Bayes1	Bayes2	ML	Bayes1	Bayes2	
10	0.98033	0.97524	0.98388	0.96920	0.00046947	0.00061096	0.00027790	
20	0.86757	0.86291	0.90151	0.86149	0.00369530	0.00652320	0.00085349	
30	0.71288	0.71004	0.75287	0.73356	0.00678310	0.01293500	0.00162030	
40	0.56724	0.56421	0.58087	0.61526	0.00798160	0.01385000	0.00351710	
50	0.44629	0.44271	0.42848	0.51437	0.00791910	0.01379200	0.00572540	
60	0.35057	0.34703	0.31221	0.43085	0.00723400	0.01364200	0.00739180	
70	0.27623	0.27336	0.22929	0.36240	0.00628900	0.01260000	0.00824750	
80	0.21880	0.21697	0.17121	0.30640	0.00529220	0.01072400	0.00839190	
90	0.17440	0.17373	0.13028	0.26048	0.00435890	0.00862370	0.00804080	
100	0.13993	0.14037	0.10099	0.22265	0.00354220	0.00671290	0.00740050	
		IMSE			0.00535650	0.01000100	0.00514670	

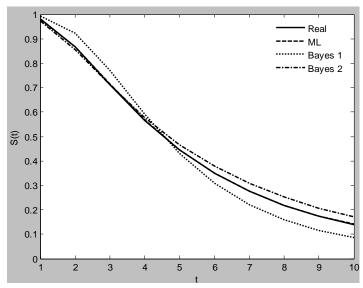
تهاني مهدي عباس



n=50~&~r=40% عند حجم عينة S(t) لجميع طرائق التقدير عند حجم عينة جدول دالة البقاء البقاء (6) جدول رقم (6)

 $n = 100 \ \& \ r = 40\%$ عند التقدير عند IMSE و IMSE و يوضح مقدرات (s(t) و التقدير عند التقدير عند التقدير عند التقدير عند التقدير عند التقدير عند التقدير التقدير عند التقدير التقدي

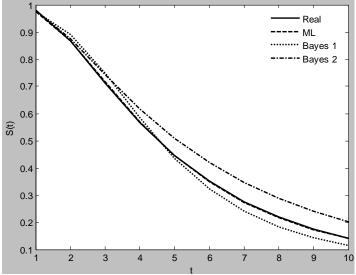
		S	S(t)		MSE		
t	Real	ML	Bayes1	Bayes2	ML	Bayes1	Bayes2
10	0.98033	0.97860	0.992330	0.97223	0.00019369	0.00026560	0.00017289
20	0.86757	0.86793	0.921490	0.85581	0.00187280	0.00542450	0.00087066
30	0.71288	0.71492	0.770690	0.71133	0.00346980	0.00968840	0.00116560
40	0.56724	0.56900	0.591030	0.57846	0.00403210	0.00792100	0.00139200
50	0.44629	0.44719	0.430670	0.46767	0.00398940	0.00736470	0.00167970
60	0.35057	0.35085	0.307540	0.37858	0.00366920	0.00855710	0.00191170
70	0.27623	0.27627	0.219440	0.30786	0.00322160	0.00900600	0.00201310
80	0.21880	0.21891	0.157970	0.25183	0.00273410	0.00827680	0.00198440
90	0.17440	0.17474	0.115200	0.20733	0.00226340	0.00694120	0.00186100
100	0.13993	0.14057	0.085224	0.17182	0.00184130	0.00550490	0.00168320
		IMSE	3		0.00272870	0.00689500	0.00147340



n=100~&~r=40% عينة عينة S(t) لجميع طرائق التقدير عند حجم عينة البقاء S(t)

جدول رقم (7) جدول رقم (8) جدول رقم MSE و MSE و MSE يوضح مقدرات S(t)

		S	S(t)		MSE			
t	Real	ML	Bayes1	Bayes2	ML	Bayes1	Bayes2	
10	0.98033	0.97448	0.97566	0.97639	0.00070811	0.00138930	0.00012846	
20	0.86757	0.86611	0.88975	0.87453	0.00543470	0.00858450	0.00080685	
30	0.71288	0.71591	0.74818	0.74259	0.01052200	0.01766600	0.00205260	
40	0.56724	0.56934	0.58436	0.61669	0.01258400	0.02071400	0.00364000	
50	0.44629	0.44578	0.43588	0.50839	0.01235700	0.02004800	0.00493220	
60	0.35057	0.34825	0.32127	0.41897	0.01112100	0.01847300	0.00562050	
70	0.27623	0.27343	0.23962	0.34633	0.00957090	0.01620000	0.00574200	
80	0.21880	0.21653	0.18269	0.2876	0.00802510	0.01367000	0.00546770	
90	0.17440	0.17321	0.14269	0.24011	0.00662520	0.01121400	0.00497040	
100	0.13993	0.14003	0.11398	0.20157	0.00542240	0.00905820	0.00437960	
		IMSE	3		0.00823700	0.01370200	0.0037740	

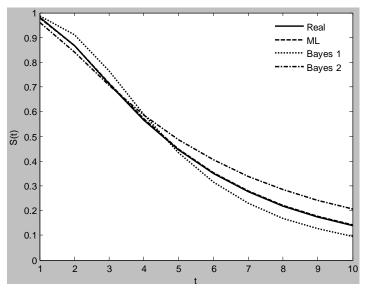


 $n=25\ \&\ r=50\%$ عند حجم عينة S(t) لجميع طرائق التقدير عند حجم عينة جدول دوم (8) جدول رقم (8)

 $n=50\ \&\ r=50\%$ يوضح مقدرات (3t و MSE و IMSE و IMSE و IMSE يوضح مقدرات التقدير

		S	S(t)		MSE			
t	Real	ML	Bayes1	Bayes2	ML	Bayes1	Bayes2	
10	0.98033	0.97703	0.987760	0.96125	0.00033465	0.00039624	0.00052870	
20	0.86757	0.86695	0.910920	0.84011	0.00299100	0.00603710	0.00152230	
30	0.71288	0.71552	0.763670	0.70540	0.00567360	0.01226700	0.00114960	
40	0.56724	0.57040	0.590480	0.58553	0.00670220	0.01236700	0.00147430	
50	0.44629	0.44884	0.435080	0.48581	0.00661750	0.01167000	0.00263890	
60	0.35057	0.35258	0.315040	0.40468	0.00602770	0.01167900	0.00391150	
70	0.27623	0.27806	0.228830	0.33902	0.00525080	0.01118600	0.00483110	
80	0.21880	0.22079	0.168510	0.28579	0.00444370	0.00982490	0.00528610	
90	0.17440	0.17673	0.126280	0.24245	0.00368720	0.00805320	0.00534450	
100	0.13993	0.14266	0.096359	0.20694	0.00301900	0.00632300	0.00512590	
		IMSE	3	-	0.00447470	0.00898030	0.00318130	

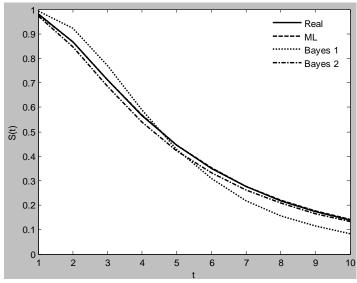
تهاني مهدي عباس



n=50~&~r=50% عند حجم عينة S(t) لجميع طرائق التقدير عند حجم عينة جدول S(t) البقاء S(t) جدول رقم S(t)

قدرات (S(t) و MSE و IMSE لها لجميع طرائق التقدير عند %n = 100 & r = 50	بوضح مقدر
--	-----------

		S	l(t)		MSE				
t	Real	ML	Bayes1	Bayes2	ML	Bayes1	Bayes2		
10	0.98033	0.97849	0.992930	0.97276	0.00016261	0.00026339	0.00014558		
20	0.86757	0.86663	0.922690	0.84549	0.00149970	0.00512330	0.00114510		
30	0.71288	0.71323	0.769750	0.68519	0.00282200	0.00831180	0.00190500		
40	0.56724	0.56787	0.589270	0.54051	0.00339350	0.00665300	0.00209400		
50	0.44629	0.44687	0.429700	0.42331	0.00344040	0.00654250	0.00197680		
60	0.35057	0.35118	0.307180	0.33204	0.00320360	0.00779500	0.00174060		
70	0.27623	0.27703	0.219090	0.26187	0.00283160	0.00839650	0.00147550		
80	0.21880	0.21989	0.157410	0.20802	0.00241660	0.00790440	0.00122220		
90	0.17440	0.17580	0.114460	0.16652	0.00201310	0.00675770	0.00099753		
100	0.13993	0.14162	0.084393	0.13435	0.00164950	0.00543240	0.00080658		
		IMSE			0.00234330	0.00631800	0.00135090		



n=100~&~r=50% عينة عند حجم عينة S(t) لجميع طرائق التقدير عند حجم عينة S(t)

- Transactions on Reliability, vol.40, No. 5, 1991.
- [4] A. E. Luis; Q. M. William, "Statistical Prediction Based on Censored Life Data" http://citeseer.ist.psu.edu/261928.html, 1999
- [5] S.K. Sinha, "Reliability and life testing" New York: John Wiley & Sons, Inc., 1986.

Abstract:

In this paper we will compare Bayes estimators, representing by Bayes estimator depending on Non-informative prior distribution and conjugate prior distribution, with ML estimator for survival function for Log-Normal distribution under Type II censoring data by using the simulation.

: Explanation Results تفسير النتائج

يتضح من النتائج في الجداول (1) الى (9) المذكورة انفاً ما يلى :

- أن تقدير دالة البقاء (S(t) بطريقة ML كانت أكثر تقارب من القيم الحقيقية لدالة البقاء (S(t) عن باقي الطرائق ولجميع حجوم العينات ونسب المراقبة.
- مقدر 2 Bayes لدالة البقاء (t) كان له أقل Bayes مقارنة بباقي المقدرات ولجميع حجوم العينات ونسب المراقدة.
- أشارت النتائج إلى تناقص MSE و IMSE لجميع المقدرات عند زيادة حجوم العينات ونسب المراقبة.
- عند زیادة حجم العینة نلاحظ أن مقدر Bayes 2 دالة البقاء (S(t) یقترب من القیم الحقیقة لدالة البقاء عکس مقدر Bayes 1 الذي لم یطرأ علیة أي تحسن لجمیع نسب المراقبة وحجوم العینات بالنسبة لباقي المقدرات.
- كان مقدر 2 Bayes لدالة البقاء (S(t) أكثر كفاءة في التقدير من باقي المقدرات وخاصة لحجوم العينة الصغيرة = 25 ولجميع نسب المراقبة.

6- الأستنتاجات Conclusion -6

يلاحظ من النتائج المذكورة في المبحث السابق أفضلية مقدر 2 Bayes ولجميع نسب المراقبة وحجوم العينات من المقدرات الأخرى ويرجع ذلك الى توضيف المعلومات الأولية، بصورة أخرى، أن المعلومات الأولية زادت من وفرة المعلومات حول المعلمة المراد تقديرها لذا يوصي الباحثون بأستخدام مقدر 2 Bayes لتقدير دالة البقاء (3) للتوزيع الطبيعي اللوغاريتمي وخاصة لحجوم العينات الصغيرة ونسب المراقبة الصغيرة ايضاً.

: Reference المصادر

- [1] أميرحنا هرمز، "الإحصاء الرياضي "دار الكتب للطباعة والنشر، جامعة الموصل. 1990.
- [2] G. Andrew; B.C. John; S.S. Hal; D.B. Rubin, "*Bayesian Data Analysis*" 2^{ed} ed. London: Chapman and Hall, 2004.
- [3] A. L., James" Estimators for Type-II

 Censored (Log) Normal Samples" IEEE