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Abstract

Dynamic memory management is an important part of computer systems design. Efficient
memory allocation, garbage collection and compaction are becoming increasingly more critical in
parallel, distributed and real-time applications. The memory efficiency is related to the
fragmentation. Segregation is one of the simplest allocation policies which use a set of free lists,
where each list holds blocks of a particular size. When the process requests a memory. The free list
for the appropriate size is used to satisfy the request. This paper proposes a scheme to reduce the
internal fragmentation of a segregated free list for improving memory efficiency using genetic
algorithm (GA) to find the optimal configuration. Because the genetic algorithms (GAs) are largely
used in optimization problems, they facilitate a good alternative in problem areas where the number
of constraints is too large for humans to efficiently evaluate. This GA is tested under five randomly
created workloads to find the best configuration. The results are acceptable when compared with

optimal configurations of these workloads.
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Introduction

Dynamic memory allocation is a classic
problem in computer systems. Typically, we
start with a large block of memory (sometimes
called a heap). When a user process needs
memory, the request is granted by carving a
piece out of the large block of memory. The
user process may free some of the allocated
memory explicitly, or the system will reclaim
the memory when the process terminates. At
any time the large memory block is split into
smaller blocks (or chunks), some of which are
allocated to a process (live memory), some are
freed (available for future allocations), and
some are no-longer used by the process but are
not available for allocation (garbage). A
dynamic memory management system must
keep track of these three types of memory
blocks and attempt to efficiently satisfy as
many of the process’s requests for memory as
possible [1].

Memory allocation schemes can be
classified into Sequential Fit, Buddy System
and Segregated free list algorithms. The
Sequential Fit approach (including First Fit,
Best Fit) keeps track of available chunks of
memory on a list. Known sequential
techniques differ in how they track the
memory blocks and how they allocate memory

requests from the free blocks. Normally the
chunks of memory (or at least the free chunks)
are maintained as a Linear Linked list. When a
process releases memory, these chunks are
added to the free list, either at the end or in
place if the list is sorted by addresses; freed
chunk may be coalesced with adjoining
chunks to form larger chunks of free memory.
When an allocation request arrives, the free list
is searched until an appropriately sized chunk
is found. The memory is allocated either by
granting the entire chunk or by splitting the
chunk (if the chunk is larger than the requested
size). Best Fit methods try to find the smallest
chunk that is at least as large as the request.
First Fit methods will find the first chunk that
is at least as large as the request. Best Fit
method may involve delays in allocation while
First Fit method may lead to more external
fragmentation. If the free list is in address
order, newly freed chunks may be combined
with its surrounding blocks, leading to larger
chunks. However, this requires a “linear”
search through the free list when inserting a
newly freed block of memory (or when
searching for a suitable chunk of memory) [1].

Buddy system algorithm maintains free
lists of different sized blocks. When a request
for memory is made these free lists are



searched. If the appropriate size is not found a
larger block is split (variations of this
algorithm determine how the block is actually
split, for example, in a binary buddy system
the block is split by powers of two). It will
continue this splitting, and the "buddy" or
other half is added to the free list, until the
requested size is found. When memory is freed
it looks for its buddy, or the block it split from,
to regain its original size. For example, if 10
bytes are requested the allocator searches the
free list. The only available block is 32 bytes.
This block splits into two blocks of 16 bytes.
One block of 16 bytes is allocated and the
other block is put on the free list. When it frees
this memory it then looks to the free list for its
buddy and coalescing takes place [2].

The Segregated free list approach
maintains multiple linked lists, one for each
different sized chunk of available lists.
Returning a free chunk from one of the lists
satisfies allocation requests (by selecting a list
containing chunks, which are at least as large
as the request). Freeing memory, likewise, will
simply add the chunk to the appropriate list.
No coalescing or splitting is performed and the
size of chunks remains unaltered. The main
advantage of segregated lists is the execution
efficiency in allocating and freeing memory
chunks. The disadvantage is the inefficient
usage of memory. The memory is divided into
regions based on the different sized blocks.
Since the number and frequency of requests
for different sized chunks depends on the
application and even inability to satisfy all
requests from the application [1].

This paper interested with the segregated
free list layout which does not have the
problem of external fragmentation, but rather
of internal fragmentation when a small block
is allocated into larger blocks. In segregated
free lists, the requests are served using bins
(i.e., an array of free lists) where each bin
contains blocks (chunks) of the same size, see
Fig. (1). However, if the exact size does not
exist or that bin does not have free chunks of
memory, the request is served by the next
larger block than is necessary, but the
remaining part is not split and no coalesces.
When this occurs, we have memory waste and
an increase in internal fragmentation.
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Fig.(1) Data structure of segregated free list.

The rest of this paper is organized as
follows: Section 2 illustrates the related work.
Section 3 describes genetic algorithm. Section
4 presents the proposed memory allocation
approach. Section 5 presents the experimental
results. Finally, section 6 illustrates the
conclusion and some future work.

Related Work

Rezaei M., Cytron R. K. presented how to
exploit Intelligent Memory Devices to
decouple the memory management from the
central processing unit, and show how
segregated binary trees can be embedded in
intelligent memory devices [3]. Rosso C. D.
presented an approach for improving the
internal memory fragmentation by finding the
optimal configuration of a segregated free lists
data structure using genetic algorithm. The
genetic algorithm used the workload as input
to generate the optimal configuration among
the huge number of potential solutions by
evolving an initial population [4]. Rosso C. D.
presented a case study of the evaluation and
the analysis of dynamic memory management
in embedded real-time systems. They have
used a scenario-based approach and used a
simulation environment to evaluate the
performance of different dynamic memory
management systems [5]. Rezaei M. and
Kavil K. M. presented a technique that uses a
Binary tree for the list of available memory
blocks and show how this method can manage
memory more efficiently and facilitate easy
implementation of well known garbage
collection techniques, [6]. Masmano M.,
Ripoll 1., Balbastre P., Crespo A. proposed a
new allocator called Two Level Segregated Fit
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(TLSF) which can be represented as a two-
dimensional array. The first dimension splits
free blocks in size-ranges a power of two apart
from each other, so that first-level index I
refers to free blocks of sizes in the range
[2',2"1]. The second dimension splits each
first-level range linearly in a number of ranges
of an equal width, [7].

Genetic algorithm (GA)

Genetic algorithms (GAs) are adaptive
methods which may be used to solve search
and optimization problems. By starting with a
population of possible solutions and changing
them during several iterations, GAs hope to
converge to the fittest solution. Each solution
is represented through a chromosome, which is
just an abstract representation. The process
begins with a set of potential solutions or
chromosomes that are randomly generated or
selected. Over many generations, natural
populations evolve according to the principles
of natural selection and survival of the fittest.
For generating new chromosomes, GA can use
both crossover and mutation techniques.
Crossover involves splitting two chromosomes
and then, combining one half of each
chromosome with the other pair. The idea
behind crossover is that the new chromosome
may be better than both of the parents if it
takes the best characteristics from each of the
parents. Crossover occurs during evolution
according to a user-definable crossover
probability (Pc). Pc normally set to high, e.g.,
0.6 [7]. Mutation involves flipping a single bit
of a chromosome [8]. Mutation is an important
part of the genetic search as help helps to
prevent the population from stagnating at any
local optima. Mutation occurs during evolution
according to a user-definable mutation
probability (Pm). This probability should
usually be set fairly low (0.01 is a good first
choice). If it is set to high, the search will turn
into a primitive random search [7]. The
chromosomes are then evaluated using a
certain fitness criterion and the ones which
satisfy the most this criterion are kept while
the others are discarded. This process repeats
until the population converges toward the
optimal solution. The basic genetic algorithm
is summarized in Fig. (2), [8].
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SELECT random population of n chromosomes.
EVALUATE the fitness f(x) of each chromosome
X in the population.
LOOP
SELECT two parent chromosomes from a
population.
CROSSOVER the parents to form new children
with a crossover probability Pc.
MUTATE new children with a mutation
probability Pm.
Place new offspring in the new population.
Use new generated population for a further
Sum of the algorithm.
EXIT if the end condition is satisfied and
Return best solution.
END LOOP

Fig.(2) A basic Genetic Algorithm.

There are several advantages to the
Genetic Algorithm such as their parallelism
and their liability. They require no knowledge
or gradient information about the response
surface, they are resistant to becoming trapped
in local optima and they perform very well for
large-scale optimization problems. GAs have
been used as heuristics to solve difficult
problems (such as NP-hard problems) for
machine learning and also for evolving simple
programs. Applications of Genetic Algorithms
include: nonlinear programming, stochastic
programming,  signal processing and
combinatorial optimization problems such as
the Traveling Salesman Problem, Knapsack
Problem, sequence scheduling, graph coloring,

[8].

The proposed memory allocation approach
The proposed work uses genetic algorithm
to reduce the internal fragmentation for a
segregated free list. Five samples of memory
allocation are used where each workload has a
random number of requests. An attempt to find
the optimal configuration for segregated free
list data structure by giving the minimum and
maximum values of the bins, and the processor
word size. The number of the total bins of each
configuration is calculated by the following
equation [4]:
Max —Min
n= e —— +1
Word size

Where:

n represents the number of bins between max
and min values.

Max is the maximum number of bins

Min is the minimum number of bins




When the number of bins is high then the
search space for the solution is large and a
brute force approach is not feasible. Therefore,
an approach based on genetic algorithm is
used to find an optimal or near optimal
solution. Genetic algorithm provides a
heuristic approach to function optimization
problems, which have the concepts of fitness,

binl bin2 bin3 hind binS hinG hinT bind hin? hinld
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crossover, mutation, populations and genes. In
this paper we take five workloads and applied
the GA for each of them in an attempt to find
the optimal configuration.

The first workload is randomly selected
between 8 to 400 bytes; the number of bins
equals to 50 is calculated using formula (1) as
shown in Fig. (3).
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Fig. (3) First workload.

For example, if we need 8 bins to represent
the optimal configuration of a segregated free
list, there are about 536,878,650 times to find
it. It is a large solution space to get the optimal
8 bins among 50 bins therefore; we use GA.

In this paper we represent each bin as a
gene which is an encoded parameter. A
chromosome is the string produced by
concatenating all the encoded parameters.
Each chromosome is an individual and
member of a population which represents the
segregated free list. The chromosome includes
n genes for example in first workload (n=8),
where each gene holds the size of a given bin
as in Fig.(4). Note that each gene represents
one bin of a particular size (e.g., genel
indicates the existence of bin2 of size 16).

hin2 hin3  hin6  hin27 hin33 hin35 hind6 hinS0
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Fig. (4) Chromosome representation.

The following steps show how the GA
used to obtain the optimal solution:

e Step one: is generation of a population
randomly, and then calculates the fitness of
each chromosome; which represents the
summation of number of requests for each

bin (the genes in the same chromosome are
not duplicated).

e Step two: Select two parents ‘chromosomes'
from the population and take the parent
whose fitness is greater than the other.

e Step three: Produce a child as offspring
from the parents using crossover by taking
crossover probability (Pc) = 0.6 which
decides if the parts of two chromosomes
will be interchanged. This is determined
between two points. For example, if we take
point; = 3 and point, = 6 the genes from
location 3 to location 6 are changed
between two chromosomes, see Fig.(5).

noitt1=3 pointld=f

(s |16 [J8 [B6 B [BEH 320[3%2
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Fig. (5) Crossover between two
chromosomes.

The genes which had been undergo crossover
and swapped between the two parent
chromosomes must not be duplicated (i.e., not
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similar to any other gene in the same child
chromosome). If duplicated, we have to
replace it randomly with a different value
from the original set of bin sizes (8-400).

e Step four: Mutate the child by taking
probability mutation (Pm) =0.01 to decide
which gene(s) is/are changed randomly. A
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e Step six: If the number of generation is equal
to end of loop (in this example we take it 50
iterations) then return the best solution with
maximum fitness value.

Experimental results
This paper uses five randomly created
workloads; each of them represents a particular

mutation operator that replaces the value of
the chosen gene with a random value selects.
The gene which is replaced must not similar
to any other gene in the same chromosome.
Then calculate the fitness of the created child.

e Step five: Put new offspring in the population
and use this new generated population for
further.

segregated free list. The characteristics of these
workloads, together with  their memory
allocation structures are given in tablel and 2,
respectively. In Tables (2-1, 2-2, 2-3, 2-4, 2-5)
alloc. size is the size of memory allocation (bin)
and #requests is the number of requests for an
allocation.

Table (1)
Characteristics of five workloads.

WorkloadNo. | Min—Maxbins | Wordsize | No.ofbins | No. ofbins required
8 8 8

Table (2-1)
The memory allocation structure of the first workload.

No.
Alloc. Size
# requests

Alloc. Size 176 || 184 | 192 | 200 | 208 | 216 | 224 | 232 248 || 256 | 264 | 272 | 280 | 288 | 296 | 304 | 312 | 320
# requests 6 10 16 8 12 5 14 10 12 5 25 10 8 30 20 10 5 15 13 20

No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |

No. 41 42 43 44 45 46 47 48 49 50

Alloc. Size 328 || 336 || 344 | 352 | 360 | 368 | 376 | 384 | 392 | 400

# requests 8 20 15 20 4 8 13 5 21 8
Table (2-2)

The memory allocation structure of the second workload.

No.

Alloc. Size

# requests

No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Alloc. Size 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172
# requests 0 4 0 1 2 1 3 5 0 0 3 0 0 1 0 6 1 0 3 6
No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Alloc. Size 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252
# requests 0 0 2 0 2 6 5 2 5 4 2 4 0 6 0 0 4 0 0 0
No. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
Alloc. Size 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332
# requests 0 3 1 7 0 7 0 2 1 0 3 8 4 5 4 6 2 0 0 0
No. 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Alloc. Size 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400 404 408 412
# requests 0 0 12 0 0 0 0 0 1 10 10 0 3 4 0 0 0 0 0 6
No. 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
Alloc. Size 416 420 424 428 432 436 440 444 448 452 456 460 464 468 472 476 480 484 488 492
# requests 0 7 12 0 3 0 0 0 0 12 0 6 0 10 1 2 0 0 0 3
No.

Alloc. Size

# requests
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Table (2-3)
The memory allocation structure of the third workload.
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Alloc. Size 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336
# requests 24 10 10 8 20 0 6 0 12 5 0 23 50 6 10 20 0 5 20 6

No.
Alloc. Size

# requests

Table (2-4)
The memory allocation structure of the fourth workload.

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

No.
Alloc. Size
# requests

Table (2-5)
The memory allocation structure of the fifth workload.

No.
Alloc. Size
# requests
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Figs. (6) Depict the results of GA for segregated free list for workloads 5-9; respectively.

Fig. (6) shows the relation between fitness different runs. In this table the best solution is
and the number of generation graphically, for presented of the five workloads which founded
each workload. The values of the fitness manually with their corresponding fitness
obtained by running the proposed algorithm on values. This table shows how proposed GA
each workload 10 times and calculate the converges from the optimal solution founded
average. manually.

Table (3) shows the best solution obtained
from the GA for each workload over 10

Table (3)
The GA results of five workloads.
#Workload Ol rﬁglnu:;cl)ln ene:2 Fitness Best Solution Found by GA Fitness d::‘;terrlzisce
32,96,208,224,400 32,272,32,208,224
24,32,52,268,300,344,372,376,424, 24,32,52,156,208,276,344,372,
452,468,504,508 376,424,452,504,508
8,16,136,160,248,272,320,392 8,304,160,272,136,248,352,16
8,16,20,128,336,340,424,636,648, 4,8,16,20,116,300,336,372,376,
660,776,824,932,996,1020 460,648,660,776,824,932
52,80,68,8,24 52,80,68,8,24
We found that the fitness difference is The best configuration of segregated free
increased when the difference between the list of the first workload after GA is applied as
number of bins and number of required bins is shown in Fig. (7).

increased as shown in Table (4).
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Fig. (7) Best configuration of segregated free
list for first workload.
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Table (4)

The comparison between the GA results.

#Workload No. of bins

No. of required bins

Difference between the no. of

bins and the required bins RS TS TEnE?

Conclusions

In this paper genetic algorithm is used as
an attempt to find the best configuration of
segregated free list. Five workloads with
different characteristics. The results of the
proposed algorithm are compared with the best
solutions calculated manually. According to
the results on the five different workloads, we
found that the proposed GA is capable of
performing well in finding the required
number of bins with suitable fitness values.

In the future the proposed genetic
algorithm can be enhanced to adopt more
heuristic operators for, e.g., crossover and
mutation.
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