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Abstract 

Dynamic memory management is an important part of computer systems design. Efficient 

memory allocation, garbage collection and compaction are becoming increasingly more critical in 

parallel, distributed and real-time applications. The memory efficiency is related to the 

fragmentation. Segregation is one of the simplest allocation policies which use a set of free lists, 

where each list holds blocks of a particular size. When the process requests a memory. The free list 

for the appropriate size is used to satisfy the request. This paper proposes a scheme to reduce the 

internal fragmentation of a segregated free list for improving memory efficiency using genetic 

algorithm (GA) to find the optimal configuration. Because the genetic algorithms (GAs) are largely 

used in optimization problems, they facilitate a good alternative in problem areas where the number 

of constraints is too large for humans to efficiently evaluate. This GA is tested under five randomly 

created workloads to find the best configuration. The results are acceptable when compared with 

optimal configurations of these workloads. 
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Introduction 

Dynamic memory allocation is a classic 

problem in computer systems. Typically, we 

start with a large block of memory (sometimes 

called a heap). When a user process needs 

memory, the request is granted by carving a 

piece out of the large block of memory. The 

user process may free some of the allocated 

memory explicitly, or the system will reclaim 

the memory when the process terminates. At 

any time the large memory block is split into 

smaller blocks (or chunks), some of which are 

allocated to a process (live memory), some are 

freed (available for future allocations), and 

some are no-longer used by the process but are 

not available for allocation (garbage). A 

dynamic memory management system must 

keep track of these three types of memory 

blocks and attempt to efficiently satisfy as 

many of the process’s requests for memory as 

possible [1]. 

Memory allocation schemes can be 

classified into Sequential Fit, Buddy System 

and Segregated free list algorithms. The 

Sequential Fit approach (including First Fit, 

Best Fit) keeps track of available chunks of 

memory on a list. Known sequential 

techniques differ in how they track the 

memory blocks and how they allocate memory 

requests from the free blocks. Normally the 

chunks of memory (or at least the free chunks) 

are maintained as a Linear Linked list. When a 

process releases memory, these chunks are 

added to the free list, either at the end or in 

place if the list is sorted by addresses; freed 

chunk may be coalesced with adjoining 

chunks to form larger chunks of free memory. 

When an allocation request arrives, the free list 

is searched until an appropriately sized chunk 

is found. The memory is allocated either by 

granting the entire chunk or by splitting the 

chunk (if the chunk is larger than the requested 

size). Best Fit methods try to find the smallest 

chunk that is at least as large as the request. 

First Fit methods will find the first chunk that 

is at least as large as the request. Best Fit 

method may involve delays in allocation while 

First Fit method may lead to more external 

fragmentation. If the free list is in address 

order, newly freed chunks may be combined 

with its surrounding blocks, leading to larger 

chunks. However, this requires a “linear” 

search through the free list when inserting a 

newly freed block of memory (or when 

searching for a suitable chunk of memory) [1].  

Buddy system algorithm maintains free 

lists of different sized blocks. When a request 

for memory is made these free lists are 



Manal F. Younis 

 162 

searched. If the appropriate size is not found a 

larger block is split (variations of this 

algorithm determine how the block is actually 

split, for example, in a binary buddy system 

the block is split by powers of two). It will 

continue this splitting, and the "buddy" or 

other half is added to the free list, until the 

requested size is found. When memory is freed 

it looks for its buddy, or the block it split from, 

to regain its original size. For example, if 10 

bytes are requested the allocator searches the 

free list. The only available block is 32 bytes. 

This block splits into two blocks of 16 bytes. 

One block of 16 bytes is allocated and the 

other block is put on the free list. When it frees 

this memory it then looks to the free list for its 

buddy and coalescing takes place [2].  

The Segregated free list approach 

maintains multiple linked lists, one for each 

different sized chunk of available lists. 

Returning a free chunk from one of the lists 

satisfies allocation requests (by selecting a list 

containing chunks, which are at least as large 

as the request). Freeing memory, likewise, will 

simply add the chunk to the appropriate list. 

No coalescing or splitting is performed and the 

size of chunks remains unaltered. The main 

advantage of segregated lists is the execution 

efficiency in allocating and freeing memory 

chunks. The disadvantage is the inefficient 

usage of memory. The memory is divided into 

regions based on the different sized blocks. 

Since the number and frequency of requests 

for different sized chunks depends on the 

application and even inability to satisfy all 

requests from the application [1]. 

This paper interested with the segregated 

free list layout which does not have the 

problem of external fragmentation, but rather 

of internal fragmentation when a small block 

is allocated into larger blocks. In segregated 

free lists, the requests are served using bins 

(i.e., an array of free lists) where each bin 

contains blocks (chunks) of the same size, see 

Fig. (1). However, if the exact size does not 

exist or that bin does not have free chunks of 

memory, the request is served by the next 

larger block than is necessary, but the 

remaining part is not split and no coalesces. 

When this occurs, we have memory waste and 

an increase in internal fragmentation.  
 

 
Fig.(1) Data structure of segregated free list. 

 

The rest of this paper is organized as 

follows: Section 2 illustrates the related work. 

Section 3 describes genetic algorithm. Section 

4 presents the proposed memory allocation 

approach. Section 5 presents the experimental 

results. Finally, section 6 illustrates the 

conclusion and some future work. 

 

Related Work 

Rezaei M., Cytron R. K. presented how to 

exploit Intelligent Memory Devices to 

decouple the memory management from the 

central processing unit, and show how 

segregated binary trees can be embedded in 

intelligent memory devices [3]. Rosso C. D. 

presented an approach for improving the 

internal memory fragmentation by finding the 

optimal configuration of a segregated free lists 

data structure using genetic algorithm. The 

genetic algorithm used the workload as input 

to generate the optimal configuration among 

the huge number of potential solutions by 

evolving an initial population [4]. Rosso C. D. 

presented a case study of the evaluation and 

the analysis of dynamic memory management 

in embedded real-time systems. They have 

used a scenario-based approach and used a 

simulation environment to evaluate the 

performance of different dynamic memory 

management systems [5]. Rezaei M. and 

Kavi1 K. M. presented a technique that uses a 

Binary tree for the list of available memory 

blocks and show how this method can manage 

memory more efficiently and facilitate easy 

implementation of well known garbage 

collection techniques, [6]. Masmano M., 

Ripoll I., Balbastre P., Crespo A. proposed a 

new allocator called Two Level Segregated Fit 
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(TLSF) which can be represented as a two-

dimensional array. The first dimension splits 

free blocks in size-ranges a power of two apart 

from each other, so that first-level index I 

refers to free blocks of sizes in the range 

[2
i
,2

i+1
]. The second dimension splits each 

first-level range linearly in a number of ranges 

of an equal width, [7].  
 

Genetic algorithm (GA)  

Genetic algorithms (GAs) are adaptive 

methods which may be used to solve search 

and optimization problems. By starting with a 

population of possible solutions and changing 

them during several iterations, GAs hope to 

converge to the fittest solution. Each solution 

is represented through a chromosome, which is 

just an abstract representation. The process 

begins with a set of potential solutions or 

chromosomes that are randomly generated or 

selected. Over many generations, natural 

populations evolve according to the principles 

of natural selection and survival of the fittest. 

For generating new chromosomes, GA can use 

both crossover and mutation techniques. 

Crossover involves splitting two chromosomes 

and then, combining one half of each 

chromosome with the other pair. The idea 

behind crossover is that the new chromosome 

may be better than both of the parents if it 

takes the best characteristics from each of the 

parents. Crossover occurs during evolution 

according to a user-definable crossover 

probability (Pc). Pc normally set to high, e.g., 

0.6 [7]. Mutation involves flipping a single bit 

of a chromosome [8]. Mutation is an important 

part of the genetic search as help helps to 

prevent the population from stagnating at any 

local optima. Mutation occurs during evolution 

according to a user-definable mutation 

probability (Pm). This probability should 

usually be set fairly low (0.01 is a good first 

choice). If it is set to high, the search will turn 

into a primitive random search [7]. The 

chromosomes are then evaluated using a 

certain fitness criterion and the ones which 

satisfy the most this criterion are kept while 

the others are discarded. This process repeats 

until the population converges toward the 

optimal solution. The basic genetic algorithm 

is summarized in Fig. (2), [8]. 

 
 
 
 

 

SELECT random population of n chromosomes. 

EVALUATE the fitness f(x) of each chromosome 

x in the population. 

LOOP 

   SELECT two parent chromosomes from a 

   population. 

   CROSSOVER the parents to form new children 

   with a crossover probability Pc. 

   MUTATE new children with a mutation 

   probability Pm. 

   Place new offspring in the new population. 

   Use new generated population for a further 
   Sum of the algorithm. 

   EXIT if the end condition is satisfied and 

   Return best solution. 

END LOOP 

Fig.(2) A basic Genetic Algorithm. 
 

There are several advantages to the 

Genetic Algorithm such as their parallelism 

and their liability. They require no knowledge 

or gradient information about the response 

surface, they are resistant to becoming trapped 

in local optima and they perform very well for 

large-scale optimization problems. GAs have 

been used as heuristics to solve difficult 

problems (such as NP-hard problems) for 

machine learning and also for evolving simple 

programs. Applications of Genetic Algorithms 

include: nonlinear programming, stochastic 

programming, signal processing and 

combinatorial optimization problems such as 

the Traveling Salesman Problem, Knapsack 

Problem, sequence scheduling, graph coloring, 

[8]. 
 

The proposed memory allocation approach  

The proposed work uses genetic algorithm 

to reduce the internal fragmentation for a 

segregated free list. Five samples of memory 

allocation are used where each workload has a 

random number of requests. An attempt to find 

the optimal configuration for segregated free 

list data structure by giving the minimum and 

maximum values of the bins, and the processor 

word size. The number of the total bins of each 

configuration is calculated by the following 

equation [4]: 

Max Min
n 1

Word size


    .................................. (1) 

Where: 

n represents the number of bins between max 

and min values. 

Max is the maximum number of bins 

Min is the minimum number of bins 
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When the number of bins is high then the 

search space for the solution is large and a 

brute force approach is not feasible. Therefore, 

an approach based on genetic algorithm is 

used to find an optimal or near optimal 

solution. Genetic algorithm provides a 

heuristic approach to function optimization 

problems, which have the concepts of fitness, 

crossover, mutation, populations and genes. In 

this paper we take five workloads and applied 

the GA for each of them in an attempt to find 

the optimal configuration.  

The first workload is randomly selected 

between 8 to 400 bytes; the number of bins 

equals to 50 is calculated using formula (1) as 

shown in Fig. (3). 

 
Fig. )3( First workload. 

 

For example, if we need 8 bins to represent 

the optimal configuration of a segregated free 

list, there are about 536,878,650 times to find 

it. It is a large solution space to get the optimal 

8 bins among 50 bins therefore; we use GA. 

In this paper we represent each bin as a 

gene which is an encoded parameter. A 

chromosome is the string produced by 

concatenating all the encoded parameters. 

Each chromosome is an individual and 

member of a population which represents the 

segregated free list. The chromosome includes 

n genes for example in first workload (n=8), 

where each gene holds the size of a given bin 

as in Fig.(4). Note that each gene represents 

one bin of a particular size (e.g., gene1 

indicates the existence of bin2 of size 16). 
 

 
Fig. (4) Chromosome representation. 

 

The following steps show how the GA 

used to obtain the optimal solution: 

 Step one: is generation of a population 

randomly, and then calculates the fitness of 

each chromosome; which represents the 

summation of number of requests for each 

bin (the genes in the same chromosome are 

not duplicated). 

 Step two: Select two parents 'chromosomes' 

from the population and take the parent 

whose fitness is greater than the other. 

 Step three: Produce a child as offspring 

from the parents using crossover by taking 

crossover probability (Pc)  0.6 which 

decides if the parts of two chromosomes 

will be interchanged. This is determined 

between two points. For example, if we take 

point1  3 and point2  6 the genes from 

location 3 to location 6 are changed 

between two chromosomes, see Fig.(5). 
 

 
Fig. (5) Crossover between two 

chromosomes. 
 

The genes which had been undergo crossover 
and swapped between the two parent 
chromosomes must not be duplicated (i.e., not 
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similar to any other gene in the same child 
chromosome). If duplicated, we have to 
replace it randomly with a different value 
from the original set of bin sizes (8-400). 

 Step four: Mutate the child by taking 
probability mutation (Pm)  0.01 to decide 
which gene(s) is/are changed randomly. A 
mutation operator that replaces the value of 
the chosen gene with a random value selects. 
The gene which is replaced must not similar 
to any other gene in the same chromosome. 
Then calculate the fitness of the created child. 

 Step five: Put new offspring in the population 
and use this new generated population for 
further. 

 Step six: If the number of generation is equal 
to end of loop (in this example we take it 50 
iterations) then return the best solution with 
maximum fitness value. 

 

Experimental results 
This paper uses five randomly created 

workloads; each of them represents a particular 
segregated free list. The characteristics of these 
workloads, together with their memory 
allocation structures are given in table1 and 2, 
respectively. In Tables (2-1, 2-2, 2-3, 2-4, 2-5) 
alloc. size is the size of memory allocation (bin) 
and #requests is the number of requests for an 
allocation. 

Table (1) 

Characteristics of five workloads. 

Workload No. Min – Max bins Word size No. of bins No. of bins required 

1 8-400 8 8 8 

2 16-536 4 131 13 

3 32-400 16 5 5 

4 4-1024 4 15 15 

5 4-80 4 5 5 

Table (2-1) 

The memory allocation structure of the first workload. 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Alloc. Size 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 

#  requests 22 24 10 4 10 10 0 6 10 12 5 12 20 5 6 10 20 8 5 20 
                     

No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

Alloc. Size 168 176 184 192 200 208 216 224 232 240 248 256 264 272 280 288 296 304 312 320 

#  requests 6 10 16 8 12 5 14 10 12 5 25 10 8 30 20 10 5 15 13 20 
                     

No. 41 42 43 44 45 46 47 48 49 50           

Alloc. Size 328 336 344 352 360 368 376 384 392 400           

#  requests 8 20 15 20 4 8 13 5 21 8           

 

Table (2-2) 

The memory allocation structure of the second workload. 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Alloc. Size 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 

# requests 0 4 10 0 12 0 3 0 0 8 1 4 0 0 2 0 4 0 0 0 
                     

No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

Alloc. Size 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 

#  requests 0 4 0 1 2 1 3 5 0 0 3 0 0 1 0 6 1 0 3 6 
                     

No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

Alloc. Size 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 

#  requests 0 0 2 0 2 6 5 2 5 4 2 4 0 6 0 0 4 0 0 0 
                     

No. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

Alloc. Size 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 

#  requests 0 3 1 7 0 7 0 2 1 0 3 8 4 5 4 6 2 0 0 0 
                     

No. 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

Alloc. Size 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400 404 408 412 

#  requests 0 0 12 0 0 0 0 0 1 10 10 0 3 4 0 0 0 0 0 6 
                     

No. 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 

Alloc. Size 416 420 424 428 432 436 440 444 448 452 456 460 464 468 472 476 480 484 488 492 

#  requests 0 7 12 0 3 0 0 0 0 12 0 6 0 10 1 2 0 0 0 3 
                     

No. 121 122 123 124 125 126 127 128 129 130 131          

Alloc. Size 496 500 504 508 512 516 520 524 528 532 536          

#  requests 3 0 11 12 0 2 0 4 1 2 6          
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Table (2-3) 

The memory allocation structure of the third workload. 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Alloc. Size 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 

#  requests 24 10 10 8 20 0 6 0 12 5 0 23 50 6 10 20 0 5 20 6 
     

No. 21 22 23 24 

Alloc. Size 352 368 384 400 

#  requests 10 17 0 24 

Table (2-4) 

The memory allocation structure of the fourth workload. 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Alloc. Size 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 

# requests 10  14  0  20  40  0  0  0  0  0  10  0  8  1  4  0  7  0  12  4 
                     

No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

Alloc. Size 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 

# requests 10 0 4 7 4 0 1 2 6 3 5 17 0 3 0 0 0 9 6 1 
                     

No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

Alloc. Size 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 

# requests 0 3 6 0 0 2 0 2 6 5 2 5 4 2 4 0 6 0 0 4 
                     

No. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

Alloc. Size 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 

# requests 0 8 0 0 3 1 7 0 7 0 2 1 0 13 8 4 5 4 6 2 
                     

No. 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

Alloc. Size 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400 

# requests 0 0 0 23 13 12 0 0 0 0 0 1 10 10 0 3 4 0 0 0 
                     

No. 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 

Alloc. Size 404 408 412 416 420 424 428 432 436 440 444 448 452 456 460 464 468 472 476 480 

# requests 0 0 6 0 7 13 0 3 0 0 0 0 12 0 6 0 10 1 2 0 
                     

No. 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 

Alloc. Size 484 488 492 496 500 504 508 512 516 520 524 528 532 536 540 544 548 552 556 560 

# requests 0 0 3 3 0 11 12 0 2 0 4 1 2 6 12 0 3 0 0 0 
                     

No. 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 

Alloc. Size 564 568 572 576 580 584 588 592 596 600 604 608 612 616 620 624 628 632 636 640 

# requests 0 12 0 6 0 10 1 2 0 12 0 3 3 0 11 12 0 2 20 4 
                     

No. 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 

Alloc. Size 644 648 652 656 660 664 668 672 676 680 684 688 692 696 700 704 708 712 716 720 

# requests 1 20 12 0 30 0 0 0 0 12 0 6 0 10 1 2 0 0 0 3 
                     

No. 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 

Alloc. Size 724 728 732 736 740 744 748 752 756 760 764 768 772 776 780 784 788 792 796 800 

# requests 3 0 11 12 0 2 0 4 1 2 12 0 3 18 11 0 0 12 0 6 
                     

No. 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 

Alloc. Size 804 808 812 816 820 824 828 832 836 840 844 848 852 856 860 864 868 872 876 880 

# requests 10 1 2 12 0 20 3 3 0 11 12 0 2 0 4 1 2 12 0 3 
                     

No. 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 

Alloc. Size 884 888 892 896 900 904 908 912 916 920 924 928 932 936 940 944 948 952 956 960 

# requests 0 0 0 0 12 0 6 0 10 1 2 0 24 0 3 3 11 12 0 2 
                     

No. 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 

Alloc. Size 964 972 976 980 984 988 992 996 1000 1004 1008 1012 1016 1020 1024 

# requests 0 4 1 2 12 0 2 33 4 1 2 12 0 25 10 

 

Table (2-5) 

The memory allocation structure of the fifth workload. 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Alloc. Size 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 

# requests 9 24 10 10 6 20 10 6 10 12 15 0 23 5 6 10 20 0 5 20 

 

 

 



Journal of Al-Nahrain University                       Vol.15 (2), June, 2012, pp.161-168                                          Science 

 167 

 
Figs. (6) Depict the results of GA for segregated free list for workloads 5-9; respectively. 

 

Fig. (6) shows the relation between fitness 

and the number of generation graphically, for 

each workload. The values of the fitness 

obtained by running the proposed algorithm on 

each workload 10 times and calculate the 

average. 

Table (3) shows the best solution obtained 

from the GA for each workload over 10 

different runs. In this table the best solution is 

presented of the five workloads which founded 

manually with their corresponding fitness 

values. This table shows how proposed GA 

converges from the optimal solution founded 

manually. 

 

Table (3) 

The GA results of five workloads. 

#Workload 
Optimal Solution founded 

manually 
Fitness Best Solution Found by GA Fitness 

Fitness 

difference 

1 32,96,208,224,400 141 32,272,32,208,224 141 0 

2 24,32,52,268,300,344,372,376,424, 
452,468,504,508 

134 24,32,52,156,208,276,344,372, 
376,424,452,504,508 

121 13 

3 8,16,136,160,248,272,320,392 182 8,304,160,272,136,248,352,16 176 6 

4 8,16,20,128,336,340,424,636,648, 
660,776,824,932,996,1020 

330 4,8,16,20,116,300,336,372,376, 
460,648,660,776,824,932 

268 62 

5 52,80,68,8,24 107 52,80,68,8,24 107 0 

 

We found that the fitness difference is 

increased when the difference between the 

number of bins and number of required bins is 

increased as shown in Table (4). 

The best configuration of segregated free 

list of the first workload after GA is applied as 

shown in Fig. (7). 
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Fig. (7) Best configuration of segregated free 

list for first workload. 

 

 

 

Table (4) 

The comparison between the GA results. 

#Workload No. of bins No. of required bins 
Difference between the no. of 

bins and the required bins 
Fitness difference 

3 24 5 19 0 

5 20 5 15 0 

2 50 8 42 6 

1 131 13 118 13 

4 256 15 241 62 

 

Conclusions 

In this paper genetic algorithm is used as 

an attempt to find the best configuration of 

segregated free list. Five workloads with 

different characteristics. The results of the 

proposed algorithm are compared with the best 

solutions calculated manually. According to 

the results on the five different workloads, we 

found that the proposed GA is capable of 

performing well in finding the required 

number of bins with suitable fitness values. 

In the future the proposed genetic 

algorithm can be enhanced to adopt more 

heuristic operators for, e.g., crossover and 

mutation.  
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