
Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science

 161

Memory Allocation Technique for Segregated Free List Based on

Genetic Algorithm

Manal F. Younis

Computer Department, College of Engineering, University of Baghdad.

E-mail: manal_fadel2@yahoo.com.

Abstract

Dynamic memory management is an important part of computer systems design. Efficient

memory allocation, garbage collection and compaction are becoming increasingly more critical in

parallel, distributed and real-time applications. The memory efficiency is related to the

fragmentation. Segregation is one of the simplest allocation policies which use a set of free lists,

where each list holds blocks of a particular size. When the process requests a memory. The free list

for the appropriate size is used to satisfy the request. This paper proposes a scheme to reduce the

internal fragmentation of a segregated free list for improving memory efficiency using genetic

algorithm (GA) to find the optimal configuration. Because the genetic algorithms (GAs) are largely

used in optimization problems, they facilitate a good alternative in problem areas where the number

of constraints is too large for humans to efficiently evaluate. This GA is tested under five randomly

created workloads to find the best configuration. The results are acceptable when compared with

optimal configurations of these workloads.

Keyword: Memory allocation, Segregated free list, Genetic algorithm, Crossover, Mutation.

Introduction

Dynamic memory allocation is a classic

problem in computer systems. Typically, we

start with a large block of memory (sometimes

called a heap). When a user process needs

memory, the request is granted by carving a

piece out of the large block of memory. The

user process may free some of the allocated

memory explicitly, or the system will reclaim

the memory when the process terminates. At

any time the large memory block is split into

smaller blocks (or chunks), some of which are

allocated to a process (live memory), some are

freed (available for future allocations), and

some are no-longer used by the process but are

not available for allocation (garbage). A

dynamic memory management system must

keep track of these three types of memory

blocks and attempt to efficiently satisfy as

many of the process’s requests for memory as

possible [1].

Memory allocation schemes can be

classified into Sequential Fit, Buddy System

and Segregated free list algorithms. The

Sequential Fit approach (including First Fit,

Best Fit) keeps track of available chunks of

memory on a list. Known sequential

techniques differ in how they track the

memory blocks and how they allocate memory

requests from the free blocks. Normally the

chunks of memory (or at least the free chunks)

are maintained as a Linear Linked list. When a

process releases memory, these chunks are

added to the free list, either at the end or in

place if the list is sorted by addresses; freed

chunk may be coalesced with adjoining

chunks to form larger chunks of free memory.

When an allocation request arrives, the free list

is searched until an appropriately sized chunk

is found. The memory is allocated either by

granting the entire chunk or by splitting the

chunk (if the chunk is larger than the requested

size). Best Fit methods try to find the smallest

chunk that is at least as large as the request.

First Fit methods will find the first chunk that

is at least as large as the request. Best Fit

method may involve delays in allocation while

First Fit method may lead to more external

fragmentation. If the free list is in address

order, newly freed chunks may be combined

with its surrounding blocks, leading to larger

chunks. However, this requires a “linear”

search through the free list when inserting a

newly freed block of memory (or when

searching for a suitable chunk of memory) [1].

Buddy system algorithm maintains free

lists of different sized blocks. When a request

for memory is made these free lists are

Manal F. Younis

 162

searched. If the appropriate size is not found a

larger block is split (variations of this

algorithm determine how the block is actually

split, for example, in a binary buddy system

the block is split by powers of two). It will

continue this splitting, and the "buddy" or

other half is added to the free list, until the

requested size is found. When memory is freed

it looks for its buddy, or the block it split from,

to regain its original size. For example, if 10

bytes are requested the allocator searches the

free list. The only available block is 32 bytes.

This block splits into two blocks of 16 bytes.

One block of 16 bytes is allocated and the

other block is put on the free list. When it frees

this memory it then looks to the free list for its

buddy and coalescing takes place [2].

The Segregated free list approach

maintains multiple linked lists, one for each

different sized chunk of available lists.

Returning a free chunk from one of the lists

satisfies allocation requests (by selecting a list

containing chunks, which are at least as large

as the request). Freeing memory, likewise, will

simply add the chunk to the appropriate list.

No coalescing or splitting is performed and the

size of chunks remains unaltered. The main

advantage of segregated lists is the execution

efficiency in allocating and freeing memory

chunks. The disadvantage is the inefficient

usage of memory. The memory is divided into

regions based on the different sized blocks.

Since the number and frequency of requests

for different sized chunks depends on the

application and even inability to satisfy all

requests from the application [1].

This paper interested with the segregated

free list layout which does not have the

problem of external fragmentation, but rather

of internal fragmentation when a small block

is allocated into larger blocks. In segregated

free lists, the requests are served using bins

(i.e., an array of free lists) where each bin

contains blocks (chunks) of the same size, see

Fig. (1). However, if the exact size does not

exist or that bin does not have free chunks of

memory, the request is served by the next

larger block than is necessary, but the

remaining part is not split and no coalesces.

When this occurs, we have memory waste and

an increase in internal fragmentation.

Fig.(1) Data structure of segregated free list.

The rest of this paper is organized as

follows: Section 2 illustrates the related work.

Section 3 describes genetic algorithm. Section

4 presents the proposed memory allocation

approach. Section 5 presents the experimental

results. Finally, section 6 illustrates the

conclusion and some future work.

Related Work

Rezaei M., Cytron R. K. presented how to

exploit Intelligent Memory Devices to

decouple the memory management from the

central processing unit, and show how

segregated binary trees can be embedded in

intelligent memory devices [3]. Rosso C. D.

presented an approach for improving the

internal memory fragmentation by finding the

optimal configuration of a segregated free lists

data structure using genetic algorithm. The

genetic algorithm used the workload as input

to generate the optimal configuration among

the huge number of potential solutions by

evolving an initial population [4]. Rosso C. D.

presented a case study of the evaluation and

the analysis of dynamic memory management

in embedded real-time systems. They have

used a scenario-based approach and used a

simulation environment to evaluate the

performance of different dynamic memory

management systems [5]. Rezaei M. and

Kavi1 K. M. presented a technique that uses a

Binary tree for the list of available memory

blocks and show how this method can manage

memory more efficiently and facilitate easy

implementation of well known garbage

collection techniques, [6]. Masmano M.,

Ripoll I., Balbastre P., Crespo A. proposed a

new allocator called Two Level Segregated Fit

Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science

 163

(TLSF) which can be represented as a two-

dimensional array. The first dimension splits

free blocks in size-ranges a power of two apart

from each other, so that first-level index I

refers to free blocks of sizes in the range

[2
i
,2

i+1
]. The second dimension splits each

first-level range linearly in a number of ranges

of an equal width, [7].

Genetic algorithm (GA)

Genetic algorithms (GAs) are adaptive

methods which may be used to solve search

and optimization problems. By starting with a

population of possible solutions and changing

them during several iterations, GAs hope to

converge to the fittest solution. Each solution

is represented through a chromosome, which is

just an abstract representation. The process

begins with a set of potential solutions or

chromosomes that are randomly generated or

selected. Over many generations, natural

populations evolve according to the principles

of natural selection and survival of the fittest.

For generating new chromosomes, GA can use

both crossover and mutation techniques.

Crossover involves splitting two chromosomes

and then, combining one half of each

chromosome with the other pair. The idea

behind crossover is that the new chromosome

may be better than both of the parents if it

takes the best characteristics from each of the

parents. Crossover occurs during evolution

according to a user-definable crossover

probability (Pc). Pc normally set to high, e.g.,

0.6 [7]. Mutation involves flipping a single bit

of a chromosome [8]. Mutation is an important

part of the genetic search as help helps to

prevent the population from stagnating at any

local optima. Mutation occurs during evolution

according to a user-definable mutation

probability (Pm). This probability should

usually be set fairly low (0.01 is a good first

choice). If it is set to high, the search will turn

into a primitive random search [7]. The

chromosomes are then evaluated using a

certain fitness criterion and the ones which

satisfy the most this criterion are kept while

the others are discarded. This process repeats

until the population converges toward the

optimal solution. The basic genetic algorithm

is summarized in Fig. (2), [8].

SELECT random population of n chromosomes.

EVALUATE the fitness f(x) of each chromosome

x in the population.

LOOP

 SELECT two parent chromosomes from a

 population.

 CROSSOVER the parents to form new children

 with a crossover probability Pc.

 MUTATE new children with a mutation

 probability Pm.

 Place new offspring in the new population.

 Use new generated population for a further
 Sum of the algorithm.

 EXIT if the end condition is satisfied and

 Return best solution.

END LOOP

Fig.(2) A basic Genetic Algorithm.

There are several advantages to the

Genetic Algorithm such as their parallelism

and their liability. They require no knowledge

or gradient information about the response

surface, they are resistant to becoming trapped

in local optima and they perform very well for

large-scale optimization problems. GAs have

been used as heuristics to solve difficult

problems (such as NP-hard problems) for

machine learning and also for evolving simple

programs. Applications of Genetic Algorithms

include: nonlinear programming, stochastic

programming, signal processing and

combinatorial optimization problems such as

the Traveling Salesman Problem, Knapsack

Problem, sequence scheduling, graph coloring,

[8].

The proposed memory allocation approach

The proposed work uses genetic algorithm

to reduce the internal fragmentation for a

segregated free list. Five samples of memory

allocation are used where each workload has a

random number of requests. An attempt to find

the optimal configuration for segregated free

list data structure by giving the minimum and

maximum values of the bins, and the processor

word size. The number of the total bins of each

configuration is calculated by the following

equation [4]:

Max Min
n 1

Word size

 (1)

Where:

n represents the number of bins between max

and min values.

Max is the maximum number of bins

Min is the minimum number of bins

Manal F. Younis

 164

When the number of bins is high then the

search space for the solution is large and a

brute force approach is not feasible. Therefore,

an approach based on genetic algorithm is

used to find an optimal or near optimal

solution. Genetic algorithm provides a

heuristic approach to function optimization

problems, which have the concepts of fitness,

crossover, mutation, populations and genes. In

this paper we take five workloads and applied

the GA for each of them in an attempt to find

the optimal configuration.

The first workload is randomly selected

between 8 to 400 bytes; the number of bins

equals to 50 is calculated using formula (1) as

shown in Fig. (3).

Fig.)3(First workload.

For example, if we need 8 bins to represent

the optimal configuration of a segregated free

list, there are about 536,878,650 times to find

it. It is a large solution space to get the optimal

8 bins among 50 bins therefore; we use GA.

In this paper we represent each bin as a

gene which is an encoded parameter. A

chromosome is the string produced by

concatenating all the encoded parameters.

Each chromosome is an individual and

member of a population which represents the

segregated free list. The chromosome includes

n genes for example in first workload (n=8),

where each gene holds the size of a given bin

as in Fig.(4). Note that each gene represents

one bin of a particular size (e.g., gene1

indicates the existence of bin2 of size 16).

Fig. (4) Chromosome representation.

The following steps show how the GA

used to obtain the optimal solution:

 Step one: is generation of a population

randomly, and then calculates the fitness of

each chromosome; which represents the

summation of number of requests for each

bin (the genes in the same chromosome are

not duplicated).

 Step two: Select two parents 'chromosomes'

from the population and take the parent

whose fitness is greater than the other.

 Step three: Produce a child as offspring

from the parents using crossover by taking

crossover probability (Pc) 0.6 which

decides if the parts of two chromosomes

will be interchanged. This is determined

between two points. For example, if we take

point1 3 and point2 6 the genes from

location 3 to location 6 are changed

between two chromosomes, see Fig.(5).

Fig. (5) Crossover between two

chromosomes.

The genes which had been undergo crossover
and swapped between the two parent
chromosomes must not be duplicated (i.e., not

Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science

 165

similar to any other gene in the same child
chromosome). If duplicated, we have to
replace it randomly with a different value
from the original set of bin sizes (8-400).

 Step four: Mutate the child by taking
probability mutation (Pm) 0.01 to decide
which gene(s) is/are changed randomly. A
mutation operator that replaces the value of
the chosen gene with a random value selects.
The gene which is replaced must not similar
to any other gene in the same chromosome.
Then calculate the fitness of the created child.

 Step five: Put new offspring in the population
and use this new generated population for
further.

 Step six: If the number of generation is equal
to end of loop (in this example we take it 50
iterations) then return the best solution with
maximum fitness value.

Experimental results
This paper uses five randomly created

workloads; each of them represents a particular
segregated free list. The characteristics of these
workloads, together with their memory
allocation structures are given in table1 and 2,
respectively. In Tables (2-1, 2-2, 2-3, 2-4, 2-5)
alloc. size is the size of memory allocation (bin)
and #requests is the number of requests for an
allocation.

Table (1)

Characteristics of five workloads.

Workload No. Min – Max bins Word size No. of bins No. of bins required

1 8-400 8 8 8

2 16-536 4 131 13

3 32-400 16 5 5

4 4-1024 4 15 15

5 4-80 4 5 5

Table (2-1)

The memory allocation structure of the first workload.
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alloc. Size 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

requests 22 24 10 4 10 10 0 6 10 12 5 12 20 5 6 10 20 8 5 20

No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Alloc. Size 168 176 184 192 200 208 216 224 232 240 248 256 264 272 280 288 296 304 312 320

requests 6 10 16 8 12 5 14 10 12 5 25 10 8 30 20 10 5 15 13 20

No. 41 42 43 44 45 46 47 48 49 50

Alloc. Size 328 336 344 352 360 368 376 384 392 400

requests 8 20 15 20 4 8 13 5 21 8

Table (2-2)

The memory allocation structure of the second workload.
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alloc. Size 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92

requests 0 4 10 0 12 0 3 0 0 8 1 4 0 0 2 0 4 0 0 0

No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Alloc. Size 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172

requests 0 4 0 1 2 1 3 5 0 0 3 0 0 1 0 6 1 0 3 6

No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Alloc. Size 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252

requests 0 0 2 0 2 6 5 2 5 4 2 4 0 6 0 0 4 0 0 0

No. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Alloc. Size 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332

requests 0 3 1 7 0 7 0 2 1 0 3 8 4 5 4 6 2 0 0 0

No. 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Alloc. Size 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400 404 408 412

requests 0 0 12 0 0 0 0 0 1 10 10 0 3 4 0 0 0 0 0 6

No. 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

Alloc. Size 416 420 424 428 432 436 440 444 448 452 456 460 464 468 472 476 480 484 488 492

requests 0 7 12 0 3 0 0 0 0 12 0 6 0 10 1 2 0 0 0 3

No. 121 122 123 124 125 126 127 128 129 130 131

Alloc. Size 496 500 504 508 512 516 520 524 528 532 536

requests 3 0 11 12 0 2 0 4 1 2 6

Manal F. Younis

 166

Table (2-3)

The memory allocation structure of the third workload.
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alloc. Size 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336

requests 24 10 10 8 20 0 6 0 12 5 0 23 50 6 10 20 0 5 20 6

No. 21 22 23 24

Alloc. Size 352 368 384 400

requests 10 17 0 24

Table (2-4)

The memory allocation structure of the fourth workload.
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alloc. Size 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

requests 10 14 0 20 40 0 0 0 0 0 10 0 8 1 4 0 7 0 12 4

No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Alloc. Size 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160

requests 10 0 4 7 4 0 1 2 6 3 5 17 0 3 0 0 0 9 6 1

No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Alloc. Size 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240

requests 0 3 6 0 0 2 0 2 6 5 2 5 4 2 4 0 6 0 0 4

No. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Alloc. Size 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320

requests 0 8 0 0 3 1 7 0 7 0 2 1 0 13 8 4 5 4 6 2

No. 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Alloc. Size 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

requests 0 0 0 23 13 12 0 0 0 0 0 1 10 10 0 3 4 0 0 0

No. 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

Alloc. Size 404 408 412 416 420 424 428 432 436 440 444 448 452 456 460 464 468 472 476 480

requests 0 0 6 0 7 13 0 3 0 0 0 0 12 0 6 0 10 1 2 0

No. 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

Alloc. Size 484 488 492 496 500 504 508 512 516 520 524 528 532 536 540 544 548 552 556 560

requests 0 0 3 3 0 11 12 0 2 0 4 1 2 6 12 0 3 0 0 0

No. 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

Alloc. Size 564 568 572 576 580 584 588 592 596 600 604 608 612 616 620 624 628 632 636 640

requests 0 12 0 6 0 10 1 2 0 12 0 3 3 0 11 12 0 2 20 4

No. 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

Alloc. Size 644 648 652 656 660 664 668 672 676 680 684 688 692 696 700 704 708 712 716 720

requests 1 20 12 0 30 0 0 0 0 12 0 6 0 10 1 2 0 0 0 3

No. 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

Alloc. Size 724 728 732 736 740 744 748 752 756 760 764 768 772 776 780 784 788 792 796 800

requests 3 0 11 12 0 2 0 4 1 2 12 0 3 18 11 0 0 12 0 6

No. 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

Alloc. Size 804 808 812 816 820 824 828 832 836 840 844 848 852 856 860 864 868 872 876 880

requests 10 1 2 12 0 20 3 3 0 11 12 0 2 0 4 1 2 12 0 3

No. 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

Alloc. Size 884 888 892 896 900 904 908 912 916 920 924 928 932 936 940 944 948 952 956 960

requests 0 0 0 0 12 0 6 0 10 1 2 0 24 0 3 3 11 12 0 2

No. 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Alloc. Size 964 972 976 980 984 988 992 996 1000 1004 1008 1012 1016 1020 1024

requests 0 4 1 2 12 0 2 33 4 1 2 12 0 25 10

Table (2-5)

The memory allocation structure of the fifth workload.
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alloc. Size 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

requests 9 24 10 10 6 20 10 6 10 12 15 0 23 5 6 10 20 0 5 20

Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science

 167

Figs. (6) Depict the results of GA for segregated free list for workloads 5-9; respectively.

Fig. (6) shows the relation between fitness

and the number of generation graphically, for

each workload. The values of the fitness

obtained by running the proposed algorithm on

each workload 10 times and calculate the

average.

Table (3) shows the best solution obtained

from the GA for each workload over 10

different runs. In this table the best solution is

presented of the five workloads which founded

manually with their corresponding fitness

values. This table shows how proposed GA

converges from the optimal solution founded

manually.

Table (3)

The GA results of five workloads.

#Workload
Optimal Solution founded

manually
Fitness Best Solution Found by GA Fitness

Fitness

difference

1 32,96,208,224,400 141 32,272,32,208,224 141 0

2 24,32,52,268,300,344,372,376,424,
452,468,504,508

134 24,32,52,156,208,276,344,372,
376,424,452,504,508

121 13

3 8,16,136,160,248,272,320,392 182 8,304,160,272,136,248,352,16 176 6

4 8,16,20,128,336,340,424,636,648,
660,776,824,932,996,1020

330 4,8,16,20,116,300,336,372,376,
460,648,660,776,824,932

268 62

5 52,80,68,8,24 107 52,80,68,8,24 107 0

We found that the fitness difference is

increased when the difference between the

number of bins and number of required bins is

increased as shown in Table (4).

The best configuration of segregated free

list of the first workload after GA is applied as

shown in Fig. (7).

Manal F. Younis

 168

Fig. (7) Best configuration of segregated free

list for first workload.

Table (4)

The comparison between the GA results.

#Workload No. of bins No. of required bins
Difference between the no. of

bins and the required bins
Fitness difference

3 24 5 19 0

5 20 5 15 0

2 50 8 42 6

1 131 13 118 13

4 256 15 241 62

Conclusions

In this paper genetic algorithm is used as

an attempt to find the best configuration of

segregated free list. Five workloads with

different characteristics. The results of the

proposed algorithm are compared with the best

solutions calculated manually. According to

the results on the five different workloads, we

found that the proposed GA is capable of

performing well in finding the required

number of bins with suitable fitness values.

In the future the proposed genetic

algorithm can be enhanced to adopt more

heuristic operators for, e.g., crossover and

mutation.

References
[1] Rezaei M., Kavi K.M.; "A New

Implementation Technique for Memory

Management"; Proceedings of the Southeast
Con, Nashville, TN; Vol. 10; pp 1-2; 2000.

[2] Paul R. W., Mark S. J., Michael N., and

David B.; "Dynamic Storage Allocation";

Vol. 7, pp 733-756; 1993.

[3] Rezaei M. and Cytron R. K.; "Segregated

Binary Trees: Decoupling Memory

Manager"; Dept. of Electrical and Computer

Engineering; Vol. 23; pp 1-3; 2001.

[4] Rosso C D.; "Reducing Internal

Fragmentation in Segregated Free Lists

using Genetic Algorithms"; Proceedings of

the 2nd International ACM Workshop on

Interdisciplinary Software Engineering

Research, Vol. 12; pp 143 – 150; 2006.

[5] Rosso C. D.; "The method, the tools and

rationales for assessing dynamic memory

efficiency in embedded real-time systems in

practice"; 2006.

[6 Masmano M., Ripoll I., Balbastre P., Crespo;

"A Constant-Time Dynamic Storage

Allocator for Real-Time Systems";

Department of Computer Engineering;

2008.

[7] Neuro Dimension ,Web Site Design and

Implementation Copyright © 2002, Inc.

[8] Aouad M. I., Schott R., and Zendra O.;

"Genetic Heuristics for Reducing Memory

Energy Consumption in Embedded

Systems"; pp. 3-4; 2010.

http://www.cs.utexas.edu/users/oops/papers.html#allocsrv

