On the Solvability of the Operator Equation $\mathbf{A T}+\mathbf{T}^{*} \mathbf{B}=\mathbf{C}$

Amina R. Muhammad
Department of Mathematics and Computer Applications, College of Science, Al-Nahrain University, Baghdad-Iraq.

Abstract

In this paper we study the solvability of the operator equation $A T+T * B=C$

for linear bounded operators on Hilbert space, where T is the unknown operator.
First we show this equation may not have a solution in $B(H)$, and then we show that this equation have a simple solution in case A,B are Hermitian or Skew-Hermitian operators. Finaly we study the solvability of the operator equation $\mathrm{AT}+\mathrm{T} * \mathrm{~B}=\mathrm{f}(\mathrm{A})$ in case A and B are normal operators.

Introduction

Let H be a separable complex Hilbert space, and let $\mathrm{B}(\mathrm{H})$ be the algebra of bounded linear operators on H . For given $\mathrm{A}, \mathrm{C} \in \mathrm{B}(\mathrm{H})$ many mathematicians interested in finding the solution $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ of the equation $A * T+T * A=C$. This equation is considered for matrices over a finite field [9].

We mention similar matrix equations, which have applications in control theory. These equations are investigated for matrices over fields, mostly R or C . The equation $\mathrm{CX}-\mathrm{XA}^{\mathrm{T}}=\mathrm{B}$ is the Sylvester equation [10]. One special and important case is the Lyapunov equation $\mathrm{AX}+\mathrm{XA}^{\mathrm{T}}=\mathrm{B}$ [3]. Also, the generalized Sylvester equation $\mathrm{AV}+\mathrm{BW}$ $=\mathrm{EV} \mathrm{J}+\mathrm{R}$ with unknown matrices V and W, has many applications in linear systems theory (see [6]).

Dragan S. Djordjevic' in [5] deals with extension of results from [9] to infinite dimensional settings.

Dragan S.Cvetkovic-Ilic in [4] generalized the results of Dragan S. Djordjevic ${ }^{\prime}$ in [5] to the operator equation $\mathrm{AT}+\mathrm{T} * \mathrm{~B}=\mathrm{C}$. He investigated the solvability of this equation under some conditions and described the set of the solutions.

In this paper we proved that this equation may not have a solution in $B(H)$, and then we show that this equation have a simple solution in case A, B are Hermitian or Skew-Hermitian operators. Finaly we study the solvability of the operator equations $\mathrm{AT}+\mathrm{T} * \mathrm{~B}=\mathrm{p}(\mathrm{A})$ and
$\mathrm{AT}+\mathrm{T} * \mathrm{~B}=\mathrm{f}(\mathrm{A})$ in case A and B are normal operators.

1. About the solution of $\mathbf{A T}+\mathrm{T} * \mathrm{~B}=\mathrm{C}$

Let A be a bounded linear operator on the separable complex Hilbert space H. A is called Hermitian operator if $\mathrm{A}^{*}=\mathrm{A}$ and A is skewHermitian if $A^{*}=-A$, where A^{*} is the adjoint of A.

Recall that the spectrum of A, denoted by $\sigma(\mathrm{A})=\{\lambda \in \mathrm{C}: \mathrm{A}-\lambda \mathrm{I}$ is not invertible). It is known that if A is Hermitian, then $\sigma(\mathrm{A})$ consists of real numbers and if A is skewHermitian, then $\sigma(\mathrm{A})$ consists of pure imaginary numbers, i.e. $\sigma(A) \subseteq i R$, where R is the set of real numbers ([2],[8]).

The following theorem shows that the equation $A T+T^{*} B=C$ for a fixed A, B have no solution.

Theorem 1.1:

Let $A, B \in B(H)$ such that $A-B^{*}$ is not invertible. Then, the equation $\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}=\mathrm{iI}$ has no solution in $\mathrm{B}(\mathrm{H})$.

Proof:

Assume that $\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}=\mathrm{iI}$ for some $\mathrm{T} \in \mathrm{B}(\mathrm{H})$. Then,

$$
\mathrm{T}^{*} \mathrm{~A}^{*}+\mathrm{B}^{*} \mathrm{~T}=-\mathrm{iI}
$$

Hence,

$$
\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}-
$$

$\mathrm{T}^{*} \mathrm{~A}^{*}-\mathrm{B}^{*} \mathrm{~T}=2 \mathrm{iI}$
Therefore,
$\left(\mathrm{A}-\mathrm{B}^{*}\right) \mathrm{T}+$
$\mathrm{T}^{*}\left(\mathrm{~B}-\mathrm{A}^{*}\right)=2 \mathrm{iI}$
And this implies
$\left(\mathrm{A}-\mathrm{B}^{*}\right) \mathrm{T}-$
$\mathrm{T}^{*}\left(\mathrm{~A}^{*}-\mathrm{B}\right)=2 \mathrm{iI}$

If we put $K=\left(A-B^{*}\right)$, then

$$
\mathrm{KT}-\mathrm{T}^{*} \mathrm{~K}^{*}=2 \mathrm{iI}
$$

And hence, \quad KT- $(\mathrm{K} \mathrm{T})^{*}=2 \mathrm{iI}$
This implies
$\mathrm{KT}=\mathrm{i} \mathrm{I}+(\mathrm{K} \mathrm{T})^{*}+\mathrm{iI}$
If we put $\mathrm{C}=\mathrm{iI}+(\mathrm{K} \mathrm{T})^{*}$, then $\mathrm{C}=\mathrm{K}$ T-iI. Note that C is Hermitian, in fact

$$
\mathrm{C}^{*}=\left(\mathrm{iI}+(\mathrm{K} \mathrm{~T})^{*}\right)^{*}=-\mathrm{i} \mathrm{I}+\mathrm{KT}=\mathrm{C} .
$$

Hence, as stated in([3]), the spectrum of C , $\sigma(\mathrm{C})$ consists of real numbers. On the other hand, since $A-B^{*}$ is not invertible, then it can be checked easily that KT is not invertible, and hence $0 \in \sigma(\mathrm{KT})$.
But $\mathrm{C}=\mathrm{KT}-\mathrm{iI}$, then by the spectral mapping theorem ([12]), $-\mathrm{i} \in \sigma(\mathrm{C})$, which is a contradiction.
In a similar way we prove the following:

Theorem 1.2:

Let $A, B \in B(H)$ such that $A+B^{*}$ is not invertible. Then, the equation $\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}=\mathrm{I}$ has no solution in $\mathrm{B}(\mathrm{H})$.

The following proposition shows that if the assumptions of non-invertiblity are drooped in Theorem 1.1 and Theorem 1.2, then the operator equation $\mathrm{AT}+\mathrm{T} * \mathrm{~B}=\mathrm{C}$ may have a solution.

Proposition 1.3:

Let A and B are Hermitian operators. Then the equation $A T+T^{*} B=C$ has a solution $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ if $\mathrm{C}=(\mathrm{A}+\mathrm{B})^{2}$.

Proof:

If $C=(A+B)^{2}$ and A, B are Hermaitian, then it is easily seen that $T=A+B$ is a solution for the equation $\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}=\mathrm{C}$.

In a similar manner, one can prove the following:

Proposition 1.4:

Let A and B are skew-Hermitian operators. Then the equation $\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}=\mathrm{C}$ has a solution in $B(H)$ if $C=A^{2}-B^{2}$.

2.On The Operator Equation AT+T*B=C when A and B are Normal Operators.

Let $A \in B(H), A$ is called normal if $A A^{*}=A^{*} A$, ([12]). If $p(\lambda)=a_{0}+a_{1} \lambda+\cdots+a_{n} \lambda^{n}$ is a complex polynomial, where $a_{i}, i=0,1, \ldots, n, a$ complex number, we define

$$
\mathrm{p}(\mathrm{~A})=\mathrm{a}_{0} \mathrm{I}+\mathrm{a}_{1} \mathrm{~A}+\cdots+\mathrm{a}_{\mathrm{n}} \mathrm{~A}^{\mathrm{n}}
$$

Recall that an element $\lambda \in \sigma(\mathrm{A})$ is called an eigenvalue of $A\left(\lambda \in \prod_{0}(A)\right)$ if there exists a non-zero vector $x \in H$ such that $A x=\lambda x$. And λ is called an approximate eigenvalue of A $(\lambda \in \Pi(A))$ if there exists a sequence $\left\{u_{n}\right\}$ of unit vectors in H such that $\left\|(A-\lambda I) u_{n}\right\| \rightarrow 0$.

Equivalently, for each $\varepsilon>0$ there exists a unit vector $\mathrm{x} \in \mathrm{H}$ such that $\|A x-\lambda x\|<\varepsilon$, ([4]). It is known that if A is a normal operator, then every element in the spectrum is an approximate eigenvalue, ([4]).

In this section, we study the equations $A T+T^{*} B=p(A)$ and $A T+T^{*} B=p(B)$ for normal operators A and B . Before we state our main result of this section, we need the following:

Lemma 2.1[1]:

Let $\mathrm{T} \in \mathrm{B}(\mathrm{H})$, and let p be any polynomial. If λ is any approximate eigenvalue for T, then $p(\lambda)$ is an approximate eigenvalue for $p(T)$.

Now, suppose that A, B are two normal operators. The following theorem shows that if the equation $\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}=\mathrm{p}(\mathrm{A})$ has a solution and if $\lambda \in \sigma(\mathrm{A})=\sigma(\mathrm{B}), \lambda \neq 0$, then $\frac{p(\lambda)}{\lambda}$ is a real number.

Theorem 2.2:

Let $A, B \in B(H)$ be two normal operators such that $\sigma(A)=\sigma(B)$, and let $p(x)=a_{n} x^{n}+$ $\mathrm{a}_{\mathrm{n}-1} \lambda^{\mathrm{n}-1}+\cdots+\mathrm{a}_{0}$ be a polynomial. Then:
(1) If the equation $A T+T^{*} B=p(A)$ has a solution T in $B(H)$, then for each $\lambda \in \sigma(A)$, if $\lambda=0$ then $\mathrm{p}(\lambda)=0$ and otherwise $\frac{p(\lambda)}{\lambda}$ is a real number.
(2) If the equation $A^{*} T+T^{*} B^{*}=p(A)$ has a solution T in $B(H)$, then for each $\lambda \in \sigma(A)$, $\lambda p(\lambda)$ is a real number.

Proof:

(1) Let $\varepsilon>0$ and let $\lambda \in \sigma(A)=\sigma(B)$. Suppose that $T=0$, then $p(A)=A T+T^{*} B=0$. By the spectral mapping theorem $p(\sigma(A))=\sigma(p(A))=\sigma(0)=\{0\}$. It follows that $p(\lambda)=0$. Hence, if $\lambda=0$, then $p(\lambda)=0$, and otherwise $\frac{p(\lambda)}{\lambda}=0 \in \mathrm{R}$.
Suppose that $T \neq 0$. Since λ is an approximate eigenvalue for A and B , then there exists a unit vector x in H such that, $\|T\|\|A x-\lambda x\|<\varepsilon,\|x\|=1$
and

$$
\begin{equation*}
\|B x-\lambda x\|\|T\|<\varepsilon t, t>0,\|x\|=1 \tag{2.2}
\end{equation*}
$$

Hence by lemma 2.1, $p(\lambda)$ is an approximate eigenvalue for $\mathrm{p}(\mathrm{A})$. Thus,
$\|p(A) x-p(\lambda) x\|<\varepsilon t_{1}, t_{1}>0,\|x\|=1$
By Schwarz inequality, $\quad 1<p(A) x-$ $p(\lambda) x, x>\mid<\varepsilon t_{1}$ and hence
$|<p(A) x, x>-p(\lambda)|<\varepsilon t_{1}$
On the other hand, $\mathrm{p}(\mathrm{A})-\left(\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}\right)=0$ implies $\left\langle\mathrm{p}(\mathrm{A})-\left(\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}\right) \mathrm{x}, \mathrm{x}\right\rangle=0$.

And hence,
$1<p(A) x, x>-<T x, A^{*} x>-<$
$B x, T x>\mid=0$
Now, the normality of A implies $\|A y\|=$ $\left\|A^{*} y\right\|$ for all $\mathrm{y} \in \mathrm{H}$. Hence from equation (2.1) we get
$\|T\|\left\|A^{*} x-\bar{\lambda} x\right\|<\varepsilon,\|x\|=1$ \qquad
From equations (2.2), (2.5) and by using Schwarz inequality, one can get
$|<B x, T x>-\lambda<x, T x>|<\varepsilon t$
and
$1<T x, A^{*} x>-\lambda<T x, x>\mid<\varepsilon \ldots .$. (2.7)
By adding equations (2.3), (2.4), (2.6), (2.7) we get

$$
\left|p(\lambda)-\lambda\left(T+T^{*}\right)\right|<\varepsilon\left(1+t+t_{1}\right)
$$

Since $\mathrm{T}+\mathrm{T}^{*}$ is Hermitian, then it is easily seen that $\left|<\left(T+T^{*}\right) x, x>\right|$ is real number say r . Thus

$$
|p(\lambda)-\lambda r|<\varepsilon\left(1+t+t_{1}\right) \quad, r \in \mathrm{R}
$$

for each $\varepsilon>0$. It follows that $\mathrm{p}(\lambda)-\lambda \mathrm{r}=0$ and hence $p(\lambda)=\lambda r, r \in R$. It is clear that if $\lambda=0$, then $\mathrm{p}(\lambda)=0$, otherwise $\frac{p(\lambda)}{\lambda^{*}}=\mathrm{r}, \mathrm{r} \in \mathrm{R}$.
(2) Assume that $p(A)=A^{*} T+T^{*} B^{*}$ for some $\mathrm{T} \in \mathrm{B}(\mathrm{H})$. As in part (1), we can assume $\mathrm{T} \neq 0$.
$\|T\|\|A x-\lambda x\|<\varepsilon,\|x\|=1$
$\|B x-\lambda x\|\|T\|<\varepsilon t, t>0,\|x\|=1$
$\|p(A) x-p(\lambda) x\|<\varepsilon t_{1}, t_{1}>0,\|x\|=1$
Thus, the equations (2.3), (2.4), (2.6), (2.7) become

$$
\begin{gathered}
|<p(A) x, x>-p(\lambda)|<\varepsilon t_{1} \\
\mid<p(A) x, x>-<T x, A x>-<B^{*} x, T x \\
\quad>\mid=0 \\
\left|<B^{*} x, T x>-\bar{\lambda}<x, T x>\right|<\varepsilon t \\
|<T x, A x>-\bar{\lambda}<T x, x>|<\varepsilon
\end{gathered}
$$

By the adding the last four equations we get

$$
\left|p(\lambda)-\bar{\lambda}\left(T+T^{*}\right)\right|<\varepsilon\left(1+t+t_{1}\right)
$$

Thus, we have

$$
|p(\lambda)-\bar{\lambda} r|<\varepsilon\left(1+t+t_{1}\right)
$$

Therefore, $p(\lambda)-\bar{\lambda} r=0, \quad r \in R$, hence $\lambda p(\lambda) \in R$.

Remark 2.3:

In a similar way we prove the following:
Let $A, B \in B(H)$ are two normal operator such that $\sigma(A)=\sigma(B)$, and let $p(x)=a_{n} x^{n}+$ $a_{n-1} \lambda^{n-1}+\cdots+a_{0}$ be a polynomial. Then:
(1) If the equation $A T+T^{*} B=p(B)$ has a solution T in $B(H)$, then for each $\lambda \in \sigma(B)$, if $\lambda=0$ then $\mathrm{p}(\lambda)=0$ and otherwise $\frac{p(\lambda)}{\lambda}$ is a real number, i.e, an element in R.
(2) If the equation $A^{*} T+T^{*} B^{*}=p(B)$ has a solution T in $B(H)$, then for each $\lambda \in \sigma(B)$, $\lambda p(\lambda)$ is a real number.

3. Operator Equation $\mathbf{A T}+\mathrm{T} * \mathrm{~B}=\mathrm{C}$ and Analytic Operators

Let f be a complex analytic function defined on the ball $\mathrm{B}_{\mathrm{r}}=\{\mathrm{z} \in \mathrm{C}:|z|<\mathrm{r}\}$ where $\mathrm{r}>0$. Let $\mathrm{A} \in \mathrm{B}(\mathrm{H})$ such that $\|A\|<\mathrm{r}$. By Taylor theorem $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, and this series converges in $|z|<\mathrm{r}$. It is known that $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges in $\mathrm{B}(\mathrm{H})$, ([11]), and one can define

$$
f(A)=\sum_{n=0}^{\infty} a_{n} A^{n}
$$

Since $|\sigma(A)|<\|A\|$, where $|\sigma(A)|$ denotes the spectral radius of A, then $\sigma(A) \subset B_{r}$. In particular, if λ is an eigenvalue for A, then $\sum_{n=0}^{\infty} a_{n} \lambda^{n}$ that converges to $f(\lambda)$ is defined. The operator $f(A)$ is called an analytic operator [12].

Before we give one of our main results in this paper, we need the following:

Lemma 3.1[1]:

Let f and A be as above, and let λ be an eigenvalue for A, then $f(\lambda)$ is an eigen value for $f(A)$. And if $A x=\lambda x$, then $f(A) x=f(\lambda) x$.

The following theorem shows that if the equation $A T+T^{*} B=f(A)$ has a solution and if $\lambda \in \Pi_{0}(A)=\Pi_{0}(B), \lambda \neq 0$, then $\frac{p(\lambda)}{\lambda}$ is a real number.

The next theorem gives necessary conditions for the equation $\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}=\mathrm{f}(\mathrm{A})$ to have a solution.

Theorem 3.2

Let $A, B \in B(H)$ be two normal operators such that $\Pi_{0}(A)=\Pi_{0}(B)$ and A, B have the same eigenvectors, and let $f(\lambda)=\sum_{n=0}^{\infty} a_{n} \lambda^{n}$ be an analytic function in the ball B_{r} such that that $\|A\|<\mathrm{r}$.
(1) If the equation $\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}=\mathrm{f}(\mathrm{A})$ has a solution in $B(H)$, then for each eigenvalue λ of A , if $\lambda=0, \mathrm{f}(\lambda)=0$ and otherwise $\frac{f(\lambda)}{\lambda}$ is a real number.
(2) If the equation $A^{*} T+T^{*} B^{*}=f(A)$ has a solution T in $B(H)$, then for each eigenvalue λ of $A \lambda f(\lambda)$ is a real number.

Proof:

(1) Let λ be an eigenvalue for A, and let x be the corresponding eigenvector. Thus, $A x=\lambda \mathrm{x}$, we may assume $\|x\|=1$. By 3.1 $\mathrm{f}(\mathrm{A}) \mathrm{x}=\mathrm{f}(\lambda)$, hence $<\mathrm{f}(\mathrm{A}) \mathrm{x}, \mathrm{x}>-\mathrm{f}(\lambda) \mathrm{x}=0$. Moreover, $\quad f(A)-\left(A T+T^{*} B\right)=0$, hence $\left.\left.<\mathrm{f}(\mathrm{A}) \mathrm{x}, \mathrm{x}\rangle-<\mathrm{Tx}, \mathrm{A}^{*} \mathrm{x}\right\rangle \quad-<\mathrm{Bx}, \mathrm{Tx}\right\rangle=0$. Since A is normal $A^{*} x=\bar{\lambda} x$, hence $\left\langle T x, A^{*} x-\bar{\lambda} x\right\rangle=0$.
And since $\Pi_{0}(A)=\Pi_{0}(B)$ then, $B x=\lambda x$, thus $\langle B x-\lambda x, T x\rangle=0$.
It follows now from these equations that $\left.f(\lambda)-\lambda\left(<\left(T+T^{*}\right) x, x\right\rangle\right)=0 \quad$ and $\quad f(\lambda)=\lambda r$, where $r=\left\langle\left(T+T^{*}\right) x, x\right\rangle \in R$.
(2.0) Let λ be an eigenvalue for A , and let x be the corresponding eigenvector. Thus, $A x=\lambda x$, we may assume $\|x\|=1$. By 3.1 $\mathrm{f}(\mathrm{A}) \mathrm{x}=\mathrm{f}(\lambda)$, hence $<\mathrm{f}(\mathrm{A}) \mathrm{x}, \mathrm{x}>-\mathrm{f}(\lambda) \mathrm{x}=0$. Moreover, $f(A)-\left(A^{*} T^{*}+T^{*} B^{*}\right)=0$, hence $<f(A) x, x\rangle-<T x, A x>-<B^{*} x, T x>=0$. Since B is normal and since $\Pi_{0}(A)=\Pi_{0}(B)$ then $B^{*} x=\bar{\lambda} x$, hence $\left\langle B^{*} x-\bar{\lambda} x, T \mathrm{x}\right\rangle=0$. From $A x=\lambda x$, one can get thus $<T x, A x-\lambda x>=0$.
It follows now from these equations that $\mathrm{f}(\lambda)-\bar{\lambda}\left(<\left(\mathrm{T}+\mathrm{T}^{*}\right) \mathrm{x}, \mathrm{x}>\right)=0 \quad$ and $\quad \mathrm{f}(\lambda)=\bar{\lambda} \mathrm{r}$, where $r=\left\langle\left(T+T^{*}\right) x, x\right\rangle \quad \in R$, hence $\lambda f(\lambda) \in R$.

Remark 3.3:

In a similar way we prove the following:
Let $\mathrm{A}, \mathrm{B} \in \mathrm{B}(\mathrm{H})$ be two normal operators such that $\Pi_{0}(A)=\Pi_{0}(B)$ and A, B have the sam eigenvectors, and let $f(\lambda)=\sum_{n=0}^{\infty} a_{n} \lambda^{n}$ be an analytic function in the ball B_{r} such that that $\|B\|<\mathrm{r}$.
(1) If the equation $\mathrm{AT}+\mathrm{T}^{*} \mathrm{~B}=\mathrm{f}(\mathrm{B})$ has a solution in $B(H)$, then for each eigenvalue λ of A , if $\lambda=0, \mathrm{f}(\lambda)=0$ and otherwise $\frac{f(\lambda)}{\lambda}$ is a real number.
(2) If the equation $A^{*} T+T^{*} B^{*}=f(B)$ has a solution T in $B(H)$, then for each eigenvalue λ of $A \lambda f(\lambda)$ is a real number.

References

[1] Adil G. Naoum and Amina R. Al-Kabbani, 2007, On Operator Equation TA-AT ${ }^{*}=\mathrm{C}$, Dirasat, pure science, volume 34, No. 1, 113-118.
[2] Berberian, S. 1976. Introduction to Hilbert Space, Chelsea Publishing Company, New York.
[3] D. C. Sorensen and A. C. Antoulas, 2002, The Sylvester equation and approximate balanced reduction, Linear Algebra Appl. 351-352 (671-700).
[4] Dragan S.Cvetkovic-Ilic. 2008. The solutions of some operator equations, J. Korean Math. Soc. 45, No. 5, 1417-1425.
[5] Dragan S. Djordjevic'. 2005, Explicit Solution of The Operator Equation A*X + X*A = B, Supported by Grant No. 144003 of the Ministry of Science, Republic of Serbia.
[6] G. R. Duan, 2004, The solution to the matrix equation $\mathrm{AV}+\mathrm{BW}=\mathrm{EV} \mathrm{J}+\mathrm{R}$, Appl. Math. Letters, 17, 1197-1202.
[7] Halmos, P. 1982. A Hilbert Space Problem Book. Springer Verlag, New York, INC.
[8] Halmos, P. 1957. Introduction to Hilbert Space and Theory of Multiplicity, Chelsea Publishing Company, N.Y., New York.
[9] J. H. Hodges, 1957, Some matrix equations over a finite field, Ann. Mat. Pura Appl. IV. Ser. 44, 245-250.
[10] P. Kirrinnis, 2001, Fast algorithms for the Sylvester equation AX $-\mathrm{XB}^{\mathrm{T}}=\mathrm{C}$, Theoretical Compute Science, 259, 623638.
[11] Rajavi, H. and Rosenthal, P. 1973. Inveriant Subspace, Springer-Verlag, Berlin, Heidelberg, New York.
[12] Taylor, A. and Lay, D. 1980. Introduction to Functional Analysis, John Wiley and Sons, London.

$$
\begin{aligned}
& \text { الخـــلاصــة } \\
& \text { ليكن H } \quad \text { فضاء هلبرت وليكن } \\
& \text { المؤثرات الخطية المقيدة على H. H, ليكن H, الم } \\
& \text { عناصر في B(H) B. المعادلة التي بالصيغة } \\
& \text { CX }- \text { XA }^{\text {T }}=\mathrm{B} \\
& \text { درست باهتمام من فبل العديد من الباحثين لما لها من } \\
& \text { تطبيقات مهمة، في الاونة الاخيرة ظهرت در اسة نوع } \\
& \text { آخر من الدو ال التي بدأت تحظى باهتمام اكثر فاكثر، } \\
& \text { و هو } \mathrm{T}^{*} \text { هي على الصيغة AT+TB=C }
\end{aligned}
$$

$$
\begin{aligned}
& \text { المعادلة يمكن ان يكون ليس لها حل في جبر } \\
& \text { المؤثرات الخطية المقيدة B(H). } \\
& \text { المعادلة حل اذا كان كل من A و B مؤثرا هيرمانيا، } \\
& \text { و AT+T } \mathrm{B}=\mathrm{p}(\mathrm{~A}) \quad \text { و } \\
& \text { B A AT+T*B=f(A) } \\
& \text { هؤثزا سويا. }
\end{aligned}
$$

