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Abstract 

In this paper we study the solvability of the operator equation 

AT+T*B=C 

for linear bounded operators on Hilbert space, where T is the unknown operator. 

First we show this equation may not have a solution in B(H), and then we show that this 

equation have a simple solution in case A,B are Hermitian or Skew-Hermitian operators. Finaly we 

study the solvability of the operator equation AT+T*B=f(A) in case A and B are normal operators. 

 

Introduction 

Let H be a separable complex Hilbert 

space, and let B(H) be the algebra of  

bounded linear operators on H. For given 

A,CB(H) many mathematicians 

interested in finding the solution TB(H) 

of the equation A*T+T*A=C. This 

equation is considered for matrices over a 

finite field [9]. 
We mention similar matrix equations, 

which have applications in control theory. 

These equations are investigated for matrices 

over fields, mostly R or C. The equation  

CX –XAT
 = B is the Sylvester equation [10]. 

One special and important case is the 

Lyapunov equation AX + XAT
 = B [3]. Also, 

the generalized Sylvester equation AV +BW 
= EV J+R with unknown matrices V and W, 

has many applications in linear systems 

theory (see [6]). 

Dragan S. Djordjevic´ in [5] deals 

with extension of results from [9] to 

infinite dimensional settings. 

Dragan S.Cvetkovic-Ilic in [4] 

generalized the results of Dragan S. 

Djordjevic´ in [5] to the operator equation 

AT+T*B=C. He investigated the 

solvability of this equation under some 

conditions and described the set of the 

solutions. 

In this paper we proved that this 

equation may not have a solution in  

B(H), and then we show that this equation 

have a simple solution in case A,B are 

Hermitian or Skew-Hermitian operators. 

Finaly we study the solvability of the 

operator equations AT+T*B=p(A) and  

AT+T*B=f(A) in case A and B are 

normal operators. 
 

1. About the solution of AT+T*B=C 

Let A be a bounded linear operator on the 

separable complex Hilbert space H. A is called 

Hermitian operator if A
*
A and A is skew-

Hermitian if A
*
 A, where A

*
is the adjoint of 

A. 

Recall that the spectrum of A, denoted by 

(A)={C: AI is not invertible). It is 

known that if A is Hermitian, then (A) 

consists of real numbers and if A is skew-

Hermitian, then (A) consists of pure 

imaginary numbers, i.e. (A)iR, where R is 

the set  of real numbers ([2],[8]). 

The following theorem shows that the 

equation ATT
*
BC for a fixed A, B have no 

solution. 
 

Theorem 1.1: 

Let A, BB(H) such that AB
*
 is not 

invertible. Then, the equation ATT
*
BiI has 

no solution in B(H). 
 

Proof: 

Assume that ATT
*
BiI for some 

TB(H). Then, 

T
*
A

*
B

*
TiI 

Hence,            ATT
*
B 

T
*
A

*
B

*
T2iI 

Therefore,            (AB
*
)T 

T
*
(BA

*
)=2iI 

And this implies           (AB
*
)T 

T
*
(A

*
B)=2iI 
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If we put K(AB
*
), then  

KTT
*
K

*
=2iI 

And hence,                            KT(K T)
*
2iI 

This implies             KTiI (K T)
*
+iI 

If we put  CiI (K T)
*
,  then CK TiI. Note 

that C is Hermitian, in fact 

C
*
( iI (K T)

*
)

*
iI+KTC. 

Hence, as stated in([3]), the spectrum of C, 

(C) consists of real numbers. On the other 

hand, since AB
*
 is not invertible, then it can 

be checked easily that KT is not invertible, and 

hence 0(KT).  

But CK TiI, then by the spectral mapping 

theorem ([12]), i(C), which is a 

contradiction. 

In a similar way we prove the following: 
 

Theorem 1.2: 

Let A, BB(H) such that AB
*
 is not 

invertible. Then, the equation ATT
*
BI has 

no solution in B(H). 

The following proposition shows that if the 

assumptions of non-invertiblity are drooped in 

Theorem 1.1 and Theorem 1.2, then the 

operator equation AT+T*B=C may have a 

solution. 
 

Proposition 1.3: 

Let A and B are Hermitian operators. Then 

the equation  ATT
*
BC has a solution 

TB(H) if C(AB)
2
. 

 

Proof: 

If C=(AB)
2
 and A,B are Hermaitian, then 

it is easily seen that TAB is a solution for 

the equation ATT
*
BC. 

In a similar manner, one can prove the 

following: 
 

Proposition 1.4: 

Let A and B are skew-Hermitian operators. 

Then the equation ATT
*
BC has a solution 

in B(H) if C=A
2
B

2
. 

 

2.On The Operator Equation AT+T*B=C 

when A and B are Normal Operators. 

Let AB(H), A is called normal if  

AA
*
A

*
A, ([12]). If  p()a0a1 ⋯ an

n
 is 

a complex polynomial, where ai, i0,1,,n, a 

complex number, we define  

p(A) a0Ia1A ⋯ anA
n

 

Recall that an element (A) is called an 

eigenvalue of A (o(A)) if there exists a 

non-zero vector xH such that Axx. And  

is called an approximate eigenvalue of A 

((A)) if there exists a sequence {un} of 

unit vectors in H such that   𝐴 − 𝐼 𝑢𝑛  0. 

Equivalently, for each  > 0 there exists a 

unit vector xH such that  𝐴𝑥 − 𝑥 < , 
([4]). It is known that if A is a normal 

operator, then every element in the spectrum is 

an approximate eigenvalue, ([4]). 

In this section, we study the equations 

ATT
*
Bp(A) and ATT

*
Bp(B) for normal 

operators A and B. Before we state our main 

result of this section, we need the following: 
 

Lemma 2.1[1]: 

Let TB(H), and let p be any polynomial. 

If   is any approximate eigenvalue for T, then 

p() is an approximate eigenvalue for p(T). 

Now, suppose that A, B are two normal 

operators. The following theorem shows that if 

the equation ATT
*
Bp(A) has a solution and 

if (A)  (B), 0, then 
𝑝()


 is a real 

number. 
 

Theorem 2.2: 

Let A, BB(H) be two normal operators 

such that  (A)(B), and let p(x) anx
n
 

an−1
n−1
 ⋯a0 be a polynomial. Then: 

(1) If the equation ATT
*
Bp(A) has a 

solution T in B(H), then for each (A), 

if 0 then p()0 and otherwise  
𝑝()


 is a 

real number. 

(2) If the equation A
*
TT

*
B

*
p(A) has a 

solution T in B(H), then for each (A), 

p() is a real number. 
 

Proof: 

(1) Let  > 0 and let (A)(B). Suppose 

that T0, then p(A) ATT
*
B0. By the 

spectral mapping theorem 

p((A))(p(A))(0){0}. It follows 

that p()0. Hence, if 0, then p()0, 

and otherwise  
𝑝()


0R . 

Suppose that T0. Since  is an 

approximate eigenvalue for A and B, then 

there exists a unit vector x in H such that, 

  𝑇  𝐴𝑥 − 𝑥 < 𝜀,  𝑥 = 1   .......... (2.1) 

and 
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 𝐵𝑥 − 𝑥  𝑇 < 𝜀𝑡, 𝑡 > 0,  𝑥 = 1 

 ............................... (2.2) 

Hence by lemma 2.1, p() is an 

approximate eigenvalue for p(A). Thus, 
 𝑝(𝐴)𝑥 − 𝑝()𝑥 < 𝜀𝑡1 , 𝑡1 > 0,  𝑥 = 1 

By Schwarz inequality,  < 𝑝 𝐴 𝑥 −
𝑝  𝑥, 𝑥 > < 𝜀𝑡1 and hence 

  < 𝑝 𝐴 𝑥, 𝑥 > −𝑝   < 𝜀𝑡1 ............ (2.3) 

On the other hand, p(A)−(ATT
*
B)0 

implies <p(A) −(ATT
*
B)x,x>0. 

And hence, 
 < 𝑝 𝐴 𝑥, 𝑥 > −< 𝑇𝑥, 𝐴∗𝑥 > −<
𝐵𝑥, 𝑇𝑥 > = 0  .................................. (2.4) 

Now, the normality of A implies  𝐴𝑦 =
 𝐴∗𝑦  for all yH. Hence from equation 

(2.1) we get 

  𝑇  𝐴∗𝑥 −  𝑥 < 𝜀,  𝑥 = 1 .......... (2.5) 

From equations (2.2), (2.5) and by using 

Schwarz inequality, one can get 
 < 𝐵𝑥, 𝑇𝑥 > − < 𝑥, 𝑇𝑥 > <  𝜀𝑡  .... (2.6) 

and  

        < 𝑇𝑥, 𝐴∗𝑥 > − < 𝑇𝑥, 𝑥 > < 𝜀 ...... (2.7) 

By adding equations (2.3), (2.4), (2.6), 

(2.7) we get 
 𝑝() − (𝑇 + 𝑇∗) < 𝜀(1 + 𝑡 + 𝑡1) 

Since TT
* 

is Hermitian, then it is easily 

seen that  <  𝑇 + 𝑇∗ 𝑥, 𝑥 >  is real 

number say r. Thus  
 𝑝() − 𝑟 < 𝜀 1 + 𝑡 + 𝑡1     , 𝑟 ∈ R 

for each >0. It follows that p()r0 

and hence p()r, rR. It is clear that if 

0, then p()=0, otherwise 
𝑝()


r, rR. 

(2) Assume that p(A)= A
*
TT

*
B

*
 for some 

TB(H). As in part (1), we can assume 

T0. 

  𝑇  𝐴𝑥 − 𝑥 < 𝜀,  𝑥 = 1   
  𝐵𝑥 − 𝑥  𝑇 < 𝜀𝑡, 𝑡 > 0,  𝑥 = 1 
 𝑝(𝐴)𝑥 − 𝑝()𝑥 < 𝜀𝑡1, 𝑡1 > 0,  𝑥 = 1 

Thus, the equations (2.3), (2.4), (2.6), 

(2.7) become 

  < 𝑝 𝐴 𝑥, 𝑥 > −𝑝   < 𝜀𝑡1 
 < 𝑝 𝐴 𝑥, 𝑥 > −< 𝑇𝑥, 𝐴𝑥 > −< 𝐵∗𝑥, 𝑇𝑥

> = 0 

  < 𝐵∗𝑥, 𝑇𝑥 > − < 𝑥, 𝑇𝑥 > <  𝜀𝑡 

 < 𝑇𝑥, 𝐴𝑥 > − < 𝑇𝑥, 𝑥 > < 𝜀 

 

By the adding the last four equations we 

get 

 𝑝() −  (𝑇 + 𝑇∗) < 𝜀(1 + 𝑡 + 𝑡1) 

Thus, we have  

 𝑝() −  𝑟 < 𝜀(1 + 𝑡 + 𝑡1) 

Therefore, p() r0, r R, hence 

p()R. 

 

Remark 2.3: 

In a similar way we prove the following: 

Let A, BB(H) are two normal operator 

such that (A)(B), and let p(x) anx
n
 

an−1
n−1
 ⋯a0 be a polynomial. Then: 

(1) If the equation ATT
*
Bp(B) has a solution 

T in B(H), then for each (B), if 0 

then p()0 and otherwise  
𝑝()


 is a real 

number, i.e, an element in R. 

(2) If the equation A
*
TT

*
B

*
p(B) has a 

solution T in B(H), then for each (B), 

p() is a real number. 

 

3. Operator Equation AT+T*B=C and 

Analytic Operators 

Let f be a complex analytic function 

defined on the ball Br{zC:  𝑧 <r} where  

r > 0. Let AB(H) such that  𝐴 <r. By Taylor 

theorem 𝑓 𝑧 =  𝑎𝑛
∞
𝑛=0 𝑧𝑛 , and this series 

converges in  𝑧 <r. It is known that 
 𝑎𝑛

∞
𝑛=0 𝑧𝑛  converges in B(H), ([11]), and one 

can define 

𝑓 𝐴 =  𝑎𝑛𝐴
𝑛

∞

𝑛=0

 

Since  (𝐴) < 𝐴 , where   (𝐴)  denotes 

the spectral radius of A, then (A)Br. In 

particular, if   is an eigenvalue for A, then 

 𝑎𝑛
∞
𝑛=0 

𝑛
 that converges to f() is defined. 

The operator f(A) is called an analytic operator 

[12]. 

Before we give one of our main results in 

this paper, we need the following: 
 

Lemma 3.1[1]: 

Let f and A be as above, and let  be an 

eigenvalue for A, then f() is an eigen value 

for f(A). And if Axx, then f(A)x=f()x. 

The following theorem shows that if the 

equation ATT
*
Bf(A) has a solution and if 

o(A) o(B), 0, then 
𝑝()


 is a real 

number. 

The next theorem gives necessary 

conditions for the equation ATT
*
Bf(A) to 

have a solution. 
 

 



Amina R. Muhammad 

159 

Theorem 3.2 

Let A, BB(H) be two normal operators 

such that o(A) o(B) and A,B have the 

same eigenvectors , and let 𝑓  =  𝑎𝑛
∞
𝑛=0 

𝑛
 

be an analytic function in the ball Br such that 

that  𝐴 <r. 

(1) If the equation ATT
*
Bf(A) has a 

solution in B(H), then for each eigenvalue 

 of A, if =0, f()0 and otherwise  
𝑓()


 

is a real number. 

(2) If the equation A
*
TT

*
B

*
f(A) has a 

solution T in B(H), then for each 

eigenvalue  of A f() is a real number. 
 

Proof: 

(1) Let  be an eigenvalue for A, and let x be 

the corresponding eigenvector. Thus, 

Axx, we may assume  𝑥 = 1. By 3.1 

f(A)xf(), hence <f(A)x,x>−f()x0. 

Moreover, f(A)(ATT
*
B)0, hence 

<f(A)x,x> − <Tx,A
*
x> −<Bx,Tx>0. 

Since A is normal 𝐴∗𝑥 =  𝑥, hence 

<Tx, 𝐴∗𝑥 −  𝑥>0. 

And since o(A) o(B) then, Bxx, 

thus <Bxx,Tx>0. 

It follows now from these equations that 

f()(<(TT
*
)x,x>)0 and f()r, 

where r<(TT
*
)x,x> R. 

(2.0) Let  be an eigenvalue for A, and let x be 

the corresponding eigenvector. Thus, 

Axx, we may assume  𝑥 = 1. By 3.1 

f(A)xf(), hence <f(A)x,x>−f()x0. 

Moreover, f(A)(A
*
T

*
T

*
B

*
)0, hence 

<f(A)x,x> − <Tx,Ax> −<B
*
x,Tx>0. 

Since B is normal and since o(A) o(B) 

then 𝐵∗𝑥 =  𝑥, hence <𝐵∗𝑥 −  𝑥,Tx>0. 

From Axx, one can get thus 

<Tx,Ax−x>0. 

It follows now from these equations that 

f()− (<(TT
*
)x,x>)0 and f() r, 

where r<(TT
*
)x,x> R, hence 

f()R. . 
 

Remark 3.3: 

In a similar way we prove the following: 

Let A, BB(H) be two normal operators 

such that o(A) o(B) and A,B have the sam 

eigenvectors, and let 𝑓  =  𝑎𝑛
∞
𝑛=0 

𝑛
 be an 

analytic function in the ball Br such that that 
 𝐵 <r. 

(1) If the equation ATT
*
Bf(B) has a 

solution in B(H), then for each eigenvalue 

 of A, if =0, f()0 and otherwise  
𝑓()


 

is a real number. 

(2) If the equation A
*
TT

*
B

*
f(B) has a 

solution T in B(H), then for each 

eigenvalue  of A f() is a real number. 
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HB(H)

HA,B,C

B(H) 

CX –XA
T
 = B

AT+T
*
B=CT

*

T

B(H)

AB

ATT
*
Bp(A)

ATT
*
Bf(A)AB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


