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Abstract

In this paper we study the solvability of the operator equation

AT+T*B=C

for linear bounded operators on Hilbert space, where T is the unknown operator.

First we show this equation may not have a solution in B(H), and then we show that this
equation have a simple solution in case A,B are Hermitian or Skew-Hermitian operators. Finaly we
study the solvability of the operator equation AT+T*B=f(A) in case A and B are normal operators.

Introduction

Let H be a separable complex Hilbert
space, and let B(H) be the algebra of
bounded linear operators on H. For given
A,CeB(H) many mathematicians
interested in finding the solution TeB(H)
of the equation A*T+T*A=C. This
equation is considered for matrices over a
finite field [9].

We mention similar matrix  equations,
which have applications in control theory.
These equations are investigated for matrices
over fields, mostly R or C. The equation
CX —XA™ = B is the Sylvester equation [10].
One special and important case is the
Lyapunov equation AX + XA™ = B [3]. Also,
the generalized Sylvester equation AV +BW
= EV J+R with unknown matrices V and W,

has many applications in linear systems
theory (see [6]).

Dragan S. Dijordjevic® in [5] deals
with extension of results from [9] to
infinite dimensional settings.

Dragan S.Cvetkovic-llic in [4]
generalized the results of Dragan S.

Djordjevic” in [5] to the operator equation
AT+T*B=C. He investigated the
solvability of this equation under some
conditions and described the set of the

solutions.
In this paper we proved that this
equation may not have a solution in

B(H), and then we show that this equation
have a simple solution in case A,B are

Hermitian or Skew-Hermitian operators.
Finaly we study the solvability of the
operator equations AT+T*B=p(A) and
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AT+T*B=f(A) in case A and B are

normal operators.

1. About the solution of AT+T*B=C

Let A be a bounded linear operator on the
separable complex Hilbert space H. A is called
Hermitian operator if A=A and A is skew-
Hermitian if A’= —A, where A’is the adjoint of
A.

Recall that the spectrum of A, denoted by
o(A)={LeC: A-Al is not invertible). It is
known that if A is Hermitian, then o(A)
consists of real numbers and if A is skew-
Hermitian, then o(A) consists of pure
imaginary numbers, i.e. o(A)ciR, where R is
the set of real numbers ([2],[8]).

The following theorem shows that the

equation AT+T B=C for a fixed A, B have no
solution.

Theorem 1.1:

Let A, BeB(H) such that A-B" is not
invertible. Then, the equation AT+T B=il has
no solution in B(H).

Proof:

Assume that AT+T B=il for some
TeB(H). Then,

TA+B T=il

Hence, AT+T B-
T A-BT=2il
Therefore, (A-B)T+
T (B-A)=2il
And this implies (A-BHT-
T (A"-B)=2il



If we put K=(A-B"), then
KT-T'K'=2il

And hence, KT—(K T)"=2il
This implies KT=il+ (K T) il
If we put C=il+ (K T)", then C=K T—il. Note
that C is Hermitian, in fact

C'=(il+ (K T)") =—il+KT=C.
Hence, as stated in([3]), the spectrum of C,
o(C) consists of real numbers. On the other
hand, since A-B” is not invertible, then it can
be checked easily that KT is not invertible, and
hence 0eo(KT).
But C=K T-il, then by the spectral mapping
theorem ([12]), -iec(C), which is a
contradiction.
In a similar way we prove the following:

Theorem 1.2:

Let A, BeB(H) such that A+B™ is not
invertible. Then, the equation AT+T B=l has
no solution in B(H).

The following proposition shows that if the
assumptions of non-invertiblity are drooped in
Theorem 1.1 and Theorem 1.2, then the
operator equation AT+T*B=C may have a
solution.

Proposition 1.3:
Let A and B are Hermitian operators. Then

the equation AT+T B=C has a solution
TeB(H) if C=(A+B)>.

Proof:

If C=(A+B)? and A,B are Hermaitian, then
it is easily seen that T=A+B is a solution for
the equation AT+T B=C.

In a similar manner, one can prove the
following:

Proposition 1.4:
Let A and B are skew-Hermitian operators.

Then the equation AT+T B=C has a solution
in B(H) if C=A?-B2.

2.0n The Operator Equation AT+T*B=C
when A and B are Normal Operators.

Let AeB(H), A is called normal if
AA=A"A, ([12]). If p(\)=apt+ail+ - +a\" is
a complex polynomial, where a;, i=0,1,...,n, a
complex number, we define

P(A)= agl+a; A+ -+ +a,A"
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Recall that an element Lec(A) is called an
eigenvalue of A (Aell,(A)) if there exists a
non-zero vector xeH such that Ax=Ax. And A
is called an approximate eigenvalue of A
(Lell(A)) if there exists a sequence {un} of
unit vectors in H such that |[(4 — ADu,, || 0.

Equivalently, for each € > 0 there exists a
unit vector xeH such that ||[Ax — Ax|| < g,
([4D). It is known that if A is a normal
operator, then every element in the spectrum is
an approximate eigenvalue, ([4]).

In this section, we study the equations
AT+T B=p(A) and AT+T B=p(B) for normal
operators A and B. Before we state our main
result of this section, we need the following:

Lemma 2.1[1]:
Let TeB(H), and let p be any polynomial.
If A is any approximate eigenvalue for T, then
p(1) is an approximate eigenvalue for p(T).
Now, suppose that A, B are two normal
operators. The following theorem shows that if
the equation AT+T B=p(A) has a solution and

if Leo(A)= o (B), 20, then X2 is a real
number.

Theorem 2.2:

Let A, BeB(H) be two normal operators
such that o(A)=c(B), and let p(X)= a,x"+
an A" '+ ---+ag be a polynomial. Then:

(1) If the equation AT+T B=p(A) has a
solution T in B(H), then for each Lec(A),
if =0 then p(1)=0 and otherwise &;) is a
real number.

If the equation A T:T B=p(A) has a
solution T in B(H), then for each ALec(A),
Ap(A) is a real number.

2)

Proof:

(1) Let € > 0 and let Aec(A)=c(B). Suppose
that T=0, then p(A)= AT+T B=0. By the
spectral mapping theorem
p(c(A))=c(p(A))=c(0)={0}. It follows
that p(A)=0. Hence, if A=0, then p(A)=0,
and otherwise &;):OGR :

Suppose that T=#0. Since A is an
approximate eigenvalue for A and B, then
there exists a unit vector x in H such that,
ITIAx — Ax|l < & llx|l = 1
and
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IBx — Ax||IIT]| < et,t > 0, ||x|| = 1

Hence by lemma 2.1, p(A) is

approximate eigenvalue for p(A). Thus,

lp(A)x — p(Dxl < ety,t; >0, [lx]| =1

By Schwarz inequality, |<p(A)x —
p(Dx,x >| < ety and hence

< p(A)x,x > —p(D)| < ety (2.3)

On the other hand, p(A)—(AT+T B)=0
implies <p(A) —(AT+T B)x,x>=0.

And hence,

< p(A)x,x > —< Tx,A*'x > —<

Bx,Tx >| =0 (2.4)

Now, the normality of A implies ||Ay|| =

||[A*y|| for all yeH. Hence from equation

(2.1) we get

ITN||A*x — 2x|| < & llx]l = 1 (2.5)

From equations (2.2), (2.5) and by using
Schwarz inequality, one can get

|< Bx,Tx > —-A< x,Tx >| < &t ....(2.6)

and

|< Tx,A*'x >—-A<Tx,x>|<c¢ 2.7

By adding equations (2.3), (2.4), (2.6),
(2.7) we get

lp(A) —AUT+TH| <e(d+t+t))

Since T+T  is Hermitian, then it is easily

seen that |<(T+T*)x,x>| is real

number say r. Thus

lp(A) —Arl<e(1l+t+t) ,r€R

for each &>0. It follows that p(A)—Ar=0

and hence p(A)=Ar, reR. It is clear that if

A=0, then p(1)=0, otherwise &;)zr, reR.
(2) Assume that p(A)= AT+T B for some
TeB(H). As in part (1), we can assume
T=0.
ITIAx — Ax|l < & |lx|| = 1
[Bx — Ax|[IIT]| < et,t > 0,]|x]| =1
lp(A)x —p(Dxll < ety, t1 >0, [Ix]| =1
Thus, the equations (2.3), (2.4), (2.6),
(2.7) become
[<p(A)x,x > —p(D| < ety
< p(A)x,x > —< Tx,Ax > —< B*x,Tx
>l =0
|<B*x,Tx > -A<xTx>| < et
|< Tx,Ax > -2 < Tx,x >| <e

an

By the adding the last four equations we
get
lp(2) — AT +T%)
Thus, we have

<e(l+t+t)
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lp(D) —Ar| <e(1+t+ty)
Therefore, p(A)-Ar=0, re R, hence
Ap(L)eR.
Remark 2.3:

In a similar way we prove the following:
Let A, BeB(H) are two normal operator
such that o(A)=c(B), and let p(X)= a,x™+
a1 A" '+ +-+ag be a polynomial. Then:
(1) If the equation AT+T B=p(B) has a solution
T in B(H), then for each Lea(B), if A=0

then p(A)=0 and otherwise P4 s a real

number, i.e, an element in R.

If the equation AT+T B'-p(B) has a
solution T in B(H), then for each Lec(B),
Ap(A) is a real number.

()

3. Operator Equation AT+T*B=C and
Analytic Operators

Let f be a complex analytic function
defined on the ball B={zeC: |z|<r} where
r > 0. Let AeB(H) such that ||A]|<r. By Taylor
theorem f(z) = X5y a, z", and this series
converges in |z|<r. It is known that
Yo @, z™ converges in B(H), ([11]), and one
can define

f(4) = i ap A"

n=0
Since |o(A)|<||Al|l, where |o(A)| denotes
the spectral radius of A, then o(A)cB,. In
particular, if A is an eigenvalue for A, then
“ _oa, A" that converges to f(4) is defined.
The operator f(A) is called an analytic operator
[12].
Before we give one of our main results in
this paper, we need the following:

Lemma 3.1[1]:

Let f and A be as above, and let A be an
eigenvalue for A, then f(L) is an eigen value
for f(A). And if Ax=Lx, then f(A)x=f(L)x.

The following theorem shows that if the
equation AT+T B=f(A) has a solution and if
Lello(A)= T1(B), A#0, then %ﬁ) is a real
number.

The next theorem gives necessary

conditions for the equation AT+T B=f(A) to
have a solution.




Theorem 3.2

Let A, BeB(H) be two normal operators
such that TTo(A)= I1x(B) and A,B have the
same eigenvectors , and let (1) = X2, a, A"
be an analytic function in the ball B, such that
that [|A]|<r.
(1) If the equation AT+T B=f(A) has a
solution in B(H), then for each eigenvalue
% of A, if =0, f(1)=0 and otherwise =
is a real number.
If the equation A'T+T'B’-f(A) has a
solution T in B(H), then for each
eigenvalue A of A Af(A) is a real number.

(2)

Proof:

(1) Let A be an eigenvalue for A, and let x be
the corresponding eigenvector. Thus,
Ax=AXx, we may assume ||x|| = 1. By 3.1
f(A)x=f(LX), hence <f(A)x,x>—f(A)x=0.
Moreover, f(A)-(AT+T B)=0, hence
<f[A)x,x> — <Tx,A'x> —<Bx,Tx>=0.
Since A is normal A*x = Ax, hence
<Tx, A*x — Ax>=0.

And since TI,(A)= TIIy(B) then, Bx=\X,
thus <Bx—Ax, Tx>=0.

It follows now from these equations that
fO)-AM<(T+T)xx>)=0 and  f(A)=Ar,
where r=<(T+T")x,x> eR.

(2.0) Let A be an eigenvalue for A, and let x be
the corresponding eigenvector. Thus,
Ax=LX, we may assume ||x|| = 1. By 3.1
f(A)x=f(A), hence <f(A)x,x>—f(A)x=0.
Moreover, f(A)—(A'T +T B)=0, hence
<f(A)x,x> — <Tx,Ax> —<B'X Tx>=0.
Since B is normal and since IT,(A)= IT,(B)
then B*x = Ax, hence <B*x — Ax,Tx>=0.
From Ax=AXx, one can get thus
<Tx,Ax—Ax>=0.

It follows now from these equations that

fO)-AU<(T+TIxx>)=0 and f(rL)=4r,
where  r=<(T+T)xx> eR, hence
WOV eR. .

Remark 3.3:

In a similar way we prove the following:

Let A, BeB(H) be two normal operators
such that TTo(A)= IT(B) and A,B have the sam
eigenvectors, and let (1) = ¥, a, A" be an
analytic function in the ball B, such that that
|| BI<r.
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(1) If the equation AT+T B=f(B) has a
solution in B(H), then for each eigenvalue
A of A, if =0, f()=0 and otherwise 22
is a real number. L

If the equation A T+T B =f(B) has a
solution T in B(H), then for each
eigenvalue A of A Af()) is a real number.

(2)
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