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Abstract 

In this paper, stability results are obtained on a class of Explicit Multi-Stage Runge-Kutta 

methods of arbitrary order of accuracy suitable for solving linear and nonlinear Difference 

Equations obtained from discretizations ODE's and PDE’s. 

 

Introduction 

It is common practice in solving 

Differential Equations (DEs) to discretize firs 

the spatial variables to obtain a system with 

variables which may be thought of as 

occurring discretely. That is, we cannot really 

observe organisms continuously, so we just 

monitor the quantities of interest at discrete 

intervals. In this case, it is usually required It 

discuss the stability measure, which have 

recently been introduced by a number of 

authors. 

Stability criteria have also been derived for 

such equations which involves discretizations 

process which leads to several well known 

difference schemes. Thus besides the question 

of existence of solutions, stability behaviors of 

solutions o: difference schemes are also of 

fundamental importance, because these 

behaviors an related to the question of growth 

of numerical errors. The stability problem has 

been treated by several authors ([l], [2] & [6]). 

The techniques used to derive stability criteria 

in these studies include Cronwall type 

inequalities, general solutions, Laplace 

transforms comparison theorems, etc. 

In this paper, we intend to give a brief 

introduction for the setup and bask properties 

of the explicit multi-stage Runge-Kutta 

methods and then new results are obtained to 

prove strong stability for a class of well-posed 

problems u' = Lu, where the operator L is 

linear, improving and simplifying the proofs 

for the results in [6]. 
 

Explicit Methods: 

Consider the ordinary differential equation: 

u(t)  L(t)u(t)........................................ (1) 

is discretized by a finite difference "FD" or 

finite element "FE" approximation, see [3], & 

[7]. Let R be the set of reals and N the set of 

nonnegative integers. Consider the following 

discrete difference equation of the form: 
( j 1) ( j) ( j) ( j) ( j) ( j)

j j ji i 1 i i 1 i iu a u b u c u g G( j, u )


       

 ...................... (2) 

where i  l, 2, …, n; j  N; {aj}, {bj} and {cj} 

are real sequences; g  { ( j)
ig } is a real 

function defined for i  l,2,..,,n and j  N, and 

G is a real function. We will also assume that 

side conditions: 
( j)
0u   hj  R, j  N 

( j)
n 1u    qj  R, j N                              ... (3) 

(0)
iu   i  R, i  R,i  1, 2, …, n 

are imposed. Let: 

  {(i, j) | i  0, 1, …, n + 1, j  N} 

A solution of (2) & (3) is a discrete 

function u  {
( j)
iu }(i,j)   which satisfies the 

functional! relation (2) and also the side 

conditions (3). 

For sufficiently small step, the total 

variation, denoted by “TV” of discrete solution 

u
n
 does not increase, i.e., the following holds: 

TV(u
n+1

)  TV(u
n
),  where; 

TV(u
n
) : n n

j 1 j
j

u u   .......................... (4) 

and the objective of the discretization is to 

maintain the stability (4) while achieving 

higher-order accuracy, perhaps with a 

modified restriction: 

t  ctFE ............................................ (5) 

called Courant-Friedrichs-Levy (CFL). 
 

Stability Criteria 

In [5], a general Runge-Kutta methods for 

(1) is written in the form: 
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 

(0) n

i 1
n 1 (k) (k)

i,k i,k i,k
k 0

n 1 (m)

u u ,

u u t Lu , 0, i 1,...,m

u u










       




 

 ...................... (6) 

Clearly, if all the i,k’s are nonnegative,      

i,k  0, then since by consistency i,k 1  , 

it follows that u
n+1

 is given by a convex 

combinations of forward Euler operators, with 

suitably scaled t’s replaced by 
i,k

i,k

t





. If 

some i,k’s are negative, we need more storage 

requirement. However, as shown in [4], it is 

not always possible to avoid negative i,k, 

therefore, we would like to overcome this 

problem. 

We begin our stability study for Rimge-

Kutta approximation of (1) with the order 

forward-Euler scheme (with <.,.> denoting the 

usual Euclidean inner product) which is 

equivalent to (2) 

u
n+1

  u
n
 + tnL(t

n
)u

n
 

based on variable lime-steps, 
n 1

j
j 0

t




  Taking 

L
2
 norms on both sides one finds: 

|u
n+1

|
2
  |u

n
|
2
 + 2tnRe(L(t

n
)u

n
, u

n
) + 

(t
n
)|L(t

n
)u

n
|
2
 

and hence strong stability holds, |u
n+1

|  |u
n
|, 

provided the following restriction on the time 

state, tn is met, tn  2Re(L(t
n
)u

n
, u

n
)/ 

|L(t
n
)un|

2
. 

Following Levy and Tadmor [l3], we 

therefore make the assumptions: 

 

Assumption 1: There exists (t) > 0 such that: 

(t)  
2|u| 1

Re(L(t)u,u)
inf 0

| L(t)u |
 .................... (7) 

we conclude that L’s, the forward Euler 

scheme is strongly stable: 

||I + tnL(t
n
)||  1 iff tn  2(t

n
) 

Our aim is to show that the general m-

stage, m-th order accurate Runge-Kutta 

scheme is strongly stable under the same CFL 

condition. 

Observe that the constant, n is an upper 

bound in the size of L; indeed, by Cauchy-

Schwartz (t)  |L(t)u| |u| / |L(t)u|
2
, and hence: 

||L(t)||  
u

| L(t)u | 1
sup

| u | (t)



 ......................... (8) 

Consider the fourth order Runge-Kutta 

approximation of 
1 n nk L(t )u  ......................................... (9) 

1
2

n2 n 1ntk L(t ) u k
2

  
  

 
................. (10) 

1
2

n3 n 2ntk L(t ) u k
2

  
  

 
 ................ (11) 

 4 n 1 n 3
nk L(t ) u t k   ................... (12) 

u
n+1

  u
n
 + nt

6


(k1 + 2k2 + 2k3 + k4) .... (13) 

Starting with the second order and higher 

Runge-Kutta intermediate steps depend on the 

time variation of L(.), and hence we require 

minimal smoothness in time, making: 

 

Assumption 2 (Lipschitz regularity): We 

assume that L(.) is Lipschitz. Thus, there exists 

a constant k > 0, such that: 

||L(t)  L(s)||  
k

(t)
|t  s| .................... (14) 

The result along these lines was introduced by 

[6,main theorem], staling the strong stability of 

the constant coefficients s-order Runge-Kutta 

scheme under CFL condition t  Cs(t
n
). We 

are now ready to make our main result, we are 

state the following: 

 

Proposition: 

Consider the systems of ODE’s (6)-(7), 

with Lipschitz continuous coefficients (14). 

Then the fourth-order Rungc-Kutta scheme   

(9-13) is stable under CFL condition: 

tn  2(t
n
) .......................................... (15) 

and the following estimate holds: 

|u
n
|  n3Kt

e |u
0
| ..................................... (16) 

Here we improve in both simplicity and 

generality. 

 

Proof: 

We proceed in two steps. We first freeze 

the coefficients at t  t
n
, considering (here we 

abbreviate L
n
  L(t

n
)) 

j
1
  L

n
u

n
 ............................................... (17) 

j
2
  

n n 1ntL u j
2

 
 
 
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  n n nntL I L u
2

 
 

 
 .............................. (18) 

j
3
  n n 2ntL u j

2

 
 
 

 

  n n n nn nt t
L I L I L u

2 2

    
   

  
 .......... (19) 

j
4
  L

n
(u

n
 + tnj

3
) ...................................... (20) 

vn+1  un + nt

6


(j

1
 + 2j

2
 + 2j

3
 + j

4
) 

Thus, v
n+1

  P4(tnL
n
)u

n
, where following (5) 

P4(tnL
n
)  

3

8
I + 

1

3
(I + L) + 

1

4
(I + L)

2
 + 

1

24
(I + L)

4
 

Since the CFL condition (5) implies the strong 

stability of forward-Euler, i.e., ||I + tnL
n
||  1, 

it follows that ||P4(tnL
n
)||  

3

8
+

1

3
+

1

4
+

1

24
1. 

Thus: 

|v
n+1

|  |u
n
| ........................................... (22) 

Next, we turn to include the time dependence. 

We need to measure the difference between 

the exact and the 'frozen' intermediate values 

the k’s and the j’s. We have: 

k
1
  j

1
  0 .................................................. (23) 

k
2
j

2
  

1
2

n n n nntL(t ) L(t ) I L u
2

   
   

  
 . (24) 

k
3
j

3
  

1
2

n 2 2ntL(t ) (k j )
2

 
   

1
2

n n 2ntL(t ) L(t ) j
2

  
 

 
................ (25) 

k
4
  j

4
  n 1 3 3

nL(t ) t (k j )     

1
2

n n 3
nL(t ) L(t ) t j

 
  

 
 ............... (26) 

Lipschitz continuity (14) and the strong 

stability of forward Euler imply: 

|k
2 
 j

2
|  n

n

K t

2 (t )




|u

n
|  K|u

n
| ...................... (27) 

Also, since ||L
n
||

n

1

(t )
. We find from (18) that 

|j
2
|  |u

n
|/(t

n
), and hence (25) followed by (27) 

and the CFL condition (15) imply: 

|k
3
  j

3
|  n

n

t

2 (t )




|k

2 
 j

2
| + n

n

K t

2 (t )





n
n

t

2 (t )




|u

n
| 

  2K

2

n
n

t

2 (t )

 
   

|u
n
| 

  2K|u
n
| ......................................... (28) 

Finally, since by (19), j
3
 does not exceed |j3|  

n

1

(t )

n nn
n

t
I L | u |

2 (t )

 
   

, we find from (26) 

followed by (28) and the CFL condition (15): 

|k
4
  j

4
|  n

n

t

(t )




|k

3
  j

3
| + n

n

K t

2 (t )




 

n nn
n

t
I L | u |

2 (t )

 
   

 

 K

3 2

n n
n n

t t

(t ) (t )

                  

|u
n
| 

 12K|u
n
| ........................................ (29) 

we conclude that: 

u
n+1

  v
n+1

 + nt

6


[2(k

2
j

2
) + 2(k

3
j

3
) + (k

4
j

4
)] 

is upper bounded by, consult (22), (270)-(29) 

|u
n+1

|  |v
n+1

| + nt

6


[2K|u

n
| + 4K|u

n
| + 12K|u

n
|] 

 (1 + 3Ktn)|u
n
| 

and the results follows.     
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