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Abstract 

The displacement of two-dimensional thin structure problem is formulated in terms of integral 

equations, and an efficient numerical method is developed based on boundary element method. 

Good results are obtained by studying simple test problem. 

 

Introduction 

The numerical analysis of thin structures, 

especially thin structures with ultrathin 

thickness has long been a difficult problem in 

history. Earlier methods for thin structures 

analysis are based on Finite Element Method 

(FEM) theories, in which, there are two 

disadvantages of such theories. First, their 

applications are limited to case of simple 

geometry. Second, the special formulation 

base on different kinds of assumptions may be 

only correct for some rang of thickness. The 

Boundary Element Method (BEM) is a 

numerical method to solve the boundary value 

problem by the Boundary Integral Equation 

(BIE) method. It’s name appeared in the late 

seventies in an attempt to make analogy with 

(FEM). In the (BEM), only the boundary of 

the domain to be analyzed has to be 

discretised, in which (FEM) is implemented, 

and the subdivision of the whole domain is 

required. However, only linear elastic and 

homogeneous domains can be analyzed if the 

boundary discretization is used, non- linear 

problems can be analyzed by the (BEM) but 

require an additional discretization of the 

domain for the integrals evaluation(for more 

details, see [1-4]) 

An extensive searches effort has been 

made in (BIE) formulations of problems and 

their numerical solution schemes. Today, the 

BIE/BEM has gained a great deal of 

application in many fields such as optimization 

and inverse problems. 

In this paper, we consider the problem of 

determining the displacement field throughout 

a finite plane domain. The formulation in 

terms of integral equations and new numerical 

approach using BEM for solving such problem 

is presented. 
 

The Problem Formulation 

The potential problem was first formulated 

in terms of a direct (BIE) and solved 

numerically thirty years ago. We are 

introducing here, the in the function  

x    
Where   and   are harmonic functions. 

For more details see [6]. 

In this paper, we are presenting a different 

formulation slightly from that proposed in [6], 

in which the dangers of an ill-conditioning 

could happened, so the logarithmic potential 

representation is ascribed to / y   rather 

than to / y  , avoiding the dangers of ill-

conditioning which are characteristic of non-

singular Fredholm integral equations of the 

first kind. 

We introduce the simple-layer logarithmic 

potential representation  

( ) log q (q)dq


      ............... (1) 

for   at a point p, in B B , together 

with a similar representation  

(P)
log / p q / s(q)dq

y



 


  ............... (2) 

for / y  , here q represent a point on the 

boundary B , dq is the differential increment 

of the boundary at q, and are simple source 

densities. The corresponding conjugate 

harmonic functions (see [6] and [7]) are: 

(p) O / P q / (q)dq


     ................ (3) 

and  

(P)
log / p q / s(q)dq

y



 


  ............... (4) 

where  (p  q) is the angle between the 

vector p  q an some fixed direction, e.g. the 
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x-axis. The derivative of with respect to x, in 

the domain B, is: 

x

(p)
log | p q | (q) (p)

x



   


  ........ (5) 

where xlog | p q | denotes the x-derivative 

of log | p q | at the point p. On the boundary 

B , assumed to be smooth at p, this becomes: 

t
y

(p)
log | p q | (q)dq ny (p) (p)

y



    




 

 ............................... (6) 

where the prime denotes differentiation 

along the normal to B  directed into B.  

Similarly, we have  

y

(p)
log | p q | (q)dq

y



  


 ............. (7) 

at a point p in B, and  

t
y

(p)
log | p q | (q)dq ny (p) (p)

y



    


   

 ............................... (8) 

when p lies on B , provided that   is 

declined in an appropriable manner [6] and 

[8]. 

The representations (3) and (4) are 

continuous in B , as are the logarithmic 

potentials (1) and (2). Therefore, given u, v as 

the displacement component in the directions 

of Cartesian coordinate axes x, y on ,  is 

represented in terms of the Airy stress function 
 , see [5]: 

2 u (1 r)H
x


   


 .......................... (9) 

2 (1 r)H
y


   




 

where H and   are conjugate harmonic 

functions such that  

y

H

x

H











 ..................................... (10) 

and they correspond respectively to the 

real and imaginary parts of an analytic 

function, when the equality in (10) is simply 

one of the Cauchy-Riemann equations (the 

other being 
H H

y x

 


 



 ). 

Combine the expressions (1)-(4) with (6)-

(8) yields a pair of coupled integral equations 

for the two source densities   and  . 

x

2 ( 2r) log | p q | (q)dq

x log | p q | (q)dq nx (p) (p)





      

    




 

| p q | s(q)dq


    ........................ (11)  

y

2 2( r) O | p q | (q)dq

x log | p q | (q)dq ny(p) (p)





      

    




  

log | p q | s(q)dq


   

where a and are unknown constants, 

defined as a  (1  v)b and B  (1  v)c, with b 

and c are arbitrary constants.  

By solving equations (11), for , ,    and 

, we may compute ,
y





, etc., 

From (1), (3), etc., and hence obtain u and 

y at any point p in B. 

 

The Solution Approach 

In general, the analytical solution to the 

boundary integral equations (11) of 

complicated shape is very difficult to be obtain 

and numerical method which reduces 

The integral equation to linear algebraic 

equations has to be used. In order to solve the 

integral equation numerically, the boundary 

will be discretized into a series of elements 

over which displacements are written in terms 

of their values at a series of points. Writing the 

discretized form of (11) for every point, a 

system of linear algebraic equations is 

obtained. Once the boundary condition is 

applied, the system can be solved to obtain all 

the unknown values and consequently an 

approximate solution to the boundary values is 

obtained. Also, it is ell known in the BIE/BEM 

literatures, will degenerate when it is applied 

to cracks or thin voids in structures because of 

the closeness of the two crack surfaces [5] and 

[8]. 

In order to implement our formulation 

numerically, we divide the boundary into n 

intervals, not necessarily equation in each of 

the two crack surfaces [5] and [8]. 

In order to intervals, not necessarily 

equation in each of which we approximate the 

source densities and by constants. Denoting 
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these constants by and n, we thus approximate 

( )   by: 

( ) log | p q | (q)dq


      ............... (12) 

where 



 indicates integration over the 

interval. Similarly we approximate: 

(P)
log / p q / s(q)dq

y



 


  ............. (13) 

and (p)  by: 

n
jj 1

j

(p) (p q)dq


     


 ................ (14) 

and 

n
jj 1

j

(p)
(p q)dq

x 


   


   ................ (15) 

when P lies in B, we approximate  

n
jj 1

j

(p)
log | p q | dq

x 


  


  ........... (16) 

Also, on the boundary  , at a point q in 

the i-th interval, we approximate similarly. 

n1
j x 1 1 1j 1

j

(q )
log | q q | dq nx(q )

x 


    


 

 
 ............................. (17) 

With these approximations, equations (11), 

applied at one "nodal" point q in each interval, 

i  1, 2, ..., n, yield 2n simultaneous linear 

equations in the 2n + 2 unknowns j and j  

1,2,…,n, and a and B. Two further equations 

can be obtained by discretizing given 

conditions to have  
n

j jj 1
/ h


   and 

n
j jj 1
h


    ..... (18) 

where h is the length of the jth interval           

of. Substitution of the solution of the resuling 

system  of equations  back in to  the  discrete  

 

 

 

 

 

 

 

 

 

 

 

 

 

form of equations (11) yields approximations 

and to the displacement components u and y at 

any point p in B. 

 

Numerical Verification 

To verify the method developed above, a 

program is developed, and simple test problem 

is studied in which our approximated solution 

compared with the exact FEM solutions.  

A thin plate under pressure show a in the 

figure below is studied, see [5]. We assume the 

length of the plate in z-direction is iarge so 

that the problem can be simplified as a plate 

strain problem, with the constant length in x-

direction, while the thickness is slightly 

change from position to another. However, it 

is of more interest here to verify the validity 

and effectiveness of the developed BEM 

approach for such two-dimensional thin 

structures. The boundary of the plate is 

discretized with only four-quadratic boundary 

elements with given constant length, and the 

other two  

Element with thickness varying between 

upper and lower bound which are known.  

On node 1; 3 displacement in y direction is 

constrained. on node 2, displacement 

component in both x, y direction are 

constrained. The displacement of node 5 is in 

x direction. The displacement result deteriorate 

quickly as the thickness decreases. whereas the 

stress component result are even more 

accurate, in which, almost reproducing the 

exact values for all range thickness values. The 

prove that the developed analytical work in the 

BEM procedure is effective. The finite 

element analysis of this simple problem was 

also attempted, but it was soon found out that 

the number of the two-dimensional finite 

element were so large that the task quickly 

exceed the capacity of the computer used. 
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Fig. (1): Thin plate under constant pressure p (2-D plain strain model, shear modulus Pa, 

Poisson's ratio y  0.2). 
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