On Finding the Coefficients of the Ehrhart Polynomials c_{d-9} of a Polyhedron in \mathfrak{R}^{d}

Ahlam J. Khaleel ${ }^{*}$ and Shatha A. Al-Najjar**
*Al- Nahrain University.
**University of Technology.

Abstract

Computing the volume and integral points of a polyhedron in \mathfrak{R}^{d} is a very important subject in different areas of mathematics, such as: number theory, toric Hilbert functions, Kostant's partition function in representation theory, Ehrhart polynomial in combinatorics, cryptography, integer programming, statistical contingency and mass spectroscope analysis. Therefore a method for finding the coefficients of this polynomial are to be listed. A program in visual basic language is made for finding the general differentiation of the function that are used for finding the coefficients $\mathrm{C}_{\mathrm{d}-9}$ of the Ehrhart polynomials.

Keywords: Ehrhart polynomial , polytope,volume, integral points.

1. Introduction

The Ehrhart polynomial of a convex lattice polytope counts the number of integral points in an integral dilate of the polytope. E. Ehrhart proved that, the function which counts the number of lattice points that lie inside the dilated polytope $t P$ is a polynomial in t and it is denoted by $\mathrm{L}(\mathrm{P}, \mathrm{t})$, which is the cardinal of $\left(t P \cap \mathrm{Z}^{d}\right)$ where Z^{d} is the integer lattice in \mathfrak{R}^{d}. From the definitions of the Ehrhart polynomial, the leading coefficient is the volume of the polytope and the constant term is one; these are termed as the trivial coefficient of the Ehrhart polynomial, the other coefficients are nontrivial, [1].
In this work we present a method for computing the coefficients of the Ehrhart polynomial that depends on the concepts of Dedekind sum and residue theorem in complex analysis. General formula that counts the derivatives in the introduced method is given. For our knowledge this method seems to be new.

2. Formulation of this method:

Before we discuss the method we need the following concepts:

Theorem (1), [2]:

Let $\mathrm{P} \subset \mathfrak{R}^{d}$ be a lattice d-polytope, with the Ehrhart polynomial $\mathrm{L}(\mathrm{P}, \mathrm{t})=\sum_{i=0}^{d} c_{i} t^{i}$. Then c_{d} is the volume of P , while the constant term
is one, which is equal to the Euler characteristic of P .

The other coefficients of $\mathrm{L}(\mathrm{P}, \mathrm{t})$ are not easily accessible. In fact, a method of computing these coefficients was unknown until quite recently, [1], [3] and [4].

2.1 Counting integral points using Dedekind sums

In this section we describe the relation between the Dedekind sum and the Ehrhart polynomial of a polytope and discussed a theorem that counts the number of integral points in a polytope.

Recall that the Dedekind sum of two relatively prime positive integers a and b, denoted by $S(a, b)$, is defined as
$S(a, b)=\sum_{i=1}^{b}\left(\left(\frac{i}{b}\right)\right)\left(\left(\frac{a i}{b}\right)\right)$
where $\quad((x))=\left\{\begin{array}{ll}x-\lfloor x\rfloor-\frac{1}{2} & \text { if } x \notin \mathrm{Z} \\ 0 & \text { if } x \in \mathrm{Z}\end{array} \quad\right.$ and
$\lfloor x\rfloor$ is the greatest integer $\leq x$.

Remark (1):

The discrete Fourier expansions can be used to rewrite the Dedekind sum in terms of the Dedekind cotangent sum, that is, for two relatively prime positive integers a and b :
$S(a, b)=\frac{1}{4 b} \sum_{k=1}^{b-1} \cot \left(\frac{\pi k a}{b}\right) \cot \left(\frac{\pi k}{b}\right)$
where $S(a, b)$ is the Dedekind sum of a and b, [5, p. 72].

2.2 Counting integral points using the residue theorem

This section is concerned with a method given in [6] to count the integral points of a given polytope by means of the residue theorem.

Theorem (2), [6]:

Let P be a polytope defined as $P=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathfrak{R}^{d}: \sum_{k=1}^{d} \frac{x_{k}}{a_{k}} \leq 1\right.$ and $\left.x_{k}>0\right\}$
with vertices
$(0,0, \ldots, 0),\left(\mathrm{a}_{1}, 0, \ldots, 0\right)$,
$\left(0, a_{2}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, a_{d}\right)$, where
a_{1}, \ldots, a_{d} are positive integers, and $f_{-t}(z)$ and Ω are defined as
$f_{-t}(z)=\frac{z^{-t A}-1}{\left(1-z^{A_{1}}\right)\left(1-z^{A_{2}}\right) \ldots\left(1-z^{A_{d}}\right)(1-z) z}$,
and
$\Omega=\left\{z \in C \backslash\{1\}: z^{\frac{A}{a_{k} a_{j}}}=1,1 \leq k<j \leq d\right\}$, then $L(P, t)=1-\operatorname{Re} s\left(f_{-t}(z), z=1\right)-$

$$
\sum_{\lambda \in \Omega} \operatorname{Re} s\left(f_{-t}(z), z=\lambda\right)
$$

2.3 The Ehrhart Coefficients

In this section, some details for deriving formula of Ehrhart coefficients are given. For each coefficient of the Ehrhart polynomial $L(P, t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\ldots+c_{0}$

A formula for finding these coefficients can be derived with a small modification of $f_{t}(z)$.
Consider the function,
$g_{k}(z)=\frac{\left(z^{-t A}-1\right)^{k}}{\left(1-z^{A_{1}}\right)\left(1-z^{A_{2}}\right) \ldots\left(1-z^{A_{d}}\right)(1-z) z}$
$g_{k}(z)=\frac{\sum_{j=0}^{k}\left(\begin{array}{l}k \\ j\end{array} z^{-t A(k-j)}(-1)^{j}\right.}{\left(1-z^{A_{1}}\right)\left(1-z^{A_{2}}\right) \ldots\left(1-z^{A_{d}}\right)(1-z) z}$
If $-\sum_{j=0}^{k}\binom{k}{j}(-1)^{j}=0 \quad$ is inserted in the
numerator of the above equation, we get
$g_{k}(z)=\frac{\sum_{j=0}^{k}\binom{k}{j} z^{t A(k-j)}(-1)^{j}-\sum_{j=0}^{k}\binom{k}{j}(-1)^{j}}{\left(1-z^{A_{1}}\right)\left(1-z^{A_{2}}\right) \ldots\left(1-z^{A_{d}}\right)(1-z) z}$

$$
\begin{aligned}
g_{k}(z) & =\sum_{j=0}^{k-1} \frac{\binom{k}{j}(-1)^{j}\left(z^{-t A(k-j)}-1\right)}{\left(1-z^{A_{t}}\right)\left(1-z^{A_{2}}\right) \ldots\left(1-z^{A_{d}}\right)(1-z) z} \\
& =\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{j} f_{-t(k-j)}(z)
\end{aligned}
$$

Recall that,
$L(P, t)=\operatorname{Re} s\left(f_{-t}(z), z=0\right)+1$, using this relation, we obtain,
$\operatorname{Re} s\left(g_{k}(z), z=0\right)=\operatorname{Re} s\left(\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{j} f_{-(t k-j)}(z), z=0\right)$
$=\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{j} \operatorname{Re} s\left(f_{-t(k-j)}(z), z=0\right)$
$=\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{j}(L(P,(k-j) t)-1)$
$=\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{j}\left(L(P,(k-j) t)-\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{j}\right.$
$g_{k}(z)=\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{j}\left(L(P,(k-j) t)+(-1)^{k}\right.$
The following lemma is needed to derive the formula of the coefficients of the Ehrhart polynomial. But, before that we give the definition of the Stirling number of the second kind and its properties.

Lemma (1), [6]:

Suppose that
$L(P, t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\ldots+c_{0}$, then for $1 \leq k \leq d$
$\operatorname{Re} s\left(g_{k}(z, z=0)=k!\sum_{m=k}^{d} S_{2}(m, k) c_{m} t^{m} \quad\right.$ where $S_{2}(m, k)$ denotes the Stirling number of the second kind of m and k and $\mathrm{c}_{0}=1$.

Theorem (3), [6]:

Let P be a lattice d-polytope given by expression (1), with the Ehrhart polynomial $L(P, t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\ldots+c_{0}$, then for $1 \leq k \leq d$
$\sum_{m=k}^{d} S_{2}(m, k) c_{m} t^{m}$
$=\frac{-1}{k!}\left(\operatorname{Re} s\left(g_{k}(z), z=1\right)\right.$
$\left.+\sum_{\lambda \in \Omega_{k}} \operatorname{Re} s\left(g_{k}(z), z=\lambda\right)\right)$
$\Omega_{k}=\left\{z \in C \backslash\{1\}: z^{\frac{A}{a_{j} . a_{j_{k+1}}}}=1\right.$,
$\left.1 \leq j_{1}<j_{2}<\ldots<j_{k+1} \leq d\right\}$

Corollary (1), [6]:

For $\mathrm{m}>0, c_{m}$ is the coefficient of t^{m} in
$\frac{-1}{m!}\left(\operatorname{Re} s\left(g_{m}(z), z=1\right)\right.$
$\left.+\sum_{\lambda \in \Omega_{m}} \operatorname{Re} s\left(g_{m}(z), z=\lambda\right)\right)$

Theorem (4) [6]:

Let $\mathrm{P} \subset \mathfrak{R}^{d}$ be a lattice d-polytope, with vertices $(0,0, \ldots, 0),\left(a_{1}, 0, \ldots, 0\right), \ldots,\left(0,0, \ldots, a_{d}\right)$
where $a_{1}, a_{2} \ldots, a_{d}$ are pairwise relatively prime integers. The first nontrivial Ehrhart coefficients $c_{d-2}, \mathrm{~d} \geq 3$ is given by,
$\mathrm{c}_{\mathrm{d}-2}=\frac{1}{(\mathrm{~d}-2)!}\left(\mathrm{C}_{\mathrm{d}}-\mathrm{S}\left(\mathrm{A}_{1}, \mathrm{a}_{1}\right)\right.$
$\left.-\ldots-\mathrm{S}\left(\mathrm{A}_{\mathrm{d}}, \mathrm{a}_{\mathrm{d}}\right)\right)$
where $S(a, b)$ denotes the Dedekind sum and
$\mathrm{C}_{\mathrm{d}}=\frac{1}{4}\left(\mathrm{~d}+\mathrm{A}_{1,2}+\ldots+\mathrm{A}_{\mathrm{d}-1, \mathrm{~d}}\right)$
$+\frac{1}{12}\left(\frac{1}{\mathrm{~A}}+\frac{\mathrm{A}_{1}}{\mathrm{a}_{1}}+\ldots+\frac{\mathrm{A}_{\mathrm{d}}}{\mathrm{a}_{\mathrm{d}}}\right)$
$\mathrm{A}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{d}}, \mathrm{A}_{\mathrm{k}}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \hat{\mathrm{a}}_{\mathrm{k}} \ldots \mathrm{a}_{\mathrm{d}}$ (where \hat{a}_{k} means the factor a_{k} is omitted), and $A_{j, k}$ denotes $a_{1} . . \hat{a}_{j} \ldots \hat{a}_{k} \ldots a_{d}$.

3.Computing c_{d-9} of The Ehrhart

Polynomial using visual basic program
As seen before, the leading coefficient of the Ehrhart polynomial represents the volume of the polytope, the second coefficient represents half of the surface area of the polytope and the constant term is one, while the other coefficients are unknown.

In this section we find the non trivial coefficients c_{d-9} for the d -polytope with
$d \geq 10$, where P is represented by a list of vertices
$(0,0, \ldots, 0),\left(a_{1}, 0, \ldots, 0\right)$,
$\left(0, a_{2}, 0, \ldots, 0\right), \ldots,\left(0,0, \ldots, 0, \mathrm{a}_{\mathrm{d}}\right)$, such that a_{1}, \ldots, a_{d} are pairwise relatively prime positive integers.
By corollary (1), if we define $g_{d-9}(z)$ as
$g_{d-9}(z)=\frac{\left(z^{-t A}-1\right)^{d-9}}{\left(1-z^{A_{1}}\right)\left(1-z^{A_{2}}\right) \cdots\left(1-z^{A_{d}}\right)(1-z) z}$
where $A=a_{1} a_{2} \cdots a_{d}$,
$\mathrm{A}_{\mathrm{k}}=\mathrm{a}_{1} \mathrm{a}_{2} \cdots \hat{\mathrm{a}}_{\mathrm{k}} \cdots \mathrm{a}_{\mathrm{d}}$ and $\hat{\boldsymbol{a}}_{\boldsymbol{k}}$ means that the factor a_{k} is omitted, then the poles of the function $g_{d-9}(z)$ are at $\mathrm{z}=0,1$ and the roots of unity.

We find the residues of the function $g_{d-9}(z)$ at these poles.

Since a_{1}, \ldots, a_{d} are pairwise relatively prime therefore $g_{d-9}(z)$ has simple poles at $a_{1}, \ldots, a_{d}-$ th roots of unity. Let $\lambda^{a_{1}}=1 \neq \lambda$ and since, $A=a_{1} \cdots a_{d}, A_{1}=a_{2} a_{3} \cdots a_{d}, \ldots$, $A_{d}=a_{1} a_{2} \cdots a_{d-1}$, therefore
$g_{d-9}(z)=\frac{\left(z^{t\left(a_{1}-a_{d}\right)}-1\right)^{d-9}}{\left(1-z^{a_{2}-a_{d}}\right)\left(1-z^{a_{1} a_{3}-a_{d}}\right) \cdots\left(1-z^{a_{1} a_{2}-a_{d-1}}\right)(1-z) z}$
Now at $z=\lambda$,
$1-\lambda^{a_{2}-a_{d}} \neq 0$ and $1-\lambda \neq 0$.
Therefore
A change of variables $z=\omega^{1 / a_{1}}=\exp \left(\frac{1}{a_{1}} \log \omega\right)$
is made, where a suitable branch of logarithm such that $\exp \left(\frac{1}{a_{1}} \log (1)\right)=\lambda$, thus
$\operatorname{Re} s\left(g_{d-9}(z), z=\lambda\right)=\frac{1}{\left(1-\lambda^{1}\right)(1-\lambda) \lambda} \frac{\lambda}{a_{1}}$

$$
\operatorname{Res}\left(\frac{\left(\omega^{-1 B}-1\right)^{d-9}}{\left(1-\omega^{B_{2}}\right) \ldots\left(1-\omega^{B_{d}}\right)}, \omega=1\right)
$$

where

$$
\mathrm{B}=\mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{\mathrm{d}}, \mathrm{~B}_{\mathrm{k}}=\mathrm{a}_{2} \mathrm{a}_{3} \ldots \hat{\mathrm{a}}_{\mathrm{k}} \ldots \mathrm{a}_{\mathrm{d}}
$$

Since
$\operatorname{Re} s(f(z), z=1)=\operatorname{Re} s\left(e^{\mathrm{Z}} f\left(e^{\mathrm{Z}}\right), z=0\right)$, then
$\operatorname{Re} s\left(\frac{\left(z^{-t B}-1\right)^{d-9}}{\left(1-z^{B_{2}}\right) \ldots\left(1-z^{B_{d}}\right)}, z=1\right)$
$=\operatorname{Re} s\left(\frac{e^{Z}\left(e^{-t B Z}-1\right)^{d-9}}{\left(1-e^{B_{2} Z}\right) \ldots\left(1-e^{B_{d} Z}\right)}, z=0\right)$
Let $\alpha=\mathrm{tB}$, then
$\operatorname{Re} s\left(\frac{e^{z}\left(e^{-t B z}-1\right)^{d-9}}{\left(1-e^{B_{2} z}\right) \ldots\left(1-e^{B_{d} z}\right)}, z=0\right)=$
$\operatorname{Re} s\left(\frac{e^{z}\left(e^{-\alpha z}-1\right)^{d-9}}{\left(1-e^{B_{2} z}\right) \ldots\left(1-e^{B_{d} z}\right)}, z=0\right)$.
By writing the Maclaurin series for exponential function one can get,

after simple computations the above residue can be written as,
$\operatorname{Res}\left(\frac{(-\alpha)^{d-9} e^{Z}}{\left(-B_{2}\right) \cdots\left(-B_{d}\right) z^{-d+\theta+d-1}}\left[\frac{\left(1-\frac{(\alpha Z)}{2!}+\frac{(\alpha Z)^{2}}{3!}-\ldots\right)^{d-9}}{\left(1+\frac{\left(B_{2} Z\right)}{2!}+\frac{\left(B_{2} Z\right)^{2}}{3!} \ldots\right) \cdots\left(1+\frac{\left(B_{d} Z\right)}{2!}+\frac{\left(B_{d} Z\right)^{2}}{3!}+\ldots\right)}\right], Z=0\right)$
Let
$I=\left(1-\frac{\alpha}{2!} z+\frac{\alpha^{2}}{3!} z^{2}-\frac{\alpha^{3}}{4!} z^{3}+\ldots\right)^{d-9}$
$J_{2}=\left(1+\frac{B_{2}}{2!} z+\frac{B_{2}^{2}}{3!} z^{2}+\frac{B_{2}^{3}}{4!} z^{3}+\ldots\right)^{-1}$
$J_{3}=\left(1+\frac{B_{3}}{2!} z+\frac{B_{3}^{2}}{3!} z^{2}+\frac{B_{3}^{3}}{4!} z^{3}+\ldots\right)^{-1}$
:
$J_{d}=\left(1+\frac{B_{d}}{2!} z+\frac{B_{d}^{2}}{3!} z^{2}+\frac{B_{d}^{3}}{4!} z^{3}+\ldots\right)^{-1}$
then
$\operatorname{Re} s\left(\frac{e^{Z}\left(e^{-\alpha Z}-1\right)^{d-9}}{\left(1-e^{B_{Z} Z}\right) \ldots\left(1-e^{B_{\Delta} Z}\right)}, \mathrm{Z}=0\right)$
$=\operatorname{Res}\left[\frac{(-\alpha)^{\alpha-\theta} e^{Z}}{\left(-B_{2}\right) \cdots\left(-B_{d}\right) Z^{8}}\left(I J_{2} \cdots J_{d}\right), Z=0\right]$
for the function
$\frac{(-\alpha)^{d-9} e^{Z}}{\left(-B_{2}\right) \cdots\left(-B_{d}\right) z^{8}}\left(I J_{2} \cdots J_{d}\right)$
we have a pole of order two at zero.
Let $\phi(z)=e^{Z} I J_{2} J_{3} \cdots J_{d}$, and
$\gamma=\frac{(\alpha)^{d-9}}{\left(-B_{2}\right) \ldots\left(-B_{d}\right)}$

After simple computations on γ, we get $\gamma=\frac{t^{d-9}}{B}$. By the formula for finding the residues, if we consider
$f(z)=\frac{\gamma \phi(z)}{z^{8}}$,then $\operatorname{Re} s(f(z), z=0)=\frac{\phi^{(8)}(0) \gamma}{9!}$, where

$$
\phi^{\prime}(z)=\phi(z)+e^{Z} I^{\prime} J_{2} J_{3} \cdots J_{d}+\ldots+e^{Z} I J_{2} J_{3} \cdots J_{d}^{\prime} .
$$

Let
$K_{1}=e^{Z} I^{\prime} J_{2} J_{3} \cdots J_{d}$,
$K_{2}=e^{Z} I J_{2}^{\prime} J_{3} \cdots J_{d}, \ldots$,
$K_{d}=e^{Z} I J_{2} J_{3} \cdots J_{d}^{\prime}$
therefore
$\phi^{\prime}(z)=\phi(z)+K_{1}+K_{2}+\ldots+K_{d}$ at $\mathrm{z}=0$, we compute $\phi^{(8)}(0)$, let $D=\frac{\phi^{(8)}(0)}{8!B}$
therefore, $\operatorname{Re} s(f(z), z=0)=D \gamma$
$\operatorname{Re} s\left(g_{d-9}(z), z=\lambda\right)=\frac{D}{a_{1}\left(1-\lambda^{A_{1}}\right)(1-\lambda)} t^{d-9}$.
all the a_{1}-th roots of unity $\neq 1$ are added up to get

$$
\sum_{\lambda^{2}|=|=\lambda \lambda} \operatorname{Re} s\left(g_{d-9}(\mathrm{Z}), \mathrm{Z}=\lambda\right)=\frac{D t^{d-9}}{a_{1}} \sum_{\lambda^{2}=1=1 \times \lambda} \frac{1}{\left(1-\lambda^{A}\right)(1-\lambda)} .
$$

Let ξ be a primitive $a_{1}-t h$ roots of unity, therefore

$$
\begin{aligned}
& \frac{D t^{d-9}}{a_{1}} \sum_{\lambda^{a_{1}}=1 \neq \lambda} \frac{1}{\left(1-\lambda^{A_{1}}\right)(1-\lambda)} \\
& =\frac{D t^{d-9}}{a_{1}} \sum_{k=1}^{a_{1-1}} \frac{1}{\left(1-\xi^{k A_{1}}\right)\left(1-\xi^{k}\right)}
\end{aligned}
$$

then

$$
\begin{aligned}
& \frac{1}{a_{1}} \sum_{k=1}^{a_{1}-1} \frac{1}{\left(1-\xi^{k a_{1}}\right)\left(1-\xi^{k}\right)} \\
& =\frac{1}{a_{1}} \sum_{k=1}^{a_{1} 1} \frac{\xi^{k \alpha_{1}}-\xi^{k a_{1}}+1+1}{2\left(1-\xi^{k a_{1}}\right)} \cdot \frac{\xi^{k}-\xi^{k}+1+1}{2\left(1-\xi^{k}\right)} \\
& =\frac{1}{4 a_{1}} \sum_{k=1}^{a_{1}-1}\left(1+\frac{1+\xi^{k a_{1}}}{1-\xi^{k a_{1}}}\right) \cdot\left(1+\frac{1+\xi^{k}}{1-\xi^{k}}\right) \\
& =\frac{1}{4 a_{1}} \sum_{k=1}^{a_{1}-1}\left(1+\frac{1+\xi^{k}}{1-\xi^{k}}+\frac{1+\xi^{k a_{1}}}{1-\xi^{k a_{1}}}+\frac{1+\xi^{k k_{1}}}{1-\xi^{k a_{1}}} \cdot \frac{1+\xi^{k}}{1-\xi^{k}}\right)
\end{aligned}
$$

$=\frac{1}{4 a_{1}}\left[\sum_{k=1}^{a_{1}-1} 1+\sum_{k=1}^{a_{1}-1}\left(\frac{1+\xi^{k}}{1-\xi^{k}}+\frac{1+\xi^{k A_{1}}}{1-\xi^{k A_{1}}}\right) .\left(\frac{1+\xi^{k}}{1-\xi^{k}} \cdot \frac{1+\xi^{k A_{1}}}{1-\xi^{k A_{1}}}\right)\right]$
$=\frac{1}{4 a_{1}}\left(a_{1}-1\right)+\frac{1}{4 a_{1}}\left[\begin{array}{l}\sum_{k=1}^{a_{1}-1}\left(\frac{1+\xi^{k}}{1-\xi^{k}}+\frac{1+\xi^{k A_{1}}}{1-\xi^{k A_{1}}}\right) \\ +\sum_{k=1}^{a_{1}-1}\left(\frac{1+\xi^{k}}{1-\xi^{k}} \cdot \frac{1+\xi^{k A_{1}}}{1-\xi^{k A_{1}}}\right)\end{array}\right]$
Now, since $\xi=1^{a_{1}}$, then by using the formula for finding the roots in the complex plane, $r_{k}=e^{\frac{2 k \pi}{a_{1}} i}, \mathrm{k}=0,1, \ldots, a_{1}-1$. We obtain
$\sum_{k=1}^{a_{1}-1}\left(\frac{1+\xi^{k}}{1-\xi^{k}}+\frac{1+\xi^{k A_{1}}}{1-\xi^{k A_{1}}}\right)=$
$\sum_{k=1}^{a_{1}-1}\left[\frac{1+e^{\left(\frac{2 k \pi}{a_{1}}\right) i}}{1-e^{\left(\frac{2 k \pi}{a_{1}}\right) i}}+\frac{1+e^{\left(\frac{2 k \pi A_{1}}{a_{1}}\right) i}}{1-e^{\left(\frac{\left(k \pi A_{1}\right.}{a_{1}}\right) i}}\right]$.
and
$\sum_{k=1}^{a_{1}-1}\left(\frac{1+\xi^{k}}{1-\xi^{k}}\right) \cdot\left(\frac{1+\xi^{k A_{1}}}{1-\xi^{k A_{1}}}\right)$
$=\sum_{k=1}^{a_{1}-1}\left[\left(\frac{1+e^{\left(\frac{2 k \pi}{a_{1}}\right) i}}{1-e^{\left(\frac{2 k \pi}{a_{1}}\right) i}}\right) \cdot\left(\frac{1+e^{\left(\frac{2 k \pi A_{1}}{a_{1}}\right) i}}{1-e^{\left(\frac{2 k \pi A_{1}}{a_{1}}\right) i}}\right)\right]$
But $\cot (z)=\frac{\cos (z)}{\sin (z)}=-i\left(\frac{1+e^{2 i z}}{1-e^{2 i z}}\right) \quad$ hence $\sum_{k=1}^{a_{1}-1}\left[\frac{1+e^{\left(\frac{2 k \pi}{a_{1}}\right) i}}{1-e^{\left(\frac{2 k \pi}{a_{1}}\right) i}}+\frac{1+e^{\left(\frac{2 k \pi A_{1}}{a_{1}}\right) i}}{1-e^{\left(\frac{2 k \pi A_{1}}{a_{1}}\right) i}}\right]=$
$\sum_{k=1}^{a_{1}-1} \frac{-1}{i}\left(\cot \frac{\pi k}{a_{1}}+\cot \frac{\pi k A_{1}}{a_{1}}\right)$
and

$$
\begin{aligned}
& \sum_{k=1}^{a_{1}-1}\left(\frac{1+\xi^{k}}{1-\xi^{k}}\right) \cdot\left(\frac{1+\xi^{k A_{1}}}{1-\xi^{k A_{1}}}\right) \\
& =\sum_{k=1}^{a_{1}-1}-\left(\cot \frac{\pi k}{a_{1}} \cdot \cot \frac{\pi k A_{1}}{a_{1}}\right) \\
& =-\sum_{k=1}^{a_{1}-1}\left(\cot \frac{\pi k}{a_{1}} \cdot \cot \frac{\pi k A_{1}}{a_{1}}\right) \\
& \text { therefore } \\
& \frac{1}{4 \mathrm{a}_{1}}\left(\mathrm{a}_{1}-1\right)+ \\
& \frac{1}{4 \mathrm{a}_{1}}\left[\sum_{\mathrm{k}=1}^{\mathrm{a}_{1}-1}\left(\frac{1+\xi^{\mathrm{k}}}{1-\xi^{\mathrm{k}}}+\frac{1+\xi^{\mathrm{kA}}}{1-\xi^{\mathrm{kA}}}\right)+\sum_{\mathrm{k}=1}^{\mathrm{a}_{1}-1}\left(\frac{1+\xi^{\mathrm{k}}}{1-\xi^{\mathrm{k}}} \cdot \frac{1+\xi^{\mathrm{kA}}}{1-\xi^{\mathrm{kA}}}\right)\right. \\
& =\frac{1}{4 a_{1}}\left(a_{1}-1\right)+\frac{\mathrm{i}}{4 \mathrm{a}_{1}} \sum_{\mathrm{k}=1}^{\mathrm{a}_{1}-1}\left(\cot \frac{\pi \mathrm{k}}{\mathrm{a}_{1}}+\cot \frac{\pi \mathrm{kA}}{\mathrm{a}_{1}}\right) \\
& -\frac{1}{4 a_{1}} \sum_{k=1}^{a_{1}-1}\left(\cot \frac{\pi k k}{a_{1}} \cdot \cot \frac{\pi k A_{1}}{a_{1}}\right)
\end{aligned}
$$

The imaginary terms disappear, and then the above equation can be written as

$$
\begin{aligned}
& \frac{1}{4}-\frac{1}{4 a_{1}}-\frac{1}{4 a_{1}} \sum_{k=1}^{a_{1}-1}\left(\cot \frac{\pi k}{a_{1}} \cdot \cot \frac{\pi k A_{1}}{a_{1}}\right)=\frac{1}{4} \\
& -\frac{1}{4 a_{1}}-\frac{4 a_{1}}{4 a_{1}} S\left(A_{1}, a_{1}\right)
\end{aligned}
$$

where $S\left(A_{1}, a_{1}\right)$ is the Dedekind sum of A_{1} and a_{1}. Hence
$\sum_{\lambda^{\prime}=1 \geqslant \lambda} \operatorname{Re} s\left(g_{d-3}(\mathrm{Z}), \mathrm{Z}=\lambda\right)=D t^{d-3}\left(\frac{1}{4}-\frac{1}{4 a_{1}}-S\left(A_{1}, a_{1}\right)\right)$
Similar expressions are obtained for the residues at the other roots of unity.
Now we find the residue at $g_{d-9}(z)$ at $\mathrm{z}=1$, we have
$\operatorname{Re} s\left(g_{d-9}(z), z=1\right)=\operatorname{Re} s\left(e^{\mathrm{Z}} g_{d-9}\left(e^{\mathrm{Z}}\right), z=0\right)$ then
$\operatorname{Re} s\left(g_{d-9}(z), z=1\right)=$
$\operatorname{Re} s\left(\frac{e^{Z}\left(e^{-A Z Z}-1\right)^{d-9}}{\left(1-e^{A_{Z} Z}\right)\left(1-e^{A_{Z} Z}\right) \ldots\left(1-e^{A_{Z} Z}\right)\left(1-e^{Z}\right) e^{Z}}, z=0\right)$.
By writing the Maclaurin series for exponential function we get,

where $\alpha=t A$, then the above residue becomes
$\operatorname{Res}\left(\frac{(\alpha)^{\alpha-9}}{\left(A_{i}\right) \cdots\left(A_{d} Z^{10}\right.}\left[\frac{\left(1-\frac{(\alpha Z)}{2!}+\frac{(\alpha Z)^{2}}{3!}-\ldots\right)^{d-9}}{\left(1+\frac{\left(A_{A} Z\right)}{2!}+\frac{\left(A_{t} Z\right)^{2}}{3!} \cdots \cdots\left(1+\frac{\left(A_{d} Z\right)}{2!}+\frac{\left(A_{d} Z\right)^{2}}{3!}+\ldots\right)\left(1+\frac{Z}{2!}+\frac{Z^{2}}{3!}+\ldots\right)\right.}\right], Z=0\right)$
the function for which we want to find the residue has a pole of order four at zero.
Let
$\phi(Z)=\frac{\left(1-\frac{(\alpha Z)}{2!}+\frac{(\alpha Z)^{2}}{3!}+\ldots\right)^{d-9}}{\left(1+\frac{\left(A_{1} Z\right)}{2!}+\frac{\left(A_{1} Z\right)^{2}}{3!}+\ldots\right) \cdots\left(1+\frac{\left(A_{d} Z\right)}{2!}+\frac{\left(A_{d} Z\right)^{2}}{3!} \ldots\right) \cdot\left(1+\frac{Z}{2!}+\frac{Z^{2}}{3!} \ldots\right)}$
$\gamma=\frac{\alpha^{d-9}}{A_{1} \ldots A_{d}}$
and $f(z)=\frac{\gamma \phi(z)}{z^{10}}$
By the formula for finding the residue, we get
$\operatorname{Re} s(f(Z), Z=0)=\frac{\phi^{(9)}(0) \gamma}{9!}$.
Let
$I=\left(1-\frac{\alpha}{2!} Z+\frac{\alpha^{2}}{3!} Z^{2}-\frac{\alpha^{3}}{4!} Z^{3}+\ldots\right)^{d-9}$,
$\mathrm{h}=\left(1+\frac{1}{2!} \mathrm{Z}+\frac{1}{3!} \mathrm{Z}^{2}+\frac{1}{4!} \mathrm{Z}^{3}+\ldots\right)^{-1}$
$J_{1}=\left(1+\frac{A_{1}}{2!} Z+\frac{A_{1}^{2}}{3!} Z^{2}+\frac{A_{1}^{3}}{4!} Z^{3}+\ldots\right)^{-1}$,
$J_{2}=\left(1+\frac{A_{2}}{2!} Z+\frac{A_{2}^{2}}{3!} Z^{2}+\frac{A_{2}^{3}}{4!} Z^{3}+\ldots\right)^{-1}, \ldots$,
and $J_{d}=\left(1+\frac{A_{d}}{2!} z+\frac{A_{d}^{2}}{3!} z^{2}+\frac{A_{d}^{3}}{4!} z^{3}+\ldots\right)^{-1}$.
Then $\phi(Z)=I J_{1} J_{2} \cdots J_{d} h$
and

$$
\begin{aligned}
\phi^{\prime}(Z)= & I^{\prime} J_{1} J_{2} \cdots J_{d} h+I J_{1}^{\prime} J_{2} \cdots J_{d} h+\ldots+ \\
& I J_{1} J_{2} \cdots J_{d}^{\prime} h+I J_{1} J_{2} \cdots J_{d} h^{\prime}
\end{aligned}
$$

let
$K_{1}=I^{\prime} J_{1} J_{2} \cdots J_{d} h, K_{2}=I J_{1}^{\prime} J_{2} \cdots J_{d} h, \ldots$,
$K_{d+1}=I J_{1} J_{2} \cdots J_{d}^{\prime} h$ and
$K_{d+2}=I J_{1} J_{2} \cdots J_{d} h^{\prime}$
hence
$\phi^{\prime}(Z)=K_{1}+K_{2}+\ldots+K_{d+1}+K_{d+2} \quad$ and
$\phi^{\prime \prime \prime}(Z)=K_{1}^{\prime \prime}+K_{2}^{\prime \prime}+\ldots+K_{d+1}^{\prime \prime}+K_{d+2}^{\prime \prime}$ Now,
$I=\left(1-\frac{t A}{2!} Z+\frac{(t A)^{2}}{3!} Z^{2}-\frac{(t A)^{3}}{4!} Z^{3}+\ldots\right)^{d-9}$
therefore
$I^{\prime}(Z)=(d-9)\left[\begin{array}{l}\left(1-\frac{t A}{2!} Z+\frac{(t A)^{2}}{3!} Z^{2}-\frac{(t A)^{3}}{4!} Z^{3}+\ldots\right)^{d-10} \\ \left(-\frac{t A}{2!}+\frac{2(t A)^{2}}{3!} Z+\ldots\right)\end{array}\right]$
Differentiating I^{\prime} to get $I^{\prime \prime}$ and $I^{\prime \prime \prime}$, then put $\mathrm{Z}=0$ in the obtained expression to get
$I(0)=1$

$$
\begin{aligned}
& I^{\prime}(0)=(d-9)\left(\frac{-t A}{2!}\right) \\
& I^{\prime \prime}(0)=(d-9)\left[(d-10)\left(-\frac{t A}{2!}\right)^{2}+\frac{2(t A)^{2}}{3!}\right] \\
& I^{\prime \prime \prime}(0)=(\mathrm{d}-9)\left[(\mathrm{d}-11)(\mathrm{d}-12)\left(-\frac{\mathrm{tA}}{2!}\right)^{3}+\right.
\end{aligned}
$$

$$
\left.(\mathrm{d}-10)(-\mathrm{tA})\left(\frac{2(\mathrm{tA})^{2}}{3!}+(\mathrm{d}-10)\right)\right] \mathrm{F}
$$

$$
\left.\left(\frac{-\mathrm{tA}}{2}\right)\left(\frac{2(\mathrm{tA})^{2}}{3!}+\left(\frac{-3!(\mathrm{tA})^{3}}{4!}\right)\right)\right]
$$

or

$$
\begin{gathered}
J_{1}=\left(1+\frac{A_{1}}{2!} Z+\frac{A_{1}^{2}}{3!} Z^{2}+\frac{A_{1}^{3}}{4!} Z^{3}+\ldots\right)^{-1} \\
\mathrm{~J}_{1}^{\prime}(\mathrm{Z})=-\left(1+\frac{\mathrm{A}_{1}}{2!} \mathrm{Z}+\frac{\mathrm{A}_{1}^{2}}{3!} \mathrm{Z}^{2}+\frac{\mathrm{A}_{1}^{3}}{4!} \mathrm{Z}^{3}+\ldots\right)^{-2} \\
\left(\frac{\mathrm{~A}_{1}}{2!}+\frac{2 \mathrm{~A}_{1}^{2}}{3!} \mathrm{Z}+\frac{3 \mathrm{~A}_{1}^{3}}{4!} \mathrm{Z}^{2}+\ldots\right)
\end{gathered}
$$

Differentiate J^{\prime} to get $J^{\prime \prime}$ and $J^{\prime \prime \prime}$ until $J^{(9)}$, then put $Z=0$ in the obtained expressions to get
$J_{1}(0)=1, \quad J_{1}^{\prime}(0)=-\frac{A_{1}}{2!}, \quad J_{1}^{\prime \prime}(0)=\frac{A_{1}^{2}}{3!} \quad$ and $J_{1}^{\prime \prime \prime}(0)=0$.
In a similar way, we get the other differentiation of $J_{2}, J_{3}, \ldots, J_{d}$ and h, then
$\operatorname{Re} s\left(\frac{(t A)^{d-9}}{\left(A_{1}\right) \cdots\left(A_{d}\right) z^{10}} \phi(Z), Z=0\right)=$
$\frac{(A)^{d-9}}{\left(A_{1}\right) \cdots\left(A_{d}\right)} \frac{t^{d-9}}{9!} \phi^{(9)}(0)$.
Let $C=\frac{(A)^{d-9}}{\left(A_{1}\right) \cdots\left(A_{d}\right)} \cdot \frac{\phi^{(9)}(0)}{9!}$
So by corollary (1) we get for $\mathrm{d} \geq 9, c_{d-9}$, which is the coefficient of t^{d-9} of
$\frac{-1}{(d-9)!}\left(\operatorname{Res}\left(g_{d-9}(Z), Z=1\right)\right.$
$\left.+\sum_{\lambda \in \Omega_{d-9}} \operatorname{Res}\left(\mathrm{~g}_{\mathrm{d}-9}(\mathrm{Z}), \mathrm{Z}=\lambda\right)\right)$
So
$c_{d-9}=\frac{-1}{(d-9)!}\left[D\binom{\frac{d}{9}-\frac{1}{9}\left(\frac{1}{a_{1}}+\ldots+\frac{1}{a_{d}}\right)-}{S\left(A_{1}, a_{1}\right)-\ldots-S\left(A_{d}, a_{d}\right)}-C\right]$
Thus we have proved the following:

Theorem (5):

Let P denote the polytope in $\mathfrak{R}^{d}(d \geq 9)$ with vertices $(0,0, \ldots, 0),\left(a_{1}, 0, \ldots, 0\right), \ldots,\left(0,0, \ldots, a_{d}\right)$ where a_{1}, \ldots, a_{d} are pairwise relatively prime positive integers. Then c_{d-9} is given by
$c_{d-9}=\frac{-1}{(d-9)!}\left[D\binom{\frac{d}{9}-\frac{1}{9}\left(\frac{1}{a_{1}}+\ldots+\frac{1}{a_{d}}\right)-}{S\left(A_{1}, a_{1}\right)-\ldots-S\left(A_{d}, a_{d}\right)}-C\right]$
where $S(a, b)$ is the Dedekind sum of a and b,
$D=\frac{\phi^{(8)}(0)}{8!B}$,
$C=\frac{(A)^{d-9}}{\left(A_{1}\right) \cdots\left(A_{d}\right)} \cdot \frac{\phi^{(9)}(0)}{9!}$,
$\phi(Z)=\frac{\left(1-\frac{(A B Z)}{2!}+\frac{(I B Z)^{2}}{3!}+\ldots\right)^{\mu-9}}{\left(1+\frac{(A, Z)}{2!}+\frac{(A, Z)^{2}}{3!}+\ldots\right) \cdots\left(1+\frac{(A, Z)}{2!}+\frac{(A, Z)^{2}}{3!}+\ldots\right) \cdot\left(1+\frac{Z}{2!}+\frac{Z^{2}}{3!}+\ldots\right)}$
$\mathrm{A}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{d}}, \mathrm{A}_{\mathrm{k}}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \hat{\mathrm{a}}_{\mathrm{k}} \ldots \mathrm{a}_{\mathrm{d}}, \hat{a}_{k}$ means the factor a_{k} is omitted, $B=a_{2} a_{3} \ldots a_{d}$ and $B_{k}=a_{2} a_{3} \ldots \hat{a}_{k} \ldots a_{d}$.

2.6 General formula for the differentiation of

$\mathbf{I}, \mathbf{J}_{1}, \mathbf{J}_{2}, \ldots, \mathbf{J}_{\mathrm{d}}, \mathbf{h}$

In this section, we get a general form for the differentiation of the terms $I, J_{1}, J_{2}, \ldots, J_{d}$ and h that appears throughout the process of finding the coefficients of the Ehrhart polynomial, we begin by considering
$I^{[j]}=e^{Z} I^{(j)} J_{2} J_{3} \cdots J_{d} h \quad j=1,2, \ldots$
where $I^{[j]}$ means that only I in the expression $e^{Z} I J_{2} J_{3} \cdots J_{d} h$ is differentiated j times.

Let $E_{1}=1+\frac{J_{2}^{\prime}}{J_{2}}+\ldots+\frac{J_{d}^{\prime}}{J_{d}}$, then
$I^{\prime \prime}=I^{[2]}+E_{1} I^{\prime}$,
$I^{\prime \prime \prime}=I^{[3]}+E_{1}\left(I^{[2]}+I^{\prime \prime}\right)+E_{1}^{\prime} I^{\prime}$,
$\mathrm{I}^{(4)}=\mathrm{I}^{[4]}+\mathrm{E}_{1}\left(2 \mathrm{I}^{[3]}+\mathrm{I}^{\prime \prime \prime}\right)+\mathrm{E}_{1}^{2} \mathrm{I}^{[2]}+$
$\mathrm{E}_{1}^{\prime}\left(\mathrm{I}^{[2]}+2 \mathrm{I}^{\prime \prime}\right)+\mathrm{E}_{1} \mathrm{I}^{\prime}$
$\mathrm{I}^{(5)}=\mathrm{I}^{[5]}+\mathrm{E}_{1}\left(3 \mathrm{I}^{[4]}+\mathrm{I}^{(4)}\right)+3 \mathrm{E}_{1}^{2} \mathrm{I}^{[3]}+3 \mathrm{E}_{1}^{\prime}\left(\mathrm{I}^{[3]}+\mathrm{I}^{\prime \prime \prime}\right)$
$+3 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime} \mathrm{I}^{[2]}+\mathrm{E}_{1}^{\prime \prime}\left(\mathrm{I}^{[2]}+3 \mathrm{I}^{\prime \prime}\right)+\mathrm{E}_{1}^{\prime \prime \prime} \mathrm{I}^{\prime}+\mathrm{E}_{1}^{3} \mathrm{I}^{[2]}$,
$I^{(6)}=I^{[6]}+E_{1}\left(4 I^{[5]}+I^{(5)}\right)+6 \mathrm{E}_{1}^{2} I^{[4]}+4 \mathrm{E}_{1}^{3} \mathrm{I}^{[3]}+$
$\mathrm{E}_{1}^{4} \mathrm{I}^{[2]}+\mathrm{E}_{1}^{\prime}\left(6 \mathrm{I}^{[4]}+4 \mathrm{I}^{(4)}\right)+3 \mathrm{E}_{1}^{\prime 2} \mathrm{I}^{[2]}+12 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime} \mathrm{I}^{[3]}+$
$6 \mathrm{E}_{1}^{2} \mathrm{E}_{1}^{\prime} \mathrm{I}^{[2]}+4 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime \prime}{ }^{[2]}+\mathrm{E}_{1}^{\prime \prime}\left(4 \mathrm{I}^{[3]}+6 \mathrm{I}^{\prime \prime \prime}\right)+$
$\left.\mathrm{E}_{1}^{\prime \prime \prime} \mathrm{I}^{[2]}+4 \mathrm{I}^{\prime \prime}\right)+\mathrm{E}_{1}^{(4)} \mathrm{I}^{\prime}+\mathrm{E}_{1}^{4} \mathrm{I}^{[2]}$,
$\mathrm{I}^{(7)}=\mathrm{I}^{[7]}+\mathrm{E}_{1}\left(5 \mathrm{I}^{[6]}+\mathrm{I}^{(6)}\right)+10 \mathrm{E}_{1}^{2} \mathrm{I}^{[5]}+$
$10 \mathrm{E}_{1}^{3} \mathrm{I}^{[4]}+5 \mathrm{E}_{1}^{4} \mathrm{I}^{[3]}+\mathrm{E}_{1}^{5}{ }^{[2]}+\mathrm{E}_{1}^{\prime}\left(10 \mathrm{I}^{[5]}+\mathrm{I}^{(5)}\right)+$
$\mathrm{E}_{1}^{\prime \prime}\left(10 I^{[4]}+10 I^{(4)}\right)+\mathrm{E}_{1}^{\prime \prime \prime}\left(5 \mathrm{I}^{[3]}+10 \mathrm{I}^{\prime \prime \prime}\right)+$
$\mathrm{E}_{1}^{(4)}\left(\mathrm{I}^{[2]}+5 \mathrm{I}^{\prime \prime}\right)+\mathrm{E}_{1}^{(5)} \mathrm{I}^{\prime}+30 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime} \mathrm{I}^{[4]}+$
$30 \mathrm{E}_{1}^{2} \mathrm{E}_{1}^{\prime} \mathrm{I}^{[3]}+10 \mathrm{E}_{1}^{3} \mathrm{E}_{1}^{\prime} \mathrm{I}^{[2]}+20 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime \prime} \mathrm{I}^{[3]}+$
$10 \mathrm{E}_{1}^{2} \mathrm{E}_{1}^{\prime \prime} \mathrm{I}^{[2]}+5 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime \prime} \mathrm{I}^{[2]}+15 \mathrm{E}_{1}^{\prime 2} \mathrm{I}^{[3]}+$
$15 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime 2} \mathrm{I}^{[2]}+10 \mathrm{E}_{1}^{\prime} \mathrm{E}_{1}^{\prime \prime} \mathrm{I}^{[2]}$,
$I^{(8)}=I^{[8]}+\mathrm{E}_{1}\left(6 \mathrm{I}^{[7]}+\mathrm{I}^{(7)}\right)+5 \mathrm{E}_{1}^{2} \mathrm{I}^{[6]}+20 \mathrm{E}_{1}^{3} \mathrm{I}^{[5]}+$
$15 \mathrm{E}_{1}^{5}{ }^{[3]}+\mathrm{E}_{1}^{6} \mathrm{I}^{[3]}+\mathrm{E}_{1}^{\prime}\left(15 \mathrm{I}^{[6]}+6 \mathrm{I}^{(6)}\right)+$
$\mathrm{E}_{1}^{\prime \prime}\left(20 \mathrm{I}^{[5]}+15 \mathrm{I}^{(5)}\right)+\mathrm{E}_{1}^{\prime \prime \prime}\left(15 \mathrm{I}^{[4]}+20 \mathrm{I}^{(4)}\right)+$
$\mathrm{E}_{1}^{(4)}\left(6 \mathrm{I}^{[3]}+15 \mathrm{I}^{\prime \prime \prime}\right)+\mathrm{E}_{1}^{(5)}\left(\mathrm{I}^{[2]}+6 \mathrm{I}^{\prime \prime}\right)+\mathrm{E}_{1}^{(6)} \mathrm{I}^{\prime}+$
$60 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime} \mathrm{I}^{[5]}+90 \mathrm{E}_{1}^{2} \mathrm{E}_{1} \mathrm{E}^{[4]}+60 \mathrm{E}_{1}^{3} \mathrm{E}_{1}^{\prime}{ }^{[3]}+15 \mathrm{E}_{1}^{4} \mathrm{E}_{1}^{\prime} \mathrm{I}^{[2]}+$
$60 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime \prime} \mathrm{I}^{[4]}+60 \mathrm{E}_{1}^{2} \mathrm{E}_{1}{ }^{[1]}{ }^{[3]}+20 \mathrm{E}_{1}^{3} \mathrm{E}_{1}^{\prime \prime}{ }^{[2]}+30 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime \prime} 1^{[3]}+$ $15 \mathrm{E}_{1}^{2} \mathrm{E}_{1}^{\prime \prime[}{ }^{[2]}+6 \mathrm{E}_{1} \mathrm{E}_{1}^{(4)} \mathrm{I}^{[2]}+45 \mathrm{E}_{1}^{\prime 2} \mathrm{I}^{[4]}+\mathrm{E}_{1}^{\prime \prime 2} \mathrm{I}^{[2]}+$
$90 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime 2} \mathrm{I}^{[3]}+45 \mathrm{E}_{1}^{2} \mathrm{E}_{1}^{\prime 2} \mathrm{I}^{[2]}+60 \mathrm{E}_{1}^{\prime} \mathrm{E}_{1}^{\prime \prime} \mathrm{I}^{[3]}+15 \mathrm{E}_{1}^{\prime} \mathrm{E}_{1}^{\prime \prime[2]}+$
$60 \mathrm{E}_{1} \mathrm{E}_{1}^{\prime} \mathrm{E}_{1}^{\prime \prime}{ }^{[2]}+15\left(\mathrm{E}_{1}^{\prime}\right)^{3} \mathrm{I}^{[2]}$,
In order to differentiate $J_{2}, J_{3}, \ldots, J_{d}$ we need to find a general formula for these differentiations so we work on these elements and find a general formula. To illustrate this, consider for example,
$J_{2}=\left(1+\frac{w_{2}}{2!} Z+\frac{w_{2}^{2}}{3!} Z^{2}+\frac{w_{2}^{3}}{4!} Z^{3}+\ldots\right)^{-1}=\frac{w_{2} Z}{e^{w_{2} Z}-1}$ then $e^{w_{2} Z} J_{2}-J_{2}=w_{2} Z$. By assuming the
implicit differentiation for both sides of the above equation, we get
$\frac{d}{d Z}\left(e^{w_{2} Z} J_{2}\right)-\frac{d}{d Z}\left(J_{2}\right)=w_{2}$
and the second derivative of the above equation is
$\frac{d^{2}}{d Z^{2}}\left(e^{w_{2} Z} J_{2}\right)-\frac{d^{2}}{d Z^{2}}\left(J_{2}\right)=0$ when
we
differentiate $e^{w_{2} Z} \boldsymbol{J}_{2}$ d-times we get a shape
like a binomial formula $(a+b)^{d}=$ $a^{d}+d a^{d-1} b+\frac{d(d-1)}{2!} a^{d-2} b^{2}+\ldots+b^{d}$.
Therefore,
$e^{w_{2} Z}\left(J_{2}+w_{2}\right)^{m}-J_{2}^{(m)}=0$
where $J_{2}^{(m)}$ is the m -th derivative of J_{2}, since w_{2} is constant therefore w_{2}^{m} means w_{2} raised to the power m. For example,
let $h=J_{2} e^{w_{2} Z}$,
then
$h^{\prime}=J_{2}^{\prime} e^{w_{2} z}+w_{2} e^{w_{2} Z} J_{2}=e^{w_{2} z}\left(J_{2}^{\prime}+w_{2} J_{2}\right)$,
$\mathrm{h}^{\prime \prime}=\mathrm{J}_{2}^{\prime \prime} \mathrm{e}^{\mathrm{w}_{2} Z}+\mathrm{w}_{2} \mathrm{~J}_{2}^{\prime} \mathrm{e}^{\mathrm{w}_{2} \mathrm{Z}}+\mathrm{w}_{2}^{2} \mathrm{e}^{\mathrm{B}_{2} \mathrm{Z}} \mathrm{J}_{2}+\mathrm{w}_{2} \mathrm{~J}_{2}^{\prime} \mathrm{e}^{\mathrm{B}_{2} \mathrm{Z}}$ $=\mathrm{e}^{\mathrm{w}_{2} \mathrm{Z}}\left(\mathrm{J}_{2}^{\prime \prime}+2 \mathrm{w}_{2} \mathrm{~J}_{2}^{\prime}+\mathrm{w}_{2}^{2} \mathrm{~J}_{2}\right)$,
$h^{\prime \prime \prime}=e^{w_{2} Z}\left(J_{2}^{\prime \prime \prime}+3 w_{2} J_{2}^{\prime \prime}+3 w_{2}^{2} J_{2}^{\prime}+w_{2}^{3} J_{2}\right)$.
And so on. Therefore
$J_{2}^{\prime}=e^{Z} I J_{2}^{\prime} \cdots J_{d}=J_{2}^{[1]}$,
$J_{2}^{\prime \prime}=J_{2}^{[2]}+E_{2} J_{2}^{\prime}$ where
$E_{2}=1+\frac{I^{\prime}}{I}+\ldots+\frac{J_{d}^{\prime}}{J_{d}}$.
$J_{2}^{\prime \prime \prime}=J_{2}^{[3]}+2 E_{2} J_{2}^{[2]}+E_{2}^{2} J_{2}^{\prime}+E_{2}^{\prime} J^{\prime}$.
$\mathbf{J}_{2}^{(4)}=\mathbf{J}_{2}^{[4]}+3 \mathrm{E}_{2} \mathrm{~J}_{2}^{[3]}+3 \mathrm{E}_{2}^{2} \mathrm{~J}_{2}^{[2]}$
$+\mathrm{E}_{2}^{3} \mathrm{~J}_{2}^{\prime}+3 \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[2]}+\mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{\prime}+3 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{\prime}$
and similarly for highest derivative. By arranging them together we obtain

$$
\begin{aligned}
J_{2}^{\prime}= & e^{Z} I J_{2}^{\prime} \cdots J_{d}, \\
J_{2}^{\prime \prime}= & J_{2}^{[2]}+E_{2} J_{2}^{\prime}, \\
J_{2}^{\prime \prime \prime}= & J_{2}^{[3]}+E_{2}\left(J_{2}^{[2]}+J_{2}^{\prime \prime}\right)+E_{2}^{\prime} J^{\prime}, \\
\mathbf{J}_{2}^{(4)}= & \mathrm{J}_{2}^{[4]}+\mathrm{E}_{2}\left(2 \mathrm{~J}_{2}^{[3]}+\mathrm{J}_{2}^{\prime \prime \prime}\right)+\mathrm{E}_{2}^{2} \mathrm{I}_{2}^{[2]}, \\
& +\mathrm{E}_{2}^{\prime}\left(\mathrm{J}_{2}^{[2]}+2 \mathrm{~J}_{2}^{\prime \prime}\right)+\mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{\prime},
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{J}_{2}^{(5)}=\mathbf{J}_{2}^{[5]}+\mathrm{E}_{2}\left(3 \mathrm{~J}_{2}^{[4]}+\mathbf{J}_{2}^{(4)}\right) \\
& +\mathrm{E}_{2}^{2}\left(3 \mathrm{~J}_{2}^{[3]}\right)+\mathrm{E}_{2}^{3} \mathrm{~J}_{2}^{[2]}+\mathrm{E}_{2}^{\prime}\left(3 \mathrm{~J}_{2}^{[3]}+3 \mathrm{~J}_{2}^{\prime \prime \prime}\right) \\
& +\mathrm{E}_{2}^{\prime \prime}\left(\mathrm{J}_{2}^{[2]}+3 \mathrm{~J}_{2}^{\prime \prime}\right)+\mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{\prime}+3 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[2]} \text {, } \\
& \mathrm{J}_{2}^{(6)}=\mathrm{J}_{2}^{[6]}+\mathrm{E}_{2}\left(4 \mathrm{~J}_{2}^{[5]}+\mathrm{J}_{2}^{(5)}\right) \\
& +6 \mathrm{E}_{2}^{2} \mathrm{~J}_{2}^{[4]}+4 \mathrm{E}_{2}^{3} \mathrm{~J}_{2}^{[3]}+\mathrm{E}_{2}^{4} \mathrm{~J}_{2}^{[2]} \\
& +\mathrm{E}_{2}^{\prime}\left(6 \mathrm{~J}_{2}^{[4]}+4 \mathrm{~J}_{2}^{(4)}\right)+\mathrm{E}_{2}^{\prime \prime}\left(4 \mathrm{~J}_{2}^{[3]}+6 \mathrm{~J}_{2}^{(3)}\right) \\
& +\mathrm{E}_{2}^{\prime \prime \prime}\left(\mathrm{J}_{2}^{[2]}+4 \mathrm{~J}_{2}^{\prime \prime}\right)+\mathrm{E}_{2}^{(4)} \mathrm{J}_{2}^{\prime}+12 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[3]} \\
& +6 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{2} \mathrm{~J}_{2}^{[2]}+4 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[2]}+3\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{~J}_{2}^{[2]}, \\
& J_{2}^{(7)}=J_{2}^{[7]}+E_{2}\left(5 J_{2}^{[6]}+J_{2}^{(6)}\right) \\
& +10 \mathrm{E}_{2}^{2} \mathrm{~J}_{2}^{[5]}+10 \mathrm{E}_{2}^{3} \mathrm{~J}_{2}^{[4]}+5 \mathrm{E}_{2}^{4} \mathrm{~J}_{2}^{[3]} \\
& +\mathrm{E}_{2}^{5} \mathrm{~J}_{2}^{[2]}+\mathrm{E}_{2}^{\prime}\left(10 \mathrm{~J}_{2}^{[5]}+5 \mathrm{~J}_{2}^{(5)}\right) \\
& +\mathrm{E}_{2}^{\prime \prime}\left(10 \mathrm{~J}_{2}^{[4]}+10 \mathrm{~J}_{2}^{(4)}\right) \\
& +\mathrm{E}_{2}^{\prime \prime \prime}\left(5 \mathrm{~J}_{2}^{[3]}+10 \mathrm{~J}_{2}^{\prime \prime \prime}\right)+\mathrm{E}_{2}^{(4)}\left(\mathrm{J}_{2}^{[2]}+5 \mathrm{~J}_{2}^{\prime \prime}\right) \\
& +\mathrm{E}_{2}^{(5)} \mathrm{J}_{2}^{\prime}+30 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[4]}+30 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{2} \mathrm{~J}_{2}^{[3]} \\
& +10 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{3} \mathrm{~J}_{2}^{[2]}+20 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[3]}+10 \mathrm{E}_{2}^{2} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[2]} \\
& +5 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[2]}+15\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{~J}_{2}^{[3]}+15\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{E}_{2} \mathrm{~J}_{2}^{[3]} \\
& +10 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[2]} \text {, } \\
& \mathrm{J}_{2}^{(8)}=\mathrm{J}_{2}^{[8]}+\mathrm{E}_{2}\left(6 \mathrm{~J}_{2}^{[7]}+\mathrm{J}_{2}^{(7)}\right)+15 \mathrm{E}_{2}^{2} \mathrm{~J}_{2}^{[6]}+ \\
& 20 \mathrm{E}_{2}^{3} \mathrm{~J}_{2}^{[5]}+15 \mathrm{E}_{2}^{4} \mathrm{~J}_{2}^{[4]}+6 \mathrm{E}_{2}^{5} \mathrm{~J}_{2}^{[3]}+\mathrm{E}_{2}^{6} \mathrm{~J}_{2}^{[2]}+ \\
& \mathrm{E}_{2}^{\prime}\left(15 \mathrm{~J}_{2}^{[6]}+6 \mathrm{~J}_{2}^{(6)}\right)+\mathrm{E}_{2}^{\prime \prime}\left(20 \mathrm{~J}_{2}^{[5]}+15 \mathrm{~J}_{2}^{(5)}\right)+ \\
& \mathrm{E}_{2}^{\prime \prime \prime}\left(15 \mathrm{~J}_{2}^{[4]}+20 \mathrm{~J}_{2}^{(4)}\right)+\mathrm{E}_{2}^{(4)}\left(6 \mathrm{~J}_{2}^{[3]}+13 \mathrm{~J}_{2}^{(3)}\right)+ \\
& \mathrm{E}_{2}^{(5)}\left(\mathrm{J}_{2}^{[2]}+6 \mathrm{~J}_{2}^{\prime \prime}\right)+\mathrm{E}_{2}^{(6)} \mathrm{J}_{2}^{\prime}+60 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[5]}+ \\
& 90 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{2} \mathrm{~J}_{2}^{[4]}+60 \mathrm{E}_{2}^{3} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[2]}+15 \mathrm{E}_{2}^{4} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[2]}+ \\
& 60 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[4]}+60 \mathrm{E}_{2}^{2} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[3]}+20 \mathrm{E}_{2}^{3} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[2]}+ \\
& 30 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[3]}+15 \mathrm{E}_{2}^{2} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[2]}+6 \mathrm{E}_{2} \mathrm{E}_{2}^{(4)} \mathrm{J}_{2}^{[2]}+ \\
& 45\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{~J}_{2}^{[4]}+15\left(\mathrm{E}_{2}^{\prime}\right)^{3} \mathrm{~J}_{2}^{[2]}+90 \mathrm{E}_{2}\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{~J}_{2}^{[3]}+ \\
& 45 \mathrm{E}_{2}^{2}\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{~J}_{2}^{[2]}+60 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[3]}+15 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[2]}+ \\
& 60 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[2]}+10\left(\mathrm{E}_{2}^{\prime \prime}\right)^{2} \mathrm{~J}_{2}^{[2]} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{J}_{2}^{(9)}=\mathrm{J}_{2}^{[9]}+\mathrm{E}_{2}\left(7 \mathrm{~J}_{2}^{[8]}+\mathrm{J}_{2}^{(8)}\right)+21 \mathrm{E}_{2}^{2} \mathbf{J}_{2}^{[7]}+ \\
& 35 \mathrm{E}_{2}^{3} \mathrm{~J}_{2}^{[6]}+35 \mathrm{E}_{2}^{4} \mathrm{~J}_{2}^{[5]}+21 \mathrm{E}_{2}^{5} \mathrm{~J}_{2}^{[4]}+7 \mathrm{E}_{2}^{6} \mathrm{~J}_{2}^{[3]}+ \\
& E_{2}^{7} J_{2}^{[2]}+E_{2}^{\prime}\left(21 J_{2}^{[7]}+7 J_{2}^{(7)}\right)+E_{2}^{\prime \prime}\left(35 J_{2}^{[6]}+21 J_{2}^{(6)}\right)+ \\
& \mathrm{E}_{2}^{\prime \prime \prime}\left(35 \mathrm{~J}_{2}^{[5]}+35 \mathrm{~J}_{2}^{(5)}\right)+\mathrm{E}_{2}^{(4)}\left(21 \mathrm{~J}_{2}^{[4]}+35 \mathrm{~J}_{2}^{(4)}\right)+ \\
& E_{2}^{(5)}\left(7 J_{2}^{[3]}+21 J_{2}^{(3)}\right)+E_{2}^{(6)}\left(J_{2}^{[2]}+7 J_{2}^{\prime \prime}\right)+E_{2}^{(7)} \mathrm{J}_{2}^{\prime}+ \\
& 105 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[6]}+210 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{2} \mathrm{~J}_{2}^{[5]}+210 \mathrm{E}_{2}^{3} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[4]}+ \\
& 105 \mathrm{E}_{2}^{4} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[3]}+21 \mathrm{E}_{2}^{5} \mathrm{E}_{2}^{\prime} \mathrm{J}_{2}^{[2]}+140 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime \prime}{ }_{2}^{[5]}+ \\
& 210 \mathrm{E}_{2}^{2} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[4]}+140 \mathrm{E}_{2}^{3} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[3]}+35 \mathrm{E}_{2}^{4} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[2]}+ \\
& 105 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[4]}+105 \mathrm{E}_{2}^{2} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[3]}+35 \mathrm{E}_{2}^{3} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[2]}+ \\
& 42 \mathrm{E}_{2} \mathrm{E}_{2}^{(4)} \mathrm{J}_{2}^{[3]}+21 \mathrm{E}_{2}^{2} \mathrm{E}_{2}^{(4)} \mathrm{J}_{2}^{[2]}+7 \mathrm{E}_{2} \mathrm{E}_{2}^{(5)} \mathrm{J}_{2}^{[2]}+ \\
& 105\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{~J}_{2}^{[5]}+315 \mathrm{E}_{2}\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{~J}_{2}^{[4]}+315 \mathrm{E}_{2}^{2}\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{~J}_{2}^{[3]}+ \\
& 105 \mathrm{E}_{2}^{3}\left(\mathrm{E}_{2}^{\prime}\right)^{2} \mathrm{~J}_{2}^{[2]}+105\left(\mathrm{E}_{2}^{\prime}\right)^{3} \mathrm{~J}_{2}^{[3]}+105 \mathrm{E}_{2}\left(\mathrm{E}_{2}^{\prime}\right)^{3} \mathrm{~J}_{2}^{[2]}+ \\
& 210 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[4]}+105 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[3]}+21 \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{(4)} \mathrm{J}_{2}^{[2]}+ \\
& 70\left(\mathrm{E}_{2}^{\prime \prime}\right)^{2} \mathrm{~J}_{2}^{[3]}+10 \mathrm{E}_{2}\left(\mathrm{E}_{2}^{\prime \prime}\right)^{2} \mathrm{~J}_{2}^{[2]}+35 \mathrm{E}_{2}^{\prime \prime} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[2]}+ \\
& 420 \mathrm{E}_{2} \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[3]}+210 \mathrm{E}_{2}^{2} \mathrm{E}_{2}^{\prime} \mathrm{E}_{2}^{\prime \prime} \mathrm{J}_{2}^{[2]}+105 \mathrm{E}_{2} \mathrm{E}^{\prime} \mathrm{E}_{2}^{\prime \prime \prime} \mathrm{J}_{2}^{[2]} .
\end{aligned}
$$

Since our work is for finding the coefficients of the Ehrhart polynomial until c_{d-9}, so the derivatives that we are needed are until 9-th derivative.

By similar procedure we get the derivatives of $J_{3}, J_{4}, \ldots, J_{d}$ and h that are used in the definition of $\phi(\mathrm{z})$ in the preceding sections. When we arrange the obtained results we get a triangle like a Polya triangle [8, p.20] where the contents of the triangle are the coefficients of $E_{2}{ }^{2}, E_{2}^{3}, \ldots$ in the expression $J_{2}^{(4)}, J_{2}^{(5)}, \ldots$

	E_{2}^{2}												
$J_{2}^{(4)}$	1	E_{2}^{3}	$J_{2}^{[2]}$										
$J_{2}^{(5)}$	3	1	E_{2}^{4}	$J_{2}^{[3]}$	$J_{2}^{[2]}$								
$\boldsymbol{J}_{2}^{(6)}$	6	4	1	E_{2}^{5}	$J_{2}^{[4]}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$						
$J_{2}^{(7)}$	10	10	5	1	E_{2}^{6}	$J_{2}^{[5]}$	$J_{2}^{[4]} J_{2}^{[3]}$	$J_{2}^{[2]}$					
$J_{2}^{(8)}$	15	20	15	6	1	E_{2}^{7}	$J_{2}^{[6]} J_{2}^{[5]}$	$J_{2}^{[4]}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$			
$J_{2}^{(9)}$	21	35	35	21	7	1	E_{2}^{8}	$J_{2}^{[7]}$	$J_{2}^{[6]}$	$J_{2}^{[5]}$	$J_{2}^{[4]}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$
$J_{2}^{(10)}$	28	56	70	56	28	8	1	E_{2}^{9}	$J_{2}^{[8]}$	$J_{2}^{[7]}$	$J_{2}^{[6]}$	$J_{2}^{[5]} J_{2}^{[4]} J_{2}^{[3]}$	$J_{2}^{[2]}$

Also, the first terms of the coefficients of $E_{2}^{\prime}, E_{2}^{\prime \prime}, \ldots$ in the expression of $J_{2}^{(4)}, J_{2}^{(5)}, \ldots$ are

	E_{2}^{\prime}											
$J_{2}^{(4)}$	1	$E_{2}^{\prime \prime}$	$J_{2}^{[2]}$									
$J_{2}^{(5)}$	3	1	$E_{2}^{\prime \prime \prime}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$							
$J_{2}^{(6)}$	6	4	1	$E_{2}^{(4)}$	$J_{2}^{[4]}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$					
$J_{2}^{(7)}$	10	10	5	1	$E_{2}^{(5)}$	$J_{2}^{[5]}$	$J_{2}^{[4]}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$			
$J_{2}^{(8)}$	15	20	15	6	1	$E_{2}^{(6)}$	$J_{2}^{[6]}$	$J_{2}^{[5]}$	$J_{2}^{[4]}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$	
$J_{2}^{(9)}$	21	35	35	21	7	1	$E_{2}^{(7)} J_{2}^{[7]}$	$J_{2}^{[6]}$	$J_{2}^{[5]}$	$J_{2}^{[4]}$	$J_{2}^{[3]} J_{2}^{[2]}$	

The second terms of the coefficients of $E_{2}^{\prime}, E_{2}^{\prime \prime}, \ldots$ in the expression of $J_{2}^{(4)}, J_{2}^{(5)}, \ldots$ are

| | E_{2}^{\prime} | $E_{2}^{\prime \prime}$ | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{2}^{(4)}$ | 1 | 1 | $E_{2}^{\prime \prime \prime}$ | $J_{2}^{\prime \prime}$ | J_{2}^{\prime} | | | | | | | | | | |
| $J_{2}^{(5)}$ | 3 | 3 | 1 | $E_{2}^{(4)}$ | $J_{2}^{\prime \prime \prime}$ | $J_{2}^{\prime \prime}$ | J_{2}^{\prime} | | | | | | | | |
| $\boldsymbol{J}_{2}^{(6)}$ | 4 | 6 | 4 | 1 | $E_{2}^{(5)}$ | $J_{2}^{(4)}$ | $J_{2}^{\prime \prime \prime}$ | $J_{2}^{\prime \prime}$ | J_{2}^{\prime} | | | | | | |
| $\boldsymbol{J}_{2}^{(7)}$ | 5 | 10 | 10 | 5 | 1 | $E_{2}^{(6)}$ | $J_{2}^{(5)}$ | $J_{2}^{(4)}$ | $J_{2}^{\prime \prime \prime}$ | $J_{2}^{\prime \prime}$ | J_{2}^{\prime} | | | | |
| $J_{2}^{(8)}$ | 6 | 15 | 20 | 15 | 6 | 1 | $E_{2}^{(7)}$ | $J_{2}^{(6)}$ | $J_{2}^{(5)}$ | $J_{2}^{(4)}$ | $J_{2}^{\prime \prime \prime}$ | $J_{2}^{\prime \prime}$ | J_{2}^{\prime} | | |
| $\boldsymbol{J}_{2}^{(9)}$ | 7 | 21 | 35 | 35 | 21 | 7 | 1 | $E_{2}^{(8)}$ | $J_{2}^{(7)}$ | $J_{2}^{(6)}$ | $J_{2}^{(5)}$ | $J_{2}^{(4)}$ | $J_{2}^{\prime \prime \prime}$ | $J_{2}^{\prime \prime \prime}$ | J_{2}^{\prime} |

The coefficients of $\mathrm{E}_{2} \mathrm{E}_{2}^{\prime}, \mathrm{E}_{2}^{2} \mathrm{E}_{2}^{\prime}, \ldots$ in the expression of $J_{2}^{\prime \prime}, J_{2}^{\prime \prime \prime}, \ldots$ are arranged as follows.

$J_{2}^{\prime \prime}$	0									
$J_{2}^{\prime \prime}$	0									
$J_{2}^{(4)}$	0									
	$E_{2} E_{2}^{\prime}$									
$J_{2}^{(5)}$	3	$E_{2}^{2} E_{2}^{\prime}$	$J_{2}^{[2]}$							
$J_{2}^{(6)}$	12	6	$E_{2}^{3} E_{2}^{\prime}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$					
$J_{2}^{(7)}$	30	30	10	$E_{2}^{4} E_{2}^{\prime}$	$J_{2}^{[4]}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$			
$J_{2}^{(8)}$	60	90	60	15	$E_{2}^{5} E_{2}^{\prime}$	$J_{2}^{[5]}$	$J_{2}^{[4]}$	$J_{2}^{[3]}$	$J_{2}^{[2]}$	
$J_{2}^{(9)}$	105	210	210	105	21	$E_{2}^{6} E^{\prime}$	$J_{2}^{[6]}$	$J_{2}^{[5]}$	$J_{2}^{[4]}$	$J_{2}^{[3]} J_{2}^{[2]}$

The diagonal of the above results is the second column of the preceding Polya triangle, and the first column for the above results is obtained as follows:

By multiplying the diagonal by $4,5,6 \ldots$ we get the line under the diagonal, which are:
(3)(4) $=12$,
(6)(5) $=30$,
$(10)(6)=60$,
(15)(7) $=105$,

The general formula of the differentiation is given by
$J_{2}^{(m)}=J_{2}^{[n]}+E_{2}\left((m-2) J_{2}^{[m-1]}+J_{2}^{(m-1)}\right)+W$ where
$1<\mathrm{m} \leq 8$ and W can be obtained from the given tables as follow
when $\mathrm{m}=3$ then
$J_{2}^{(3)}=J_{2}^{[3]}+E_{2}\left(J_{2}^{[2]}+J_{2}^{(2)}\right)$ when $\mathrm{m}=4$ then
$J_{2}^{(4)}=J_{2}^{[4]}+E_{2}\left(2 J_{2}^{[3]}+J_{2}^{(3)}\right)+W$ from the tables, W can be found as follows
$W=E_{2}^{2} J_{2}^{[2]}+E_{2}^{\prime}\left(J_{2}^{[2]}+2 J_{2}^{(2)}\right)+E_{2}^{\prime \prime} J_{2}^{\prime}$.

References

[1] A. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, new perspectives in geometric combinatorics, MSRI publications, 38, (1999), 91-147.
[2] M. Beck, J. A. DE. Loera, M. Develin, J. Peifle and R. P. Stanley, Coefficients and roots of Ehrhart polynomials, conference on integer points in polyhedra (13-17) July in Snowbird, (2003), 1-24.
[3] M. Brion and M. Vergne, Lattice points in simple polytopes, J. Amer. Math. Soc., 10, (2), (1997), 371-392.
[4] R. Diaz, S. Robins, The Ehrhart polynomial of a lattice polytope, Annals of Math. 145, (1997), 503-518.
[5] T. M. Apostol, Modular functions and Dirichlet series in number theory, Springer-Verlag Inc. 1976.
[6] M. Beck, Counting lattice points by means of the residue theorem, RamanuJan J. 4, (3), (2000), 299-310.
[7] R. P. Stanley, Enumerative combinatorics, Wadsworth \& Brooks / Cole Advanced Books \& software, California, 1986.
[8] G. Polya and R. E. Tarjan and D.R. Woods, Notes on introductory combinatorics, Birkhaüser Bostan, Inc., 1983.

الخلاصة

حساب حجم متعدد الأضلاع وكذلك حساب عدد النقاط
التي احداثياتها أعداد صحيحة في المجال ${ }^{\text {المال }}$ هو موضوع مهم جدا في فروع الرياضيات المختلفة منل نظرية الاعداد, نظرية التمثيل, متعدد حدود اير هارت في التو افيقية, التجفير و النظام الاحصائي. تم حساب متعدد حدود اير هارت باستخدام بعض الطرق. اح دى هذه الطرق طورت واستتتجنا مبر هنة لحساب معاملات متعددة الحدود اير هارت. كذللك كتب برنامج بلغة فيجو ال بيسك لحساب المشتقات للاالة التي أستخدمت لحساب معاملات متعددة الحدود اير هارت.

