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Abstract 

A main theorem which deals with the existence of a minimum solution to the dual partial 

differential equation of dynamic programming for optimal control problems of Bolza and Lagrange 

is proved. An example illustrates the value of this theorem is given. Properties of the value function 

and dual value function for problems of Bolza and Lagrange are described. Moreover, for these 

problems the existence of a maximum solution to the partial differential equation of dynamic 

programming, which satisfies the Lipschitz condition and which is also the value function is 

presented.  
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1. Introduction 

We consider the optimal control problem 

of Bolza:  

minimize J (x, u)  ( , ( ), ( ))

b

a

L t x t u t dt +        

(x (b)), 

 ........................................ (1) 

where an absolutely continuous trajectory x : 

[a, b]  n
 and the Lebesgue  measurable 

control function u : [a, b]m
 are subject to 

the non-linear controlled state-space system :   

( )x t   f (t, x (t), u (t)), a.e. in [a, b], ............ (2) 

u (t)  U (t), t  [a, b], ................................. (3) 

x (a)  c, ....................................................... (4)  

where  f : [a, b] n
m

  n
, L : [a, b] n

m
 

 ,  : C  {+∞}
 
are given functions, C 

is a subset of n
, c is a point in the state space 

n 
, and U : [a,b]m

 is a multifunction (i.e. 

U(t) is a subset of m
 for each t in [a,b]).

   
 

Let L  be the collection of Lebesgue 

measurable subsets of [a, b] and let B  be 

Borel subsets of .m  L B denotes the                    

-algebra of subsets of [a, b] m , generated 

by products of sets in L  and B . In order that 

problem (1)-(4) make sense, throughout the 

paper we assume the following basis 

hypothesis:  

   (A) For each s in n , the functions (t, u)                  

L (t, s, u), (t, u)  f (t, s, u) are L B –

measurable. There exists functions K1, K2 in 

L
1
(a, b) such that for t in [a, b], u in U(t), and 

s1, s2 in n , 

|| L (t, s1, u)L (t, s2, u) ||  K1(t) ||s1  s2||,                  

K1(t) > 0. 

|| f (t, s1, u)  f (t, s2, u) ||  K2(t) ||s1  s2||,              

K2(t) > 0.  

The set {(t, u)  [a, b] m , u  U(t)} is 

L B –measurable. The function  is lower 

semiconti-nuous and not identically to +∞. 

A pair x(t), u(t) is admissible if it satisfies 

(2), (3), t  L (t, x(t), u(t)) is a summable, and 

 (x(b)) is finite; then the corresponding 

trajectory t x(t) will be called admissible. 

For the problem (1)−(4), if we take the 

function x   (x) equal to zero, we obtain 

that the Lagrange control problem. And these 

two problems Bolza and Lagrange are 

equivalent in that each one can be formulated 

as one of the other form [12].  

It is well-known that in classical dynamic 

programming (CDP) the whole family of 

problems with fixed initial points is 

considered. For one problem the initial point is 

fixed, but when a family of problems with 

different initial points are considered, the 

solution to these problems are dependent on 

their initial points. This dependence is called 

the value function. Whenever the value 

function is differentiable it satisfies a first 

order partial differential equation called the 
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partial differential equation of dynamic 

programming (PDEDP) known as the 

Hamilton-Jacobi (H-J) equation [6,9,12]. A 

sufficient condition for optimality can be 

phrased in terms of a continuously 

differentiable solution of the PDEDP (see, 

Th.2). The method of CDP encounters the 

difficulty that for many problems the value 

function is not differentiable everywhere. 

For the Lagrange problem in 1976, R. 

Gonzales proved that there exists a maximum 

solution to the H-J equation, which satisfies 

the Lipschitz condition and which is also the 

value function (see, section 2). 

For the problem (1)-(4), two methods of 

construction of fields of extremals (concourses 

of flights) were described in 1988 by A. 

Nowakowski, and as a consequence of this, 

sufficient conditions for optimality in a form 

similar to Weierstrass’s were formulated. In 

remarks, there where given relations of these 

two theories to the dynamic programming 

technique. The first (classical) is the 

following: (see, [6,9,11,12]) define the value 

function S (t, x)  in a set  1nT    (being a set 

covered by graghs of trajectories of the field- 

concourses of flights) as  

S (t, x)  inf ( , ( ), ( )) ( ( ))
b

t

L x u d x b
 

    
 

 ,                                            

 ............................... (5) 

where the infimum is taken over all admissible 

pairs ( ), ( )x u  ,  [t, b], whose trajectories 

start at (t, x)  T , and graphs are contained in 

T. By [1,Th.4], the existence of value function 

(5) is determined by existence of a concourse 

of flights (field of extremals). Further, it was 

concluded that if S (t, x) is differentiable then 

it satisfies the partial differential equation  

  St (t, x) + H (t, x, Sx (t, x))  0,  ................... (6)                

where H (t, x, y)  y f (t, x, u(t, x)) + L (t, x, u   

(t, x)) and u(t, x) is an optimal feedback 

control, and the PDEDP  

( )
min

u U t
{ ( , ) ( , ) ( , , ) ( , , )}t xS t x S t x f t x u L t x u  0 

 ............................... (7) 

A. Nowakowski in [1, remark 4.2] suggested 

the second nonclassical approach to dynamic 

programming, the domain of exploration was 

carried out from the (t, x)-space to the space of 

multipliers ((t, y
0
, y)-space), then another 

function was defined the-dual value function- 

SD (t, p) in a set P 2n of the dual space            

(t, y
0
, y)(t, p), y

0
  0,  

SD (t, p)  inf { 0 ( , ( ), ( ))
b

t

y L x u d                  

                              0 ( ( ))y x b  }, .................. (8) 

where the infimum is taken over admissible 

pairs x(), u(),   [t, b], whose trajectories 

start at (t, x (t, p)) (x (t, p) will be defined in 

section 3) and their graphs are contained in T 

(defined above). 

By [1, Corollary5 ], the existence of SD (t, p) 

is determined by the existence of a concourse 

of flights. Next, a new function was defined:                                 

V (t, p)  SD (t, p)  x(t, p) y   Vy0 (t, p) y
0
 +                 

                Vy (t, p) y  Vp(t, p) p, (t, p)  P, .. (9) 

(SD (t, p) = Vy0 (t, p) y
0
,  x(t, p) = Vy (t, p)), 

which satisfies the partial differential equation  

Vt (t, p) + H (t, Vy (t, p), p)  0, ................. (10) 

where H (t, v, p)  y
0
L(t, v, u(t, p)) + y f (t, v, 

u(t, p)) and u(t, p) is a dual optimal feedback 

control, and the dual partial differential 

equation of dynamic programming (DPDEDP)  

max {Vt (t, p) + yf (t,Vy (t, p), u) + 

          y
0
L (t,Vy (t, p) ,u): u  U (t)}  0,... (11) 

In 1992, A. Nowakowski got some 

properties of the classical value function S(t, x) 

by studying (8),(10),(11) directly. And he 

established that when examining (8)-(11) 

instead of (5)-(7), needed not require that the 

set T has nonempty interior, or that S (t, x) is 

differentiable in T [2, Remark 2.1]. Moreover, 

he did not require that y
0 

= 1 or that the 

problem is calm, which is essential in the 

classical setting (5)-(7)[5,7]. Further, if 

problem (1)-(4) can be solved using (6),(7), 

i.e., [12, Th.7.1, Ch.4], then it can be solved 

also by dual dynamic programming (DDP), 

i.e., Th. 4 of section 3. 

From all the above, it can be seen that the 

solution to the DPDEDP (11) for the problem            

(1)-(4), is essential in the study of optimality. 

Therefore, it is found to be a reasonable 

justification to accomplish the study of this 

paper. 

The aim of this paper is to study the 

existence solution to the DPDEDP (11), and 

we shall proved in the main theorem (Th.5), 

the function V (t, p), ( , )t p P (9) for the Bolza 

problem (1)-(4) is a minimum element of the 

set W (see, def.2) of all Lipschitz solutions to 
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the dual partial differential inquality of 

dynamic programming (DPDIDP) for problem 

(1)-(4). To demonstrate the value of Th.5, we 

will be gave two examples, these examples can 

also be solved by the nonclassical field theory 

method in [1], and Th.4, but could not be 

treated by any other known method.   
     

2. The Existence of a Maximum Solution to 

the Hamilton-Jacobi Equation 

   In this section the properties of the classical 

value function for the Bolza problem (1)-(4) is 

described. We shall assume throughout this 

section, the following basis hypothesis : 

(Z) (t,x, u) f (t, x, u) and (t, x, u)  L (t, x, u) 

are continuous and bounded functions on           

[a, b] n
 U;  they are Lipschitz functions 

with respect to t, x, u;  x (x) is Lipschitz 

functions with respect to x. U is a compact 

subset of  m .  

Let T  [a, b] n be a set with a non-

empty interior, covered by graphs of 

admissible trajectories, i.e., for every (t0, x0)T 

there exists an admissible pair x(  ), u(  ), 
defined in [t0, b], such that x(t0)x0 and (s, 

x(s))T for s[t0, b]. Further, let S (t, x) be as 

in (5) but with T  defined here.  

One of the most important properties of the 

classical value function is stated in theorem 1: 
 

Theorem 1: 

If the functions (t, x, u)  f (t ,x ,u),                     

(t ,x, u)  L(t, x, u)  and x  (x) satisfy 

assumptions (Z) from the Bolza problem 

(1)−(4), then the classical value function            

(t, x)S(t, x) (5) satisfies a Lipschitz      

condition and is the solution to the  PDEDP 

(7) for a.e. (t, x)  T, with the boundary 

condition S(b, x) =  (x), (b, x)  T. 

Proof :  
See [12, Ch.4].■ 

 

Theorem 2:  

Let (t, x) G(t, x) be the solution of class 

C
1
 to the  PDEDP:  Gt (t,x)+H (t,x,Gx (t,x))0, 

(t, x)  T0 , with the boundary condition,             

G (b, x)   (x), (b, x)  T0, where T0  T is an 

open set, and the Hamiltonian H(.,.,.) be as 

defined in (6).  

If x = x(t) and a pair x(.), u(.), defined in [a, b], 

x(a) = c, is admissible and such that 

( , ( )) ( , ( )) ( , ( ), ( ))t xG t x t G t x t f t x t u t    

   ( , ( ), ( ))L t x t u t = 0, 

then the pair x(.), u(.) is optimal, and also          

G (t, x)  S(t, x), (t, x)  T0 , where S(., .) is the 

classical value function. 
 

Proof : 

See [12, Ch.4].■ 
 

It can be seen that some regularity of the 

function (t, x)  G(t, x), being the solution to 

the PDEDP, is required, i.e. it must be at least 

a Lipschitz function (see, Th. 1). 
 

Definition 1:  

Let us define a set M as follows : 

( , ) , ; [0, ],

( , ) ; ( , ) ( ( )) ( , ) ;

min{ ( , , ) ( , , ) :

( )} 0 . .( , ) .

t x

m t x is Lipschitz for t x t b

t x T m b x x b b x T and
M

m m f t x u L t x u

u U t a e t x T

 
 

    
  

  
    



 

Define on the set M the following partial 

ordering: 
ˆ ˆ( , ) ( , ), ( , ) ,m m m t x m t x t x T      

ˆ[0, ]; ,t b m m M   . 

Note1. From the definition of the classical 

value function  S(t, x), (t, x)  T in (5) and 

Th.1, we observe that the function S(t, x) 

belongs to the set M of all Lipschitz solutions 

to the PDIDP above, when there exists x a 

multiplied solution for the problem (1)-(4). 
 

Theorem 3: 

The function S(t, x) (5), (t, x)  T,       

t[0,b] for the Bolza problem (1)-(4), is a 

maximum element of the set M, i.e., ,m S  

.m M   
 

Proof : 
See [10].■ 

 

3. The Existence of a Minimum Solution to the 

Dual Partial Differential Equation of  Dynamic 

Programming 

Let 1nT    be as defined in section 2. We 

shall assume in this section, taking if necessary 

a smaller set T, that S(t, x) defined in T by (5) 

does not take the value  .   Now T is, in 

general, larger than that defined in section 1. 

Let 2nP   be a set of variables (t, y
0
, y) =        

(t, p), t  [a,b], with y
0
  0 and a nonempty 

interior. 
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We take a function x(t, p) defined on P  such 

that (t, x(t, p))  T, (t, p)  P, and we assume 

that it is a Borel measurable, locally bounded, 

and that for each admissible trajectory x(t) 

lying in T there exists a function of bounded 

variation p(t)  (y
0
, y(t)) lying in P such that 

x(t)  x(t, p(t)) and if all trajectories x(t) start at 

the same (t0, x0), then all the corresponding  

p(t) have the same first coordinate y
0
. 

Further, let SD (t, p) be as in (8) but with T and 

x(t, p) defined here. We see that 

SD (t, p)  y
0
S (t, x (t, p)),  (t, p)  P. 

Note 2. The dual value function (8), has 

properties analogous to the classical value 

function (5) (see, [2]).Thus we get a 

modification of the known properties, i.e., 

Th.1,2 [2]. Also we can get a modification of 

Th.3 [see, 8]. 
 

The following theorem will be established 

when does a solution V(t, p) (9) to the 

DPDEDP (11) satisfy the sufficient conditions 

for optimality of the problem (1)-(4). 
 

Theorem 4: 

Let V(t, p), (t, p)  P, t  [a, b], be a 

Lipschitz solution of DPDEDP (11). Let E 

denote a subset of [a, b] such that if t0  E, 

then for (t0, p)P, Vp (t, p) exists. We assume 

that meas Eba, bE, and that V(t, p) 

satisfies the boundary condition y
0
Vy0 (b, p)  

y
0
(Vy (b, p)), (b, p) P, and the relation: 

V (t, p)  Vp (t, p)p, t  E, (t, p)  P .........  (12) 

Let x(t), u(t) be an admissible pair whose 

graph of the trajectory x(t) is contained in the 

closure T  of T = {(t, x): x  Vy (t, p), t  E, 

(t, p)  P} and such that there is an absolutely 

continuous function p(t)  (y
0
, y(t)) lying in P 

and satisfying  x(t)  Vy (t, p(t)) for t E. 

Assume further that then Vt (t, p(t)) exists for 

almost every t. Then 

( , ( ))W t p t  y
0
Vy0 (t, p(t))+ y

0
b

t

L (s, x (s), 

u(s))ds  

is a nondecreasing function of  t. Let ( )x t , 

( )u t ,    t  [a, b], ( )x a   c, be an admissible 

pair with ( )x t  lying in T and let 
0( ) ( , ( ))p t y y t , t [a, b], be a function lying 

in P such that  ( )x t   Vy (t, ( )p t ) for all              

t  E. Suppose that for almost all t in [a, b],  

Vt (t, ( )p t )+ ( )y t f (t,Vy (t, ( )p t ), ( )u t )+ 
0y L(t,Vy (t, ( )p t ), ( )u t ) 0.      

Then ( )x t , ( )u t , t  [a, b] is an optimal pair 

for the problem of Bolza (1)-(4) relative to all 

admissible pairs x(t), u(t), t[a, b], x(a)  c, 

whose graphs of trajectories are contained in 

T and where the corresponding function              

p(t)  ( 0y , y(t)) (x(t)  Vy (t, p(t)), t E ) is 

an absolutely continuous. Moreover,              

 0y S (t, x (t, ( )p t ))   0y Vy0 (t, ( )p t ) with 

x(t, p)  Vy (t, p) is the dual value function 

along ( )p t . 
 

Proof :  
See [2, Th.3.1].■ 

 

Remarks to Theorem 4.1 

If we also assume that Vyy ≠0 exists and is 

continuous, then for each admissible trajectory 

x(t) whose graph is contained in T, we get that 

the corresponding p(t) = (y
0
, y(t)) is really of 

bounded variation. 2- If V is a Lipschitz 

solution of (11) then it will be of form (12) 

when Vpp(t,p)p = 0, (t,p)p. 3- Put x (t,p) = –Vy  

(t,p), S(t, x (t,p)) = Vy0(t,p).Then (12) means 

that (y
0
,-y) is a normal to the epigraph of S(t, x) 

defined in T at the point (x(t,p), S(t, x(t,p)). 

This generalizes the classical results (if S(t, x) 

is smooth and y
0 

= –1) that –y = Sx (see, 

[6],[12]). 4- We would like to stress that the 

x(t,p) of section 2, which appeared in an 

artificial way, in practice, is calculated from 

(11) and (12) by putting x(t,p) = –Vy  (t,p). 

Now let us in addition to the hypothesis 

(A), U(t)={u(t) measurables; such that for                

t  [a, b], u(t) K, where K  is a  compact  

subset of m }. f (.,.,.) and L(.,.,.) are 

continuous in [a,b] n K  . 

The response of the problem (1)-(4) shall 

be denoted by x(t) at instant t, for the control 

u(.) on the interval [a, b] and with the initial 

condition x(a) = c. 
 

Definition 2: 
Let W be a set of all Lipschitz solutions 

H(t, p), (t, p) ,P t [0, b], to the DPDIDP (13), 

when there exists x(t) = ( , ( ))yH t p t , lying in T, 

as a multiplied solution for the Bolza            

problem (1)-(4): 
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( , ) { ( , ( , ), )t y
u K

H t p max yf t H t p u


   0 ( ,y L t  

( , ), )} 0yH t p u  , a.e., (t, p)P,t[0,b]    

 ............................. (13)   

where K is a compact subset of m ; and 

assume that H(t, p) satisfies the boundary 

condition 

0
0 0( , ) ( ( , ))yy

y H b p y H b p  , ( , )b p P  ; 

and the relation :               

( , )H t p 0
0 ( , ) ( , )yy

y H t p yH t p  ( , ) .pH t p p  

   And define on the set W the following partial 

ordering: 

H H


 H(t, p) H


 (t, p), (t, p) 

,P t [0,b],  H, H


W. 

Note 3. From the definition of the function            

(t, p)V(t, p), (t, p)P  in (9), and Th.4, we 

observe that the function (t, p) V(t, p),            

(t, p)P belongs to the set W .  

Now, let us formulate and prove some 

lemmas, which will simplify and shorten the 

proof of the main theorem in this paper that 

the function  (t, p) V(t, p), (t, p)P defined 

in (9) is a minimum element of the set W. To 

formulate these lemmas, let us assume that          

t0 < b and consider   > 0 such that the interval 

[t0+ , ]b    has a nonempty interior. Now let 

x0(t0)= x0(t0, p(t0)) be arbitrary and let it belong 

to T, u (.)  U (t).   Since x(t, p), (t, p) P is 

locally bounded and (t, x(t, p))  T, (t, p)  P, 

then the response of the system t  x(t) =      

x(t, p(t)) = −Hy (t, p(t)), t[t0, b] with x0(t0) = 

x0 (t0, p(t0)), lying in T is bounded, i.e., 

( , ( ))x t p t Q , for all (t, p(t)) Q


, t[t0, b], 

where Q  and Q


 are compact subsets of  T  

and P  respectively. Here, define a set Q  as 

follows:  2
1( ),nQ Q B


    where 2

1( )nB   is 

the sphere centered at the origin having a 

radius of 1. 

Note 4. We need in the proof of the main 

theorem of this paper to construct a new 

function (t, p)   2H  (t, p), (t, p) ,Q


  

0[ , ]t t b     which is sufficiently regular 

and satisfies the inequality (13). So an 

arbitrary function (t, p)H(t, p) of the set W 

can be chosen and modified in a few steps of 

construction until the resulting function                 

(t, p) 2H  (t,  p) satisfies the inequality (13).  

Thus, for note 4 we suppose that the function    

(t, p)H(t, p) be any function in the set W. 

We may construct a new function                     

(t, p)H1(t, p) by shifting the function            

(t, p)H(t, p), as follows: 

H1(t, p) = H(t, p) ( )b t  , ........................ (14) 

where   is a positive real number which close to 

zero. 

For a shorter and simpler definitions, we 

propose the following notations: 

1 1

1 1

( , , ) ( , , ),

( , , ) ( , , ).

y

y

f t p u f t H u

L t p u L t H u

 

 
 ..................... (15) 

Since the function (t, p)H(t, p), (t, p) ,P  

t [0, b] belongs to the set W, and since, H1t         

(t, p) = Ht (t, p)  , H1x(t, p) = Hx(t, p),               

(t, p) ,P t [0, b], then we see that the 

function (t, p)H1(t, p) is a Lipschitz 

function and satisfies the following: 

0
1 1 1( , ) { ( , , ) ( , , ) :tH t p max yf t p u y L t p u   

}u K     < 0  a.e., (t, p) ,P  t  (0, ).b  (16) 

In order to define a new function (t, p) 2H              

(t, p), (t, p) ,Q


 0[ , ]t t b    , for arbitrary 

and fixed   < min (1, ) , such that  

2 0 0( , ) ( , [ , ])H t p C Q t t b  


     

 and it satisfies the inequality (16), we have  to 

define a new function (t, p) 2H  (t, p) by 

using the convolution of the function               

(t, p)H1(t, p) with a function of class  
2

0 ( )nC    having a compact support. So we 

will define a function (t, p) 2H  (t, p), (t, p) 

,Q


  0[ , ]t t b    , for arbitrary and fixed 

  < min (1, )  by using the convolution of the 

function (t, p)H1(t, p) with a function        

(t, p)  (t, p) of class  2
0 ( )nC    having a 

compact support as follows: 

2 1( , ) ( )( , )H t p H t p
  , ........................... (17) 

where the function  (t, p)H1(t, p) as defined in 

(14), 1
1 : n      is a function of class 

2
0 ( )nC    having a compact support, and 

satisfies:  
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2

1(  ) 1,

n

t, p dtdp





2
1 02

1
( ) ( ) ( , ) ( ),n

n

t p
t, p C 

 

 


  

2
1 1supp ( )nB    

where 2
1( )nB   is a sphere centered at the 

origin having a radius of 1.  

Clearly, this function (t, p) 2H  (t, p) will 

also be a Lipschitz function, because the 

function 1( )( , )H t p  is a Lipschitz for  t, p. 

For shorter and simpler definitions, we 

propose the following notations: 

2

2

2

2

( , , ) ( , , ),

( , , ) ( , , ).

y

y

f t p u f t H u

L t p u L t H u





 

 
 ..................... (18) 

 In order to show that the function (t, p) 2H        

(t, p), (t, p) ,Q


 0[ , ]t t b     satisfies the 

inequality (16), i.e., 

  > 0 |    , 2 ( , )tH t p +max 

{y 2( , , )f t p u + 0
2 ( , , ) : }

2
y L t p u u K


  <0, 

 ............................. (19)                                                                                            

we need to prove some lemmas, so that the 

proof of the above fact (19) becomes shorter 

and simpler. 
 

Lemma 1: 

Let H1 (  ,  ), 2 ( , )H     and  (  ,  ) be 

functions defined in Q̂  (see (17)), then for all      

(t, p) Q̂ , t  [t0 + , b  ], we have:  

0
l im


2 ( , )yH t p   H1y (t, p), 

 and this convergence is uniform. 
 

Proof : By definition of uniformly convergent 

sequence of functions to prove that this lemma 

holds, it is sufficient to show that for arbitrary 

>0 a  > 0 exists such that for every    

and for all (t, p)  Q̂ , t  [t0 + , b  ] the 

following holds:   | 2 ( , )yH t p   H1y (t, p) | < . 

Now by using the definitions of the 

function 2 ( , )H     and the convolution, for all         

(t, p) Q̂ , t  [t0 + , b  ], the following 

holds: 

| 2 1( , ) ( , )y yH t p H t p   | 

 | 1 1( )( , ) ( , )y yH t p H t p  | 


n 2

1 y 1 y

B ( )

H ( t s , p p ) H ( t , p )




    


( s , p ) ds dp    



0
2

ˆ( , ) , [ , ]

( , ) ( )

sup

n
t p Q t t b

s p B 


   

  

|
1 y 1 yH ( t s , p p ) H ( t , p )   | 

Since the function 1 yH .,.   is uniformly 

continuous on the compact set Q , then we 

have 

0
2

ˆ( , ) , [ , ]

( , ) ( )

sup

n
t p Q t t b

s p B 


   

  

| 
1 y 1 yH ( t s , p p ) H ( t , p )    | 

 0  when    0. Consequently,  

| 2 y 1 yH ( t , p ) H ( t , p )   |  0  when    0. 

Therefore, for an arbitrary  > 0, a > 0 exists 

such that for all    and for all (t, p)  Q̂ , t 

 [t0 + , b  ] the following holds: | 2 ( , )yH t p   H1y 

(t, p) | < . ■    

Because in the proof of Th. 5 we will need 

the fact that the function  2(.,.,.)L  and  

1( )(.,.,.)L   have values arbitrary closed to 

each other. So lemma 2 should be given an 

estimate of the difference between the values 

of these two functions by arbitrary real 

number, close to zero. 
 

Lemma 2: 

Let 2 (.,.)H  , 1(.,.,.)L  and 2 (.,.,.)L be 

functions defined in (17), (15) and (18) 

respectively, and (.,.)  be the function of class  

2
0 ( )nC    defined earlier. Then for arbitrary 

positive real number  , described during the 

definition of the function 1(.,.)H  there exists 

 > 0  such that for all     and for all          

(t, p, u)  ,Q K


 t   0[ , ]t b    the 

following inequality holds :  
0 0

2 1( , , ) ( )( , , )y L t p u y L t p u   < ( 4) . 

Proof : For  ( , , )t p u Q K


  , the following 

estimation holds : 
0 0

2 1( , , ) ( )( , , )y L t p u y L t p u 

0
2 1( , , ) ( )( , , )y L t p u L t p u    

2

0
2 1

( )

[ ( , , ) ( , , )]

nB

y L t p u L t s p p u




   


( , )s p dsdp    
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2

0
2 1

( )

[ ( , , ) ( , , )]

nB

y L t p u L t s p p u




   
  

                                                  ( , )s p  dsdp   

0
2

0
2

ˆ( , ) , [ , ]

( , ) ( )

sup ( , , )

n

u K

t p Q t t b

s p B

y L t p u



 




   

 

 



                

 1( , , )L t s p p u    

0
2

0
2

ˆ( , ) , [ , ]

( , ) ( )

sup ( , ( , ), )

n

y
u K

t p Q t t b

s p B

y L t H t p u





 




   

 

  



1( , ( , ), )yL t H t s p p u   , 

since  (.,.,.)L  is uniformly continuous on the 

compact set  , [0, ]Q K t b  , then by lemma 

1, we get that 

0
2

0
2

ˆ( , ) , [ , ]

( , ) ( )

sup ( , ( , ), )

n

y
u K

t p Q t t b

s p B

y L t H t p u





 




   

 

 



 

1( , ( , ), ) 0yL t H t s p p u    as 0  ,  

and consequently, 
0 0

2 1( , , ) ( )( , , ) 0y L t p u y L t p u     as  

0  . Hence, for an arbitrary positive number  

α, there exists   > 0  such that for all      

and for all 0( , , ) , [ , ]t p u Q K t t b 


      

the following holds : 

0 0
2 1( , , ) ( )( , , )y L t p u y L t p u  < 

4


. ■ 

Since in the proof of the main theorem we 

will use the fact that the value of the functions  

2(.,.,.)f  and  1( )(.,.,.)f   have value 

arbitrarily close to each other. So lemma 3 will 

estimate the difference between these two 

functions by a positive number arbitrary close 

to zero. 
 

Lemma 3: 

Let 2 (.,.)H  , 1(.,.,.)f  and 2(.,.,.)f  be 

functions defined in (17), (15) and (18) 

respectively and  (.,.)  be the function of 

class 2
0 ( )nC    defined above. Then for 

arbitrary positive real number , described 

during the definition of function 1(.,.)H  there 

exists  > 0 such that for all    and for all 

(t, p, u) Q̂ K,   t  [t0 + , b  ]  the 

following  hold : 

 | y 2( , , )f t p u   y 1( )( , , )f t p u  | <( 4 ). 
 

Proof : For (t, p, u)  Q̂ K, the following 

estimation holds: 

| y 2( , , )f t p u   y 1( )( , , )f t p u | 

 | y | | 2( , , )f t p u   1( )( , , )f t p u  | 

 | y | |
2( )nB





2 1[ ( , , ) ( , , )]f t p u f t s p p u    

 ( , )s p dsdp    

 |y|
2( )nB





2 1[ ( , , ) ( , , )]f t p u f t s p p u              

( , )s p dsdp    

 |y|

0
2

ˆ( , ) , [ , ]

( , ) ( )

sup

n

u K

t p Q t t b

s p B 




   

  

2( , , )f t p u   

1( , , )f t s p p u   

 |y|

0
2

ˆ( , ) , [ , ]

( , ) ( )

sup

n

u K

t p Q t t b

s p B 




   

  

2( , ( , ), )yf t H t p u   

1( , ( , ), )yf t H t s p p u   . 

Since the function  (.,.,.)f  is uniformly 

continuous on the compact set Q K, t [0, b], 

then by  lemma 1, we get that 

| y |

0
2

ˆ( , ) , [ , ]

( , ) ( )

sup

n

u K

t p Q t t b

s p B 




   

  

2( , ( , ), )yf t H t p u   

1( , ( , ), )yf t H t s p p u   0  as 0  , 

and consequently, 

 | y
 

2( , , )f t p u   y 1( )( , , )f t p u |  0 as               

  0.  

Hence, for an arbitrary positive number , 

there exists  > 0 such that for all    and 

for all (t, p, u)  Q̂ K, t  [t0 + , b  ] the 

following holds: 

| y 2( , , )f t p u   y 1( )( , , )f t p u  | < ( 4 ).■ 
 

 

 

3.1 The Main Theorem 

The main result of this work is formulated 

in the following theorem, which ensures that 

the function (t, p)  V(t, p),  (t, p)P  defined 

in (9) is a minimum element of the set W . 
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Theorem 5: 

The function (t, p)V(t, p), (t, p) P,          

t [0, b] defined in (9) for the problem of 

Bolza (1)-(4), is the minimum element of the 

set W (def. 2), that is 

V (t, p)   H (t, p), for all  H (t, p)  W,               

(t, p)  P. 

Proof : Suppose that the function (t, p)               

H (t, p), (t, p)  P  is any function in the set W, 

then by using (9) with def. 2 of W, we get that 

    ( , ( )) ( , ( )) ( , ( )) ( )DV b p b S b p b x b p b y b     

 = 0y  Vy
0
( , ( )) ( , ( )) ( )b p b x b p b y b  

0y  (−Vy ( , ( )) ( , ( )) ( )b p b x b p b y b    

0 ( ( , ( )) ( , ( )) ( )y x b p b x b p b y b 

0
0 ( , ( )) ( , ( )) ( )

y
y H b p b x b p b y b                       

( , ( )) ( , ( )) ( ) ( , ( )) ( )yH b p b H b p b y b x b p b y b  

( , ( )) ( , ( )) ( ) ( , ( )) ( )H b p b x b p b y b x b p b y b    

= ( , ( ))H b p b . 

Thus we obtain V (b, p(b))   H (b, p(b)) for all    

(t, p)  P, t[0, b]. 

Now, let  t0 < b and consider  > 0 such 

that the interval [t0 + , b  ] has a non-empty 

interior  and let  x0 (t0)  x0(t0, p0(t0)) be an 

arbitrary belon-ging to T, and  u(.)U(t), and 

let the functions (t, p, u)  2f (t,  p,  u)  and        

(t,  p, u) 2L (t,  x, u)  and (t, p) 2H  (t, p) be 

as defined in (17) and (18) respectively. 

We need here to show that the function          

(t, p)  2H  (t, p) satisfies the inequality (19),  

i.e.,  

  > 0 |    , 2 ( , )tH t p + max{y 2( , , )f t p u  

+ 0
2 ( , , )}

2
y L t p u


  < 0, 

and this fact implies that the function (t, p) 

 2 ( , )H t p  also belongs to the set W. 

Now, to prove that the above inequality 

(19) is hold, we have 

2 ( , )tH t p + 0
2 2( , , ) ( , , )yf t p u y L t p u  

0 0
2 1( , , ) ( )( , , )y L t p u y L t p u     

1 1[( (.,., )tH yf u 0
1(.,., )) ]( , )y L u t p      

2 1( , , ) ( )( , , )yf t p u y f t p u  . .......... (20) 

In order to find the values of the left side of 

(20), it is sufficient to find the values of each 

term of the right side in (20). 

From lemma 2 we know that for an 

arbitrary positive real number  which is close 

to zero, there exists   > 0 such that for all        

(t, p, u)  Q̂ K, t  [t0 + , b  ], we get:  

| 0 0
2 1( , , ) ( )( , , )y L t p u y L t p u  | < ( 4 ). 

Moreover, lemma 3 gives: for an arbitrary 

positive real number  which is close to zero, 

there exists  > 0, such that for all    and 

for all (t, p, u)  Q̂ K, t  [t0+, b], we 

have 

| 2 1( , , ) ( )( , , )yf t p u y f t p u  | < ( 4 ). 

Therefore, by using the values of all terms in 

the inequality (16), lemmas 2 and  3, we see 

that, it is possible to estimate the values of the 

left side in (20) for all (t, p) Q̂ , t  [t0 + , b 

 ] as follows: 
0

2 2 2( , ) ( , , ) ( , , )tH t p yf t p u y L t p u    

≤ ( )( , )
4 4

t p

 
    

2


 < 0, 

 thus we have,                                                          

0
2 2 2( , ) ( , , ) ( , , )tH t p yf t p u y L t p u   < 

2


< 0  

 ............................. (21) 

Since the right hand side of the above 

inequality is independent of u(  ), then we see 

that the inequality (19) is satisfied. Therefore 

we obtain that 

2 2( , ) ( , ( , ), )t yH t p yf t H t p u   

0
2( , ( , ), ) 0yy L t H t p u   

for all uU(t), 0[ , ]t t b    .  

Now, by taking the integration of the last 

inequality, we get that  

0 0

2 2( , ) ( ) ( , ( , ( )), )

b b

t y

t t

H t p dt y t f t H t p t u dt

 
 

 

 

 

    

0y

0

2( , ( , ( )), ) 0

b

y

t

L t H t p t u dt











   ......... (22)  

and by using the integration by parts for  

0

2( ) ( , ( , ( )), ) ,

b

y

t

y t f t H t p t u dt











  

where 2( ) ( , ( , ( )), )yx t f t H t p t u   a.e., on             

[a, b],  we get that : 
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0

2( ) ( , ( , ( )), )

b

y

t

y t f t H t p t u dt













2( ) ( , ( ))yy b H b p b        

0 2 0 0( ) ( , ( ))yy t H t p t     

0

2 ( , ( )) ( ) .

b

y

t

H t p t y t dt











    ................ (23) 

Hence, by substituting the above equation (23) 

in the inequality (22),  we get that 

0

2 2( , ( )) ( ) ( , ( ))

b

t y

t

H t p t dt y b H b p b


 



  





   

0 2 0 0( ) ( , ( ))yy t H t p t       

0

2 ( , ( )) ( )

b

y

t

H t p t y t dt











  

0

0
2( , ( , ( )), ) 0

b

y

t

y L t H t p t u dt











  , 

and next 

0

2 2( ( , ( )) ( , ( )) ( ))

b

t y

t

H t p t H t p t y t dt


 







 

2( ) ( , ( ))yy b H b p b     

0 2 0 0( ) ( , ( ))yy t H t p t     

0

0
2( , ( , ( )), ) 0

b

y

t

y L t H t p t u dt










   . 

Since,  

2 2 2( ) ( , ( )) ( , ( )) ( , ( )) ( )t p

d
H t p t H t p t H t p t p t

dt

                        

                       2 2( , ( )) ( , ( )) ( )t yH t p t H t p t y t    , 

Then,                            

0

2 2(( ) ( , ( ))) ( ) ( , ( ))

b

y

t

d
H t p t dt y b H b p b

dt


 



  





   

0 2 0 0( ) ( , ( ))yy t H t p t     

0

0
2( , ( , ( )), ) 0

b

y

t

y L t H t p t u dt











   . 

Thus, we have 

2 2 0 0( , ( )) ( , ( ))H b p b H t p t        

2( ) ( , ( ))yy b H b p b       

0 2 0 0( ) ( , ( ))yy t H t p t     

0

0
2( , ( , ( )), ) 0

b

y

t

y L t H t p t u dt











   . 

Therefore,   

0

0
2( , ( , ( )), )

b

y

t

y L t H t p t u dt











 

0 2 0 0 2( ) ( , ( )) ( , ( ))yy t H t p t H b p b           

2 2 0 0( ) ( , ( )) ( , ( )).yy b H b p b H t p t             

Now since, 

2 2( , ( )) ( ) ( , ( ))yH b p b y b H b p b           

0
0

2
( , ( ))

y
y H b p b      (see, def. 2 of W ), 

and  0
0

2
( , ( ))

y
y H b p b      

 0
2( ( , ( )))yy H b p b       , 

then we get 

0

0
2( , ( , ( )), )

b

y

t

y L t H t p t u dt











 

0 2 0 0( ) ( , ( ))yy t H t p t       

0
2 0 0 2( , ( )) ( ( , ( )))yH t p t y H b p b         

. 

By the properties of convolution [3, p.58] and 

(17) we see that, 2 ( , )H t p  converge to 

1( , )H t p  unif-ormly in 

0, [ , ].Q t t b 


   Therefore, 

0

0
1( , ( , ( )), )

b

y

t

y L t H t p t u dt









 

0 1 0 0( ) ( , ( ))yy t H t p t       

0
1 0 0 1( , ( )) ( ( , ( )))yH t p t y H b p b         , 

and by definition of H1(.,.) in (14) we get that 

0

0 ( , ( , ( )), )

b

y

t

y L t H t p t u dt









 

0 0 0 0 0( ) ( , ( )) ( , ( ))yy t H t p t H t p t           

0
0( ( , ( ))) ( 2 )yy H b p b b t          . 

Now, putting   0, and taking the limit            

  0  then we have 
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0

0 0( , ( , ( )), ) ( ( , ( )))

b

y y

t

y L t H t p t u dt y H b p b   

0 0 0 0 0( , ( )) ( ) ( , ( )).yH t p t y t H t p t   

Since the right hand side of the above 

inequality is independent of ( )u  , we observe 

that  

( )
inf

u K 
0

0{ ( , ( , ( )), )

b

y

t

y L t H t p t u dt    

0 ( ( , ( )))}yy H b p b

0 0 0 0 0( , ( )) ( ) ( , ( )).yH t p t y t H t p t   

Since ( , ) ( , )yx t p H t p  , then we get that  

0

0 0

( )
inf { ( , ( , ( )), ) ( ( ))}

b

u K
t

y L t x t p t u dt y x b
 

 

0 0 0 0 0( ) ( , ( )) ( , ( ))y t x t p t H t p t  . 

Thus, by definition of SD(.,.) in (8) we obtain 

that, 

0 0 0 0 0 0 0( , ( )) ( , ( )) ( ) ( , ( ))DS t p t x t p t y t H t p t   . 

Now, since t0 and 0 0( , ( ))x t p t with a suitable 

function 0 0( )p t p  are arbitrary, we see that  

( , ) ( , ) ( ) ( , )DS t p x t p y t H t p    for all 

( , ) , [0, ]t p P t b   

Thus, by definition of the function (t, p)       

V(t, p) (9),we get that 

( , ) ( , )V t p H t p , for all ( , ) , [0, ]t p P t b  .■ 

 

Example 1: To illustrate the importance of Th. 

5, we present the following example. Consider 

the optimal control problem: 

minimize 
4

2 2 2

1

( ( ) ( ) ( ) ( )) (1 2)[ ( 4)]a t x t b t u t dt x







  , 

subject to 

( )x t   f (t, x(t), u(t))  B(t) u(t) a.e., in 

[1, 4 ] u(t)U(t)  [1, 1], t  [1, 4 ],  

x(-1)=0, where 

     a(t)  
1 2 , 0 t 4 ,

0 , 1 t 0.

   


  

         

     b(t)  
1 2 , 0 t 4,

1 , 1 t 0.

  


  
 

B(t)  
1 3

2

1 0 4

1

0 { 1},

k k

k

, t ,

, t I I ,

, t I

   

  


  

 

jkI  (1 + (
1

2
)
3k+j

, 1 + (
1

2
)
3k+j1

],   

j  1, 2, 3, k 0, 1,…,
3

0 1
jk

k j

I


 

    (1, 0]. 

To study the existence of a solution to the 

DPDEDP of the above problem and obtain the 

optimal pair for the problem by using Th. 5, 

we help ourselves by resolving the maximum 

principle (the necessary optimality conditions) 

for the above problem, that is, x(t), u(t), y(t) 

and y
0
 < 0 satisfy the following conditions : 

dy(t)/dt  2y
0
a(t) x(t) a.e., t  [1, 4 ] 

max {y
0
b(t)u

2
(t) + y(t)B(t)u(t)+ 

y
0
a(t)x

2
(t)|uU(t)} 

y
0
b(t)u

2
(t)+y(t)B(t)u(t)+y

0
a(t)x

2
(t)  a.e. ,  

 t  [1, 4 ], 0y
0[0, ), ( 4) 0,y y     

and 0 0( 4) ( ( 4)) ( 4), 1xy y x x y      . 

Then the following triplets x(t), u(t) and p(t)  

(y
0
, y(t)) can be calculated as follows : 

y
0 
  e, x(t, c1)  c1 sin t,  y(t, ec1)  ec1 cos t,  

u(t, c1)c1 cos t, where t  [0, 4 ],c1 (1,1), 

e  (1/2, 3/2), 

y
0
  e, x (t, e)  0, y(t, e)0, u (t, e)0, 

t[1,
4


], 

y
0 
e, x(t,c2)  


0

2
2 2 2( 2) ( )

t

c B ( s )ds , y t ,ec ec ,  

  u(t, c2)  2( 2)c 2( ), [ 1, 0], ( 1, 1)B t t c    . 

For p(t)  (y
0
, y(t)), t  [1, 4 ], we define 

u(t, y
0
, y) and x(t, y

0
, y) as follows: 
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0

0

0 0

0

0

( ) [ 1 0] ( 3 2 1 2) ( 3 2 3 2)
2

( ) 0 [ 1 4] ( 3 2 1 2) 0

[0 4] ( 3 2 1 2) (3 2)

y
B t , t , , y / , / , y / , / ,

y

u t , y , y , t , , y / , / , y ,

y
, t , , y / , / , y / cos t .

y


      




       
 
      



 

                    

0

2 0

0

0 0

0

0

( ) [ 1 0] ( 3 2 1 2) ( 3 2 3 2)
2

( ) 0 [ 1 4] ( 3 2 1 2) 0

[0 4] ( 3 2 1 2) (3 2)

t

y
B s ds , t , , y / , / , y / , / ,

y

x t , y , y , t , , y / , / , y ,

y
tgt , t , , y / , / , y cos t .

y


       




       
 
      





 

    

                        

02
2 0

0

0 0

2
0

0

[ 1 0] ( 3 2 1 2) ( 3 2 3 2),
4

( , ) 0 [ 1 4] ( 3 2 1 2) 0

[0 4] ( 3 2 1 2), (3 2)
2

t

y
B ( s ) ds , t , , y / , / , y / , /

y

H t , y y , t , , y / , / , y ,

y
tgt , t , , y / , / y cos t .

y

 
       




       

      




 

Therefore               

                 

2

0

2

02
2 0

0

0 0

2
0

0

[ 1 0] ( 3 2 1 2) ( 3 2 3 2),
4

0 [ 1 4] ( 3 2 1 2) 0

[0 4] ( 3 2 1 2), (3 2)
2

t

y

y
B ( s ) ds , t , , y / , / , y / , /

y

H ( t , y , y ) , t , , y / , / , y ,

y
tgt , t , , y / , / y cos t .

y


       




       

      






0

2 0

0

0 0

0

0

[ 1 0] ( 3 2 1 2) ( 3 2 3 2),
2

0 [ 1 4] ( 3 2 1 2) 0

[0 4] ( 3 2 1 2), (3 2)

t

y

y
B ( s ) ds , t , , y / , / , y / , /

y

H ( t , y , y ) , t , , y / , / , y ,

y
tgt , t , , y / , / y cos t .

y

 
       




       

      




 

Now, define SD(t ,y
0
, y) (see, (8)) as follows: 

02
2 0

0

0

2
0

0

[ 1 0] ( 3 2 1 2) ( 3 2 3 2),
4

( ) 0 [ 1 4] ( 3 2 1 2) 0

[0 4] ( 3 2 1 2), (3 2)
2

t

o

D

y
B ( s ) ds , t , , y / , / , y / , /

y

S t , y , y , t , , y / , / , y ,

y
tgt , t , , y / , / y cos t .

y

 
       




       

      





It is simple to verify that the functions          

(t, y
0
, y) H(t, y

0
, y) as described above, are 

Lipschitz functions in the sets of t and (y
0
, y) 

and they satisfy all conditions in the set W 
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(def. 2). Thus, the functions (t,y
0
,y)H(t,y

0
,y) 

in the sets of  t  and (y
0
, y) described above, are 

belongs to set W. And we see that for p(t)  

(y
0
, y(t)), when t[1, 4 ], y

0
 is any given 

number in the interval ( 3 2, 1 2)  , and y = 0, 

it is not difficult to check that the 

function(9)for the above problem:V(t, y
0
, y) = 

SD(t, y
0
, y) x(t, y

0
, y)y, which is equal to 

zero, satisfy (11) and the boundary condition 

of Th.4, thus it belongs to the set W. 

Therefore, from all above and Th.5, we 

observe that the function (t, y
0
, y) V(t, y

0
, y), 

t  [-1, 4 ] which is equal to zero is a 

minimum element of the set W, and by using 

Th.4, we find that x(t)  0 and u(t)  0, t  [1, 

4 ] is an optimal pair for the above problem. 

Remark 1. 
As shown before in section 1, the Lagrange 

problem can be obtained from Bolza problem 

(1)-(4) by taking x  (x) equal to zero. And 

since these two problems have the same 

PDEDP(7) and DPDEDP(11) [6], then it is not 

difficult to check that the main Th. 5 is 

satisfied for the Lagrange problem. Now, if we 

take the same example 1 for the Bolza problem 

(1)-(4), but with b = π and  (x(π)) = 0, we get 

that the Lagrange problem. And by using the 

same manner in the above example 1, we find 

that x(t) = 0 and u(t) = 0, t[1, π] is an 

optimal pair for the Lagrange problem. 

 

4. Conclusion: 
According to the properties of the dual 

value function  SD(., .) (8), and the function 

V(., .) (9), for the problem of Bolza (1)-(4), we 

observe that, the main Th. 5 of this paper, 

identifies that (in the case where there is not a 

unique solution for the problem (1)-(4)) the 

minimum element of the set W which satisfies 

the Lipschitz condition is an approximate of 

optimal, i.e., if the function V (.,.) (9) is 

evaluated along any admissible trajectory such 

that it is a Lipschitz and satisfying the solution 

to the DPDEDP (11), (12) and the boundary 

condition of Th.4, then that trajectory is  an 

optimal.  
 

Remark 2:  
It is clear in the control theory that there 

many not exist a minimizer for the Bolza 

problem (1)-(4) [4]. Therefore it is natural to 

look for an approximate minimum for this 

problem. Thus, for the future study, we can 

use the method in section 3 for studying the 

existence of an approximate solution for the 

Bolza problem. 
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الخلاصة 
 تم إثبات النظرية الأساسية التي تتعامل مع وجود حل 

اصغر لممعادلة التفاضمية الجزئية المواجهة لمبرمجة 
كما تم . الديناميكية لمشاكل السيطرة المثمى لبولزا ولاكرانج

تم إعطاء وصف . إعطاء مثال يوضح قيمة هذه النظرية
لخواص دالة القيمة ودالة القيمة المواجهة لكل من مشكمة 

علاوة عمى ذلك، تم تقديم النظرية التي تتعامل . بولزا ولاكرانج
مع وجود حل اعظم لممعادلة التفاضمية الجزئية لمبرمجة 

الديناميكية لكل من مشكمة بولزا ولاكرانج والذي يحقق شرط 
.  ليبشتز والذي هو ايضاً يمثل دالة القيمة لهذه المشكمة

 

 

 

 

 

 

  

                 

 


