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Abstract 
In this paper a summary on simulating two basic problems in branching processes which was 

first posed by Galton, that is the problem of finding the probability of extinction of a branching 

process and the problem of specifying the distribution of the offspring number in the n
th

 generation. 

Three distributions were used in this simulation; namely binomial, Poisson and uniform 

distribution. The algorithms used in this simulation, the results obtained and the conclusions based 

on these results are all briefly given in this paper. It was seen practically that ,accoording to the 

simulation assumptions,the most suitable distribution for the first problem from the above three 

distributions is uniform and the next is Poisson, for the second problem Poisson distribution is the 

most suitable.  
 

1.Introdction: 

Branching processes theory is that part of 

mathematics which deals with the growth and 

decay of populations of objects which multiply 

and replace one another, generation by 

generation, according to rules in which chance 

plays a prominent part. 

A branching process is a Markov chain 

arising in the theory of population growth. In a 

population of like individuals, e.g. marks of a 

biological species neutrons in a physical 

substance, suppose that each individual, 

independently of all other individuals, is 

capable of giving rise to a number of 

offspring, this number being a random 

variable, say Xn , taking values 0, 1, 2…with 

probabilities P0, P1, P2, … respectively. 

Starting with one individual we examine the 

development of its descendants generation by 

generation. 

The initial individual is regarded as 

belonging to the zero
th

 generation, its offspring 

as belonging to the first generation, the total 

number of offspring of individuals in the first 

generation comprise the second generation and 

so on.  

If all the individuals of a generation fail to 

reproduce, the population becomes extinct.  

The probability of extinction is of our 

interest in this paper so that the assumption 

will be P0 >0, for if P0 =0 then each individual 

must have at least one offspring and extinction 

is impossible, also it must be that P0+P1<1; for 

if P0+P1=1 then the process is trivial because 

when that is happened then each individual 

can have at most one offspring and each 

generation can have number at most one, [11]. 

There are numerous examples of Markov 

branching processes that arise naturally in 

various scientific disciplines. Some of the 

most prominent ones are listed below: 
 

(a) Electron Multipliers: 

An electron multiplier is a device that 

amplifies a weak current of electrons. A series 

of paths are set up in the path of electrons 

emitted by a source. 

Each electron, as it strikes the first plate, 

generates a random number of new electrons, 

which in turn strike the next plate and produce 

more electrons, etc. 

Let X0 be the number of electrons initially 

emitted, X1 the number of electrons produced 

on the first plate by the impact due to the X0 

initial electrons; in general let Xn be the 

number of electrons emitted from the n
th

 plate 

due to electrons emanating from the  

(n-1)
st
 plate. The sequence of random variables 

X0, X1, X2, …, Xn, … constitutes a branching 

process. 
 

(b) Neutron Chain Reaction: 

A nucleus may splitied when it colide with 

a neutron. The resulting fission yields a 

random number of new neutrons. Each of 

these secondary neutrons may hit some other 

nucleus producing a random number of 
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additional neutrons, etc. In this case the initial 

number of neutrons X0=1. 

The first generation of neutrons comprises 

all those produced from the fission caused by 

the initial neutron. The size of the first 

generation is a random variable X1. In general 

the population Xn at the n
th

 generation is 

produced by the chance hits of the Xn-1 

individual neutrons of the (n-1)
 st

 generation. 
 

(c) Survival of Family Names:     
The family name is inherited by sons only. 

Suppose that each individual has probability Pk 

of having k male offspring. Then from one 

individual there result the 1
st
, 2

nd
, …, n

th
, 

…generations of descendants.  

The distribution of such random variables 

may be investegated as the number of 

descendants in the n
th

 generation, or the 

probability that the family will eventually 

become extinct. 
 

(d) Survival of Mutant Genes: 

Each individual gene has a chance to give 

birth to k offspring, k=1, 2, …,  which are 

genes of the same kind. However, any 

individual has a chance to transform into a 

different type or mutant gene. 

This gene may become the first in a 

sequence of generations of a particular mutant 

gene. Inquiry about the chances of survival of 

the mutant gene within the population of the 

original genesmay be done. 

All the above examples posses the 

following structure: 

Let X0 denote the size of the initial 

population. Each individual gives birth, 

independently of the others, with probability 

Pk to k new individuals, where  

Pk   0, k=1, 2, …, and 


1k

kP  = 1 ......... (*) 

The totality of all the direct descendants of 

the initial population constitutes the first 

generation whose size denoted by X1. Each 

individual of the first generation independently 

bears a progeny whose size is governed by the 

probability distribution (*). 

The descendant produced constitutes the 

second generation of size X2. In general the n
th

 

generation is composed of descendants of the 

(n-1)
st
 generation each of whose members 

independently produces k progeny with 

probability Pk, k=1, 2,… . The population size 

of the n
th

 generation is denoted by Xn. Then Xn 

form a sequence of integer-valued random 

variables that generate a Markov chain.  

For illustration, a simple numerical 

example with the following assumptions: [18] 

(I) An appropriate sample space and 

probability measure must be first chosen. 

(II) The 0
th

 generation is started with one 

genuine individual. 

(III)  0, 1, 2, 3, … offspring will be seen in 

the first generation with probabilities P0, 

P1, P2, P3, … respectively. 

(IV) If in the first generation there are k 

offspring, then in the second generation 

there will be Z1+Z2+…+Zk offspring, 

where Z1, Z2, …,Zk are independent 

random variables, each with the common 

distribution P0, P1, P2, … . 

The above assumptions enable us to 

construct a tree, and a tree measure, for any 

number of generations.  

 

2. The History of the Process: 
The subject of branching processes is now 

over a century old. Until 1972 it was believed 

that the theory of branching processes was 

originated with the “problem of the extinction 

of families ” posed by Francis Galton in the 

educational times magazine [7].  

The first attempt at a solution to this 

problem was given by Reverend H. W. 

Watson [21]. Because of a mistake in algebra, 

he incorrectly concluded that a family name 

would always die out with probability 1. And 

from his joint paper in 1875 with Galton [8], 

the mathematical tool of branching emerged 

the Galton-Watson Process. 

But in 1972 C.C. Heyde and E. Seneta had 

mentioned in their paper [12] a historical note 

on the discovery of the same problem, which 

was made by Bienayme´ in 1845 [5] who 

anticipated Galton and Watson by 28 years. 

For this reason branching process is sometimes 

called the Bienayme´-Galton-Watson process. 

More details on the Bienayme´-Galton-

Watson process are given in [1]. 

The Bienayme - Galton - Watson process 

had, since found, been used in many other 

areas, such as queuing theory  (Kendall, 1951) 

[14], genetics (Ewens, 1969)[6], epidemiology 

(Becker, 1977) [4], and demography (Keyfitz, 

1985) [17]. Statistical methods for these 
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branching processes were first developed by 

Harris (1948) [10], and have been the target of 

extensive research for the last two decades in 

the twentieth century.[11], [18]. 

Also in the mid of 1980‟s Dynkin, building 

on earlier work of Fisher and Feller on 

population genetics and of the Japanese school 

of Watanabe, Ikeda and Nagasawa on 

branching Markov processes, introduced the 

notion of super processes (with deep 

connections to the theory of partial differential 

equations) which arose as scaled limits of 

branching processes that allowed random 

movement of particles. This has become a 

major area of contemporary research in 

probability theory. 

The subject of branching processes has had 

obvious implications for population dynamics, 

but with the development of computer science 

it has found new applications in area such as 

algorithms, data structures, combinatorics, and 

molecular biology especially in molecular 

DNA sequencing. This led to a conference 

titled „ Classical and Modern Branching 

Processes‟ at the IMA, Minneapolis where 

new developments were surveyed and open 

problems identified. The proceedings of the 

conference came out in 1997 [2]. 

Thus the area of branching processes is 

valid and well. New applications continue to 

be found and in turn inspire new questions for 

the subject. 

The literature is vast of this exciting area of 

research and one has had to make a selection 

of topics. What is presented in this paper does 

reflect our interests and preferences. [3] 

 

3. The Problem of Finding the 

Probability of Extinction: 
This problem was first appeared in the last 

decades of the nineteenth century when Galton 

studied the problem of survival of family 

names in British peerage. The first attempt to 

solve this problem was made by Watson [21] 

while the correct solution appeared only in 

1930‟s by Steffenson [19], [20]. This problem 

was first formulated by Galton as follows: 

Let P0, P1, P2, … be the respective 

probabilities that a man has 0, 1, 2, … sons, let 

each son have the same probability for sons of 

his own, and so on. What is the probability 

that the male line is extinct after n generations, 

and more generally, what is the probability for 

any given number of descendants in the male 

line in any given generation?, [11]. 

More details on the history and 

development of this problem and its solution 

can be found in [15], [16]. 

Now, the aim of our work in this section is 

to determine the probability that a branching 

process dies out by a particular generation, as 

well as the limit of these probabilities as the 

generation size increases. Let qn be the 

probability of dying out by the n
th

 generation. 

Then we know further that: 

qn = Ø(qn1) ........................................ (3.1) 

where Ø(z) is the generating function for the 

number of offspring produced by a single 

parent. Equation (1.1) makes it easy to 

compute these probabilities, where it is known 

from the theory of branching processes that:  

0 = q0   q1   q2 …  qn  1 ......... (3.2) 

The necessary steps for evaluating the 

probability of extinction in each generation of 

a branching process living till a specified 

number of offspring n = 0, 1, ... are given in 

the following algorithm: 

 

PROB-OF-EXT Algorithm: 

1. Read n {the maximum number of 

generations}, m {the maximum number of 

offspring that could be produced by a single 

parent in any generation}, and the assumed 

initial probabilities P0 , P1 , P2 , …, Pm . 

2. Set i = 1, qi = P0 + P1   qi-1 +P2  (qi-1)
2
 + 

… + Pm  (qi-1)
m

. 

3. Print “the probability of extinction of the i
th

 

generation is qi”. 

4. If i = n then go to step 6. 

5. i = i +1. 

6. End.  

where each Pi = Pr(X=i), i = 0, 1, 2, … . 

A computer program named probability of 

extinction was made according to the above-

mentioned algorithm for evaluating the values 

of the probability of dying out (extinction) 

where 12 generations were considered for the 

case that a parent can produce at most two 

offspring with probabilities P0 = 0.2, P1 = 0.5, 

and P2 = 0.3. The values of probability of 

extinction obtained from the above program 

are illustrated in the following Table: 
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Table (1) 

The probability of extinction for 12 

generations. 

Generation Probability of dying out 

1 0.2 

2 0.312 

3 0.385203 

4 0.437116 

5 0.47589 

6 0.505878 

7 0.529713 

8 0.549035 

9 0.564949 

10 0.578225 

11 0.589416 

12 0.598931 

 

Table (1) shows that the probability of 

dying out (extinction) by 12 generations is 

about 0.6 and a satisfactory results will be 

obtained as the number of generations 

increases where the probability of extinction 

approaches 1 which satisfy inequality (1.2). 

The next example shows, as a 

consequence of our assumption: P0 = 0.2, P1 = 

0.5, and P2 = 0.3, that the probability of 

eventually dying out is 
3
2 , so that even 12 

generations is not enough to give an accurate 

estimate for this probability.  
 

Example (1), [18]: 

This example is practically a special case 

of a branching process in which at most two 

offspring can be produced. Then: 

Ø(z) = P0 +P1 z +P2 z
2
 ,  

where Pi =0 for i =3, 4, … . 

In this simple case the condition z = Ø(z) 

yields the equation: 

q = P0 +P1 q +P2 q
2
,  

which is satisfied by q = 1 and q = 20 PP . 

Thus, in addition to the root q = 1, the second 

root is q = 20 PP . The mean number m1 of 

offspring produced by a single parent is  

m1 = Ø(1)   = P1 +2 P2  

= 1  P0 – P2 +2 P2   

= 1 – P0 +P2 . 

Thus, if P0 > P2 , m1 < 1 and the second root  

is > 1. If P0 = P2 , a double root q = 1will be 

gained. If P0 < P2 , m1 > 1 and the second root 

q is less than 1 and represents the probability 

that the process will die out.  

If P0=0.2 and P2=0.3 then the second root 

will have the value 
3

2
or about 0.67 which is 

nearer to 1 than the value obtained in the 

above Table.  

In this work updating to the program 

“probability of extinction” is made three times 

to make three other different programs named 

probability of extinction 1, 2, and 3 
respectively. In each time a different 

probability distribution to the number of 

offspring produced by a single parent is 

considered. Therefore, in each time there will 

be different P0, P1, …, Pm , m=0, 1, …; where 

m represents the maximum number of 

offspring produced by a single parent (as 

mentioned in the above algorithm) and then a 

determination is made to the probability of 

extinction of the branching process up to the 

10
th

 generation to all the three distributions, 

and for comparison sake the value of the mean 

of the all three distributions will be fixed to 2. 

The three different probability 

distributions that had considered in this work 

are the well-known distributions namely: 

(1) Uniform distribution [the case U (0,4) is 

considered]. 

(2) Poisson distribution [the case Ρ (2) is 

considered]. 

(3) Binomial distribution [the case b (5,0.4) is 

considered]. 

Since it is not easy somewhat to determine 

the value of the probability generating function 

Ø(s) and accordingly the solution of the 

equation q = Ø(q) by using inequality (1.2) 

especially for m 3, so the value of the 

probability of extinction for m 3 won't be 

determined theoretically and it will be 

determined just for the case when m=2 for 

each assumed distribution but the rest will be 
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determined practically in the mentioned 

programs (this is the reason that lead to use the 

computer programs for evaluating this value), 

as follows: 

 

3.1 The probability of extinction for the b(5, 

0.4) distribution [1]: 

For a r.v. X~b(5,0.4) , the p.d.f. of X is 

given by: 





















otherwise.,0

54,3,2,1,0,x,x5(0.6)x(0.4)
x

5

f(x)  

Then P0 = f(0) = (0.6)
5
 = 0.07776, P1 = 

f(1) = 0.2592, P2 = f(2) = 0.3456,  

P3 = f(3) = 0.2304, … . 

Then the results from the program 

probability of extinction 1, that was run for 9 

iterations in each of which we give a different 

value for m, are given in the following Table: 

 

 

Table (2) 

The values of the probability of extinction for the b(5,0.4) distribution. 

 
The maximum number of offspring produced by a single parent 

2 3 4 5 6 7 8 9 10 

T
h

e 
g
en

er
a
ti

o
n

s 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 

2 0.1000 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 

3 0.1071 0.1074 0.1074 0.1074 0.1074 0.1073 0.1073 0.1073 0.1074 

4 0.1095 0.1099 0.1099 0.1099 0.1099 0.1097 0.1097 0.1097 0.1098 

5 0.1103 0.1107 0.1107 0.1107 0.1107 0.1104 0.1104 0.1104 0.1107 

6 0.1105 0.1110 0.1110 0.1110 0.1110 0.1107 0.1107 0.1107 0.1110 

7 0.1106 0.1111 0.1111 0.1111 0.1111 0.1108 0.1108 0.1108 0.1111 

8 0.1107 0.1111 0.1112 0.1112 0.1112 0.1108 0.1108 0.1108 0.1111 

9 0.1107 0.1112 0.1112 0.1112 0.1112 0.1108 0.1108 0.1108 0.1111 

10 0.1107 0.1112 0.1112 0.1112 0.1112 0.1108 0.1108 0.1108 0.1111 

 

For the case when m=2, Ø(q) = P0 +P1 q 

+P2 q
2
 , where Pi =0 for i =3, 4, … ; and 

according to example (1) where it was 

concluded that the solution of the equation 

Ø(q) = q is either q=1 or 
2

0

P

P
q  , then in this 

case either q=1 or 225.0
3456.0

07776.0
q  which 

is larger than all the corresponding practical 

values in the above table but they seem to be 

close. When m=3, the cubic equation Ø(q) = 

P0 +P1 q +P2 q
2
 +P3 q

3
 is obtained, and the 

solution of the equation Ø(q) = q is readily 

obtained by using the mathcad software 

application which gives a suitable solution at 

q=0.111 where this value seems to be very 

close to the corresponding practical values in 

the above Table. 
 

3.2 The probability of extinction for the 

Poisson P(2)distribution, [1]: 

For a r.v. X~P(2) , the p.d.f. of X is given 

by  
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f(x)

.

2 xe 2
, x 0,1,2,...

x!

0 ,otherwise




 




   

Then P0 = f(0) = e
2

= 0.135335283,   

P1 = f(1) = 0.270670566,  

P2 = f(2) = 0.270670566 ,  

P3 = f(3) = 0.180447044, …. 

The results from the program probability 

of extinction 2, also it was run for 9 iterations 

with different values for m, are given in              

Table (3): 

 

 

 

Table (3) 

The values of the probability of extinction for the P(2) distribution. 

 
The maximum number of offspring produced by a single parent 

2 3 4 5 6 7 8 9 10 

T
h

e 
g
en

er
a
ti

o
n

s 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.1353 0.1353 0.1353 0.1353 0.1353 0.1353 0.1353 0.1353 0.1353 

2 0.1769 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 

3 0.1917 0.1929 0.1930 0.1930 0.1930 0.1930 0.1930 0.1930 0.1930 

4 0.1972 0.1989 0.1991 0.1991 0.1991 0.1991 0.1991 0.1991 0.1991 

5 0.1992 0.2013 0.2015 0.2015 0.2015 0.2015 0.2015 0.2015 0.2015 

6 0.2000 0.2023 0.2025 0.2025 0.2025 0.2025 0.2025 0.2025 0.2025 

7 0.2003 0.2026 0.2029 0.2029 0.2029 0.2029 0.2029 0.2029 0.2029 

8 0.2004 0.2028 0.2031 0.2031 0.2031 0.2031 0.2031 0.2031 0.2031 

9 0.2005 0.2029 0.2031 0.2031 0.2031 0.2031 0.2031 0.2031 0.2031 

10 0.2005 0.2029 0.2031 0.2032 0.2032 0.2032 0.2032 0.2032 0.2032 

 

As in section 3.1, the theoretical value of 

the probability of extinction is either q =1 or q 

= 
2

0

P

P
 when m=2, and since in this case              

P0 = 0.135335283 and P2 = 0.270670566, then 

either q =1 or q = 
270670566.0

135335283.0
0.5 which is 

larger than all the corresponding practical 

values in the above table.  

Also by the same way as in the previous 

section, by the mathcad software application, 

the theoretical value of the probability of 

extinction with Poisson distribution 

assumption is 0.203 which also seems very 

close to the corresponding values in the above 

Table. 

 

3.3 The probability of extinction for the 

U(0,4) distribution[1] 

For a r.v. X~U(0,4) , the p.d.f. of X is: 












otherwise.,0

4x0,
4

1

f(x)  

Then P0 = f(0) = 
4

1
= 0.25,    

P1 = f(1) = 
4

1
= 0.25, P2 = f(2) = 

4

1
= 0.25, 

P3 = f(3) = 
4

1
= 0.25, …. 

The results from the program probability 

of extinction 3, where it was run by the same 

way of the above two programs, are shown in 

the table below: 
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Table (4) 

The values of the probability of extinction for the U(0,4) distribution. 

 
The maximum number of offspring produced by a single parent 

2 3 4 5 6 7 8 9 10 

T
h

e 
g
en

er
a
ti

o
n

s 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 

2 0.3281 0.3320 0.3330 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

3 0.3589 0.3697 0.3733 0.3744 0.3748 0.3749 0.3750 0.3750 0.3750 

4 0.3719 0.3892 0.3960 0.3985 0.3995 0.3998 0.3999 0.4000 0.4000 

5 0.3776 0.3999 0.4099 0.4140 0.4156 0.4163 0.4165 0.4166 0.4166 

6 0.3800 0.4060 0.4187 0.4245 0.4269 0.4279 0.4283 0.4285 0.4285 

7 0.3811 0.4094 0.4246 0.4318 0.4351 0.4365 0.4371 0.4373 0.4374 

8 0.3816 0.4114 0.4285 0.4372 0.4412 0.4431 0.4439 0.4442 0.4443 

9 0.3818 0.4126 0.4311 0.4411 0.4460 0.4482 0.4492 0.4497 0.4499 

10 0.3819 0.4133 0.4329 0.4440 0.4497 0.4523 0.4536 0.4541 0.4544 

 

As in section 3.2, the theoretical            

value of the probability of extinction is either    

q =1 or q = 
2

0

P

P
, and  since in this case              

P0 = 0.25, P2 = 0.25, then it will be only one 

solution q =1 which is larger than the entire 

corresponding practical values in the above 

table. And by using the mathcad software 

application, the obtained theoretical value of 

the probability of extinction with the uniform 

distribution assumption is 0.414 which seems 

to be very close to the corresponding values in 

the above Table. 
 

4. The problem of specifying the 

Distribution of the offspring, [1]: 
At the best of our knowledge, the exact 

distribution of the number of offspring in the 

n
th

 generation is not specified yet except for 

some special cases, and that was the second 

problem raised by Galton. 

So simulating this problem by putting 

three assumptions to the distribution of the 

number of offspring produced by a single 

parent was done and then testing the 

hypothesis in each assumption that whether or 

not this distribution is suitable for this 

branching process by Chi-square goodness of 

fit test. 

In each case X1 is assumed to be a random 

variable generated from a certain distribution 

then the branching process structure for 

generating randomly the number of offspring 

in the 2
nd

 ,3
rd

 , …, n
th

 generation is applied, 

where n is a given fixed number. This 

procedure of the same assumption and the 

same way of generation is repeated for k 

prescribed independent times to get a vector of 

k independent random variables (r. v.
‟s
) each 

of which represents the number of offspring in 

the n
th

 generation, that is the sequence 

 k
1rrnX


 will be obtained. 

The necessary steps for generating 

random variates from discrete distributions are 

described in the following general algorithm 

(and the algorithm for generating from 

uniform distribution, which is a continuous 

distribution, is a known pakage in the Pascal 

programming language and other 

programming languages): 

 

DISTN-Algorithm: 

1. Set X = 0, P(X) = q(X) = P0 . 

2. Generate U from U(0,1)-distribution. 



Akram M. Al-Abood 

 124 

3. If Uq(X), deliver X as a r. v. generated 

from Px =Pr(X=x), go to step 7. 

4. Set A(X), where A(X) = 
x

1x

P

P  . 

5. X = X + 1, P(X) = A(X  1) P(X  1), 

q(X) = q(X  1)+P(X). 

6. Go to step 2. 

7. End. 
 

So for binomial distribution, the following 

algorithm will be used: 
 

BINOMIAL-DISTN-Algorithm: 

1. Read n, p. 

2. Set X = 0, P(X) = q(X) = P0 =(1  p)
n
. 

3. Generate U from U(0,1)-distribution. 

4. If Uq(X), deliver X as a r. v. generated 

from b(n,p), go to step 9. 

5. Set A(X) = 
)xn)(1x)(p1(

p


. 

6. X = X + 1, P(X) = A(X  1) P(X  1), q(X) 

= q(X  1) + P(X). 

7. If X = n, deliver X = n as a r. v. generated 

from b(n,p), go to step 9. 

8. Go to step 3. 

9. End. 
 

And for Poisson distribution, the 

following algorithm is applied: 
 

POISSON-DISTN-Algorithm: 

1. Read  , n. 

2. Set X = 0, P(X) = q(X) = e  . 

3. Generate U from U(0,1)-distribution. 

4. If Uq(X), deliver X as a r. v. generated 

from P(), go to step 9. 

5. Set A(X) = 
1x 


. 

6. X = X + 1, P(X) = A(X  1) P(X  1), q(X) 

= q(X  1)+P(X). 

7. If X = n, deliver X = n as a r. v. generated 

from P(), go to step 9.  

8. Go to step 3. 

9. End. 
 

After that the Chi-square goodness of fit 

test is applied to test the hypothesis that the 

above sequence represents a random sample 

(r.s.) of size k drawn from the same above 

distribution but with mean equals to the n
th

 

multiple of the mean of the assumed 

distribution for the 1
st
 generation.  

In this simulation, as in the previous 

section, three assumptions to the distribution 

of X1 were made, that is, the well-known 

distributions uniform, Poisson, and binomial 

were considred, separately, as the distribution 

of X1.     
  

More specifically, a special case of each 

of the above distributions was considered in a 

suitable manner that fits the branching process 

structure of generation in the turbo Pascal 

programming language and for the sake of 

comparison between the above three 

assumptions to X1 by fixing the mean of the 

three distributions to 2. That is why each of the 

U(0,4) , Ρ (2), and b(5,0.4) distributions were 

considered as a distribution of X1 in a separate 

program. 

So three separated programs were made, 

each of which generates random vectors and 

then tests whether each of these random 

vectors drawn from the same original 

distribution (i.e., the assumed distribution for 

the r.v. X1) but with mean equals to {E(X1)}
n
 

by Chi-square goodness of fit test (notice that 

E(X1)=m1). 

In simulation investigation for the 

offspring distribution the generation of the 

random numbers in all generations was 

according to the above three mentioned 

(proposed) distributions for the first 

generation.The observed data representing the 

values of the n
th

 generation with repetition of 

100 times is distributed into 10 cells. 

A Chi-square goodness-of-fit test was 

made with the following hypotheses 

separately: 

1. H0: data from binomial distribution with 

mean (m1)
n
  Versus  H1: any other 

alternative. 

2. H0: data from Poisson distribution with 

mean (m1)
n
 Versus H1: any other 

alternative. 

3. H0: data from uniform distribution with 

mean (m1)
n
 Versus H1: any other 

alternative. 

According to the above three hypotheses, 

the data obtained were as follows:  

 For the binomial hypothesis, the following 

acceptance percentage table was 

constructed with three different significant 

levels: 
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Table (5) 

The acceptance percentages for the b(5,0.4) 

distribution. 

The 

Iterations 

Significant levels (α ) 

0.025 0.05 0.1 

1 8 % 9 % 30 % 

2 8 % 14 % 14 % 

3 8 % 10 % 16 % 

4 12 % 8 % 16 % 

5 7 % 10 % 20 % 

6 14 % 12 % 16 % 

7 9 % 4 % 24 % 

8 11 % 3 % 12 % 

9 12 % 6 % 14 % 

10 13% 8% 10% 
 

 For the Poisson hypothesis, the following 

acceptance percentage table was obtained 

with three different significant levels: 

 

Table (6) 

The acceptance percentages for the P(2) 

distribution. 

The 

Iterations 

Significant levels (α ) 

0.025 0.05 0.1 

1 88 % 86 % 88 % 

2 83 % 79 % 84 % 

3 90 % 71 % 93 % 

4 88 % 80 % 85 % 

5 83 % 80 % 85 % 

6 90 % 76 % 87 % 

7 88 % 82 % 89 % 

8 81 % 82 % 97 % 

9 89 % 85 % 85 % 

10 89 % 76 % 93 % 
 

 Finally for the uniform hypothesis, the 

obtained acceptance percentage table with 

three different significant levels was: 
 

Table (7) 

The acceptance percentages for the U(0,4) 

distribution. 

The 

Iterations 

Significant levels (α ) 

0.025 0.05 0.1 

1 78 % 79 % 79 % 

2 75 % 83 % 76 % 

3 76 % 74 % 76 % 

4 76 % 76 % 75 % 

5 69 % 81 % 82 % 

6 84 % 78 % 79 % 

7 71 % 83 % 75 % 

8 62 % 80 % 75 % 

9 75 % 73 % 85 % 

10 83 % 81 % 80 % 

 

5. Conclusions and Suggestions: 
Throughout this work, a large scale of 

Monte Carlo investigation is made for the two 

basic problems, namely the probability of 

extinction and the distribution of the offspring 

number in the n
th

 generation, where n is a 

prescribed fixed number representing the 

maximum number of generations. 

 The board conclusions reached in finding 

the probability of extinction were: 

1. In general, the probability of extinction of 

any generation is larger than its value in the 

proceeding generation for all assumed 

distributions. 

2. In the investigation for the probability of 

extinction with the binomial distribution 

assumption, the conclusions observed were:  

I. The largest value of this probability in 

the n
th

 generation for all the iterations is 

ranging over the interval [0.1107, 

0.1112]. 

II. This probability is stable in much 

successive iterations although there 
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appear some differences due to 

randomness. 

III. We expect that if the number of 

iterations increases then this probability 

will increase and have the value 0.1112 

as an upper bound. 

IV. When r=2 the theoretical value of this 

probability seems to be close to its 

corresponding practical values but this 

closeness appears more clearly when 

r=3, where r is the number of offspring 

produced by a single parent. 

3. For the probability of extinction with the 

Poisson distribution assumption, the 

investigation lead to the following:  

I. The largest value of this probability in 

the n
th

 generation for all the iterations is 

ranging over the interval [0.2005, 

0.2032]. 

II. Tables of the probability of extinction 

show stability in the fourth to the ninth 

iteration and so it could be expected that 

this probability would be the same even 

in the tenth iteration and more. 

III. It was seen that the theoretical value of 

this probability when r = 2 seems to be 

close to its corresponding practical 

values but this closeness appears more 

clearly when r = 3. 

4. And for the probability of extinction with 

the uniform distribution assumption, it is 

seemed that:  

I. The largest value of this probability in 

the n
th

 generation for all the iterations is 

ranging over the interval [0.3819, 

0.4544]. 

II. The values of the probability of 

extinction with this assumption increase 

step by step from iteration to another. 

III. Tables of the probability of extinction 

show different increasing values for this 

probability, i.e. no stability is found for 

this probability with the uniform 

distribution assumption but the upper 

bound to these values seems to be 0.5 as 

the no. of iterations increases. 

IV. It was seen that the theoretical value of 

this probability when r = 2 does not 

seem to be close to its corresponding 

practical values but it is close when              

r = 3. 

5. Overall aggregate the good observer will 

notice that the value of the probability of 

extinction with the uniform distribution 

assumption reaches one faster than its value 

with the two other assumptions and the next 

is with the Poisson distribution assumption. 

 For the problem of finding the offspring 

distribution, the following were observed : 

I. For the binomial distribution assumption it 

was found that its tables of the acceptance 

percentages consists frequently of small 

percentages for all the significant levels, 

where these values (percentages) differ 

from 3 % to 30 % , which will be rejected. 

II. For the Poisson distribution assumption it 

was found that its tables of the acceptance 

percentages consists of good results for all 

the significant levels and these results differ 

from 71 % to 97 % , which will be 

accepted.  

III. For the uniform distribution assumption it 

was found that its tables of the acceptance 

percentages consists also of quite good 

results for all the significant levels and 

these results differ from 62 % to 85 % 

which person could be a little hesitate to 

accept it. 

iv. Poisson distribution is the most suitable 

distribution in comparison with the two 

other considered distributions (namely 

binomial, and uniform) to the offspring 

distribution according to the results from 

the Chi-square goodness of fit test and the 

uniform distribution may also be 

considered as a next suitable one, but the 

binomial distribution seems to be, 

according to the Chi-square goodness of fit 

test, not suitable as a distribution to the 

offspring number in the n
th

 generation. 

 In branching processes, a relation or more 

between the probability of extinction and 

the offspring distribution is expected and 

that requires more research to be made 

which is kept open to the other researchers 

in future. 

 Another suggestion is that other researchers 

could make further assumptions depending 

on other distributions for the two problems 

and test their hypotheses by suitable tests. 
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 الخلاصة

في هذا البحث موجز محاكاة مسألتين أساسيتين في 
العمميات التصادفية الفرعية وكانت أول من طرحها العالم 

كاليتون وهي مسألة ايجاد أحتمال الانقطاع في العممية 
التصادفية الفرعية ومسألة تحديد توزيع عدد الافراد لمجيل 

فرضت ثلاث توزيعات في المحاكاة وهي توزيع . النوني
بواسون، التوزيع الثنائي والتوزيع المتجانس واستخدمت 
خوارزميات ونوقشت النائج والاستنتاجات عمى ضوء 

مخرجات المحاكاة وكان الاقرب  لممسألة الاولى هو التوزيع 
المتجانس ثم توزيع بواسون، في حين كان توزيع بواسون هو 

 .الانسب لممسألة الثانية
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