On Principally Generalized Lifting Modules

Aseel Amer Hassan
Department of Mathematics, College of Science, University of Baghdad, Baghdad-Iraq. Corresponding Author: aselamer16@gmail.com.

Abstract

In this paper we introduce principally generalized lifting as a generalization of principally lifting modules and we prove under certain conditions some relations between Mj-projective (quasidiscrete) and PGD ${ }_{1}$. [DOI: 10.22401/JNUS.20.4.14]

Keywords: lifting modules, principally lifting modules, principally generalized lifting modules.

δ_{1} Introduction

Let R be an associative ring with identity and let M be a unital R -module. A sub module L of an R -module M is called small for(short L $\ll M$), if $K+L \neq M$ for any proper sub module K of M . A module M is called hollow, if every proper submodule of M is small in M [1]. A non zero module M is called so- semi hollow, if each proper finitely generated sub module is small in M , and a non zero module M is so- called P -hollow, if each proper cyclic sub module is small in M [5].It is clear that every hollow is semi hollow and every semi hollow is P - hollow. A module M is called lifting (or has the condition D_{1}), if for every submodule L of M , there is a decomposition $\mathrm{M}=\mathrm{N} \oplus \mathrm{S}$ such that $\mathrm{N} \leq \mathrm{L}$ and $\mathrm{S} \cap \mathrm{L} \ll \mathrm{M}$ [2]. It was introduced in [3] that a module M is principally lifting module (or has PD_{1}), if for all $\mathrm{m} \in \mathrm{M}, \mathrm{M}$ has a decomposition $\mathrm{M}=\mathrm{N} \oplus \mathrm{S}$ with $N \leq m R$ and $m R \cap S \ll M$. M is said to have condition (D_{2}) in case, if B is a su module of M with M / B is isomorphic to summand of M then B is a summand of M [4]. A module M is called a discrete module, if it has the condition $\left(D_{1}\right)$ and $\left(D_{2}\right) . M$ is said to have the condition $\left(D_{3}\right)$ just in case of if M_{1} and M_{2} are summand. Such that $\mathrm{M}_{1}+\mathrm{M}_{2}=\mathrm{M}$ then $M_{1} \cap M_{2}$ is a summand of M. A module M is called so- a quasi- discret module, if it has the condition $\left(\mathrm{D}_{1}\right)$ and $\left(\mathrm{D}_{3}\right)$. [4]

A modul M is so- called a generalized lifting module, if every submodule L of M , there is a decomposition $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ such that $\mathrm{M}_{1} \leq \mathrm{L}$ and $\mathrm{M}_{2} \cap \mathrm{~L} \leq \operatorname{Rad}(\mathrm{M})$. As a generalization of Principally lifting module we introduce a principally generalized lifting module (for short PGD_{1}). Where $\operatorname{Rad}(\mathrm{M})$ is the Jacobson radical of M. It is known that

Rad (M) equal the sum of all small submodules of M. [4]. In this paper we study the relation between PD_{1} and PGD_{1} modules and prove some properties of a PGD_{1}.

δ_{2} P-hollows and the condiion (PGD_{1})

In this section we introduce PGD_{1} module as a generalization of PD_{1}, that appeared in [3] and we prove results on PGD_{1} module.

We start by the following.

Lemma (2.1) [5,2.15]:

Let M be a module then

1. If M is semi- hollow, then each factor modul is semi-hollow.
2. If $B \ll M$ and M / B is semi-hollow then M is semi-hollow.
3. M is semi-hollow if and only if M is local or $\operatorname{Rad}(\mathrm{M})=\mathrm{M}^{\prime \prime}$.

Proposition (2.2) [3]:

The following are equivalent for a module M .

1. M is P - hollow.
2. $\mathrm{B} \ll \mathrm{M}$ when M / B is a non Zero cyclic module ".

Remark (2.3):

1-P- hollow modules need no hollow just as is explained in [5] by considering the set Q of all rational as Z - module $(\mathrm{Q} / \mathrm{Z})$ is no hollow while is no cyclic for all that proper sub modul K of Q .
2-"hollow module are indecomposable modules then the direct sums of hollow module are not hollows, while according to lemma (2.1), if $M={ }_{i \in I} \oplus P_{i}$, where P_{i} are non-cyclical P-hollows for all $i \in I$, then M is P - hollow".

Remark (2.4):

Every hollow module is lifting [6].

Definition (2.5):-[5]

A module M is called Principally lifting (or has $\left(\mathrm{PD}_{1}\right)$) if for all $\mathrm{m} \in \mathrm{M}, \mathrm{M}$ has a decomposition $\mathrm{M}=\mathrm{N} \oplus \mathrm{S}$ with $\mathrm{N} \leq \mathrm{mR}$ and $m R \cap S \ll M$.

As generalization of definition (2.5) we introduce the following:

Definition (2.6):-

M is principally generalizd lifting (or has PGD_{1}), If for all $m \in \mathrm{M}, \mathrm{M}$ has a dcomposition $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$ with $\mathrm{A} \leq \mathrm{mR}$ and $\mathrm{mR} \cap \mathrm{B} \leq \mathrm{Rad}$ (M).

Note:-

hollow module \rightarrow lifting module \rightarrow principally lifting module \rightarrow principally generalized lifting module.

Example (2.7):-

1. Z_{P} is $\left(\mathrm{PGD}_{1}\right)$.
2. Z_{4} as Z -module is $\left(\mathrm{PGD}_{1}\right)$.
3. $\mathrm{Z}_{\mathrm{p}}, \mathrm{p}$ is prim number is PGD_{1}.
4. Z as Z - module is not PGD_{1}.

Proposition (2.8):-

The condition $\left(\mathrm{PGD}_{1}\right)$ is inherited by sum ands.

Proof:

Suppose that M have the condition PGD_{1}, also $K \leq \oplus M$, if $k \in K$, when M has a decomposition $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$ with $\mathrm{A} \leq \mathrm{kR}$ and $\mathrm{kR} \cap \mathrm{B} \leq \operatorname{Rad}(\mathrm{M})$, it follows that $\mathrm{K}=\mathrm{A} \oplus(\mathrm{K}$ $\cap B)$ and $k R \cap(K \cap B) \leq k R \cap B \leq \operatorname{Rad}(M)$, so $k R \cap(K \cap B) \leq \operatorname{Rad}(K)($ due to $K \leq \oplus M)$. Therefore K has $\left(\mathrm{PGD}_{1}\right)$.

Lemma (2.9):-

The following are equivalent for an indecomposable module M .
$1-\mathrm{M}$ has $\left(\mathrm{PGD}_{1}\right)$.
2- M is a P -hollow module.

Proof:

(1) \Rightarrow (2) Suppose that $0 \neq \mathrm{m} \in \mathrm{M}, \mathrm{Rm}$ is proper submodule of M , then by (1) there exist decomposable $\mathrm{M}=\mathrm{N} \oplus \mathrm{S}$, with $\mathrm{N} \leq \mathrm{Rm}$ and $R m \cap S \leq \operatorname{Rad}(M)$, because M is indcomposable.

Then either $\mathrm{S}=0$ or $\mathrm{N}=0$, if $\mathrm{S}=0$ then $\mathrm{M}=\mathrm{N}$, hence $\mathrm{M}=\mathrm{Rm}$ (Contradiction) (since Rm is proper), hence $\mathrm{N}=0$. Thus $\mathrm{M}=\mathrm{S}$ therefor $\mathrm{Rm} \cap \mathrm{S}=\mathrm{Rm} \cap \mathrm{M}=\mathrm{Rm} \leq \operatorname{Rad}(\mathrm{M})$ thus $\operatorname{Rm} \leq \operatorname{Rad}(M)$ hence $m \in \operatorname{Rad}(M)$, $\mathrm{Rm} \ll$ M.[11].
(2) \Rightarrow (1) Since M is P- hollow then for each proper cyclic sub module $m R$ of $\mathrm{M}, \mathrm{mR} \ll \mathrm{M}$. thus $\mathrm{M}=0 \oplus \mathrm{M}$ and $0 \leq \mathrm{mR}, \mathrm{mR} \cap \mathrm{M}=\mathrm{mR}$ $\leq \operatorname{Rad}(\mathrm{M})$.

The following definition appeared in [7]

Definition (2.10) :-

[7] Suppose that M is an R-module, if $\mathrm{N}, \mathrm{L} \leq \mathrm{M}$ and $\mathrm{M}=\mathrm{N}+\mathrm{L}$, then L is so- called generalized supplement of N just is case $\mathrm{N} \cap \mathrm{L} \leq \operatorname{Rad}(\mathrm{L}) . \mathrm{M}$ is called generalized supplemented or (briefly GS) in case each submodule N has a generalized supplement in M.

Example (2. 11):-

[8] Suppose that M is a GS and $\operatorname{Rad}(M)$ be Noetherian or M satisfy A.C.C on small sub module, then M is a supplemented module.

Lemma (2.12):-

Suppose that M has $\left(\mathrm{PGD}_{1}\right)$, then each cyclic submodule mR has a generalized supplemented S whichever is a summand of M.

Proof:

Let $\mathrm{mR} \leq \mathrm{M}$ then there exist $\mathrm{N} \leq \mathrm{mR}$ with $\mathrm{M}=\mathrm{N} \oplus \mathrm{S}$ and $\mathrm{mR} \cap \mathrm{S} \leq \operatorname{Rad}(\mathrm{M})$, hence $\mathrm{M}=$ $m R+S$ and $m R \cap S \leq \operatorname{Rad}(M)$, hence S is a GS of M and $\mathrm{S} \leq \oplus \mathrm{M}$.

Lemma (2.13):-

"The following are equivalent for a module M."

1- M has PGD_{1}
2- Every one cyclic submodule K of M can be written as $K=N \oplus S$ with $N \leq \oplus M$ and $\mathrm{S} \leq \operatorname{Rad}$ (M)
3- Each $\mathrm{m} \in \mathrm{M}$ there exist principal ideals I and J of R such that $\mathrm{mR}=\mathrm{mI} \oplus \mathrm{mJ}$, where $\mathrm{mI} \leq \oplus \mathrm{M}$ and $\mathrm{mJ} \leq \operatorname{Rad}(\mathrm{M})$.

Proof:

(1) \Rightarrow (2) clear.
(2) \Rightarrow (1) Let K be a cyclic submodul of M then by(2) $\mathrm{K}=\mathrm{N} \oplus \mathrm{S}$ with $\mathrm{N} \leq \oplus \mathrm{M}$ and
$\mathrm{S} \leq \operatorname{Rad}(\mathrm{M})$. Write $\mathrm{M}=\mathrm{N} \oplus \mathrm{N}^{\prime}$, it follow that $\mathrm{K}=\mathrm{N} \oplus \mathrm{K} \cap \mathrm{N}^{\prime}$.

Let $\pi: \mathrm{N} \oplus \mathrm{N}^{\prime} \rightarrow \mathrm{N}^{\prime}$ be the natural projection, we have $\mathrm{K} \cap \mathrm{N}^{\prime}=\pi(\mathrm{K})=\pi(\mathrm{N} \oplus$ $\mathrm{S})=\pi(\mathrm{S}) \leq \operatorname{Rad}(\mathrm{M})$. hence M has PGD_{1}.
(2) \Leftrightarrow (3)Clear.
$\S_{3} \quad$ Results on $\mathbf{M j - \quad \text { projective }}$ (quasi-
discrete) and PGD $_{1}$ modules.
In this section we prove under certain conditions some relations between Mj projective (quasi- discrete) and PGD_{1} module.

We need the definition:

Definition (3.1)[12]:-

Let $\mathrm{M}=\bigoplus_{\mathrm{i} \in \mathrm{j}} \mathrm{H}_{\mathrm{i}}$, then H_{i} is H_{j}-projective for each $i \neq j$, if every supplement C of H_{i} in M is a direct summand.

Lemma (3.2) [9, corollary 4.50]:-

Let $\mathrm{M}=\oplus \mathrm{M}_{\mathrm{i}}$, where M_{i} is hollow and Mj-projective whenever $\mathrm{i} \neq \mathrm{j}$. Then M is a quasi- discrete module.
"It is known that each quasi - discrete module is a direct sum of hollow sub module unique up to isomorphism and is fully relatively projective".

Proposition (3.3):-

Suppose that $\mathrm{M}=\bigoplus_{\mathrm{i} \in \mathrm{j}} \mathrm{H}_{\mathrm{i}}$, where each H_{i} is a hollow module and is H_{j}-projective $(\mathrm{j} \neq \mathrm{i})$. Then M has $\left(\mathrm{PGD}_{1}\right)$.

Proof:

Suppose that K is a cyclic sub module of M , and there exists a finite subset F of I that $\mathrm{K} \leq \oplus_{\mathrm{i} \in \mathrm{F}} \mathrm{H}_{\mathrm{i}}$. By lemma (3.2), $\oplus_{\mathrm{i} \in \mathrm{F}} \mathrm{H}_{\mathrm{i}}$ is quasi discrete, thus K can be written as $K=N \oplus S$ wherever $\mathrm{N} \leq \oplus \oplus_{\mathrm{i} \in \mathrm{F}} \mathrm{H}_{\mathrm{i}}$, hence $\mathrm{N} \leq \oplus \mathrm{M}$ and $\mathrm{S} \leq \operatorname{Rad}\left(\oplus_{\mathrm{i} \in \mathrm{F}} \mathrm{H}_{\mathrm{i}}\right)$.Therefore by lemma (2.13) M has PGD_{1}).

Proposition (3.4) :-

Suppose that M is module with PGD_{1}, if $\mathrm{M}=\mathrm{V}+\mathrm{W}$ such that $\mathrm{W} \leq \oplus \mathrm{M}$ and $\mathrm{V} \cap \mathrm{W}$ is cyclic, then W contains generalized supplemented of V in M.

Proof:

Because M has PGD_{1} and $\mathrm{V} \cap \mathrm{W}$ is cyclic we have by lemma (2.13) $\mathrm{V} \cap \mathrm{W}=\mathrm{N} \oplus \mathrm{S}$, where $\mathrm{N} \leq \oplus \mathrm{M}$ and $\mathrm{S} \leq \operatorname{Rad}(\mathrm{M})$, Since $\mathrm{W} \leq \oplus \mathrm{M}$, we have $\mathrm{S} \leq \operatorname{Rad}$ (W). Write
$\mathrm{W}=\mathrm{N} \oplus \mathrm{N}_{1}$. It follows that $\mathrm{V} \cap \mathrm{W}=\mathrm{N} \oplus(\mathrm{V}$ $\left.\cap \mathrm{W} \cap \mathrm{N}_{1}\right)=\mathrm{N} \oplus\left(\mathrm{V} \cap \mathrm{N}_{1}\right)$.

Let $\pi: \mathrm{N} \oplus \mathrm{N}_{1} \rightarrow \mathrm{~N}$ be that natural projection. It follows that $\mathrm{V} \cap \mathrm{N}_{1}=\pi(\mathrm{N} \oplus$ $\left(\mathrm{V} \cap \mathrm{N}_{1}\right)=\pi(\mathrm{V} \cap \mathrm{W})=\pi(\mathrm{N} \oplus \mathrm{S})=\pi(\mathrm{S})$, hence $\pi(S) \leq \operatorname{Rad}(M)$, hence $V \cap N_{1} \leq \operatorname{Rad}(M)$ such that $\mathrm{M}=\mathrm{V}+\mathrm{N}+\mathrm{N}_{1}=\mathrm{V}+\mathrm{N}_{1}$. Therefore N_{1} is generalized supplemented of V in M that is contained in W.

Corollary (3.5) :-

Suppose that M is a module with PGD_{1} over a principally "ideal ring", if $\mathrm{M}=\mathrm{V}+\mathrm{mR}$, then $m R$ contains a generalized supplemented of V in M .

Proof:

By lemma(2.13) we have $\mathrm{mR}=\mathrm{N} \oplus \mathrm{S}$, wherever $\mathrm{N} \leq \oplus \mathrm{M}$ and $\mathrm{S} \leq \operatorname{Rad}(\mathrm{M})$, it follows that $\mathrm{M}=\mathrm{V}+\mathrm{N}$, hence by lemma (2.13) N is cyclic summand of M, hence $V \cap N$ is a cyclic submodule of M and thus apply proposition (3.4).

Lemma (3.6) :-

Suppose that M is module such that PGD_{1}, then each indcomposable cyclic submodule C of M is either small in M or a sum and of M.

Proof:

"by lemma (2.13) we have $\mathrm{C}=\mathrm{N} \oplus \mathrm{S}$ with $\mathrm{N} \leq \oplus \mathrm{M}$ and $\mathrm{S} \leq \operatorname{Rad}(\mathrm{M})$,since C is indecompable either $\mathrm{C}=\mathrm{S}^{\prime \prime}$ or $\mathrm{C}=\mathrm{N}$, if $\mathrm{C}=\mathrm{S}$, then $\mathrm{C} \leq \operatorname{Rad}(\mathrm{M})$ since C is cyclic, then $C=R x \leq \operatorname{Rad}(M)$, hence $x \in \operatorname{Rad}(M)$ imples $C=R x$ is small in M. If $C=N$, then $C \leq \oplus M$.

Definition (3.7):-

[4] "A module M is said to be π projective, if for every two submodule U, V of M with $M=U+V$,there exist $f \in \operatorname{End}(M)$ with $\operatorname{Imf} \leq \mathrm{U}$ and $\operatorname{Im}(1-\mathrm{f}) \leq \mathrm{V}^{\prime \prime}$.

Lemma (3.8):-

[9, 4.47][10, 3.2] let $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$."Then following are equivalent."

1- M_{1} is M_{2} - projective.
2- If $\mathrm{M}=\mathrm{N} \oplus \mathrm{M}_{2}$, and $\mathrm{N} \cap \mathrm{M}_{2} \leq \oplus \mathrm{N}$ hence $M=N_{1} \oplus M_{2}$, wherever $N_{1} \leq N$.

Proposition (3.9):-

Let $\mathrm{M}=\oplus_{\mathrm{i}=1} \mathrm{P}_{\mathrm{i}}$, where the P_{i} are local modules for all i, if M has $\left(\mathrm{D}_{3}\right)$,"then the following are equivalent".
$1-\mathrm{M}$ has PGD_{1}
2- " M is a quasi-discrete module".

Proof:

(1) \Rightarrow (2) Because PGD_{1} and D_{3} are inherited by summand, we have $\mathrm{p}_{\mathrm{i}} \oplus \mathrm{p}_{\mathrm{j}}$ has PGD_{1} and D_{3} for all $\mathrm{i}, \mathrm{j}(\mathrm{i} \neq \mathrm{j})$.

If $P_{i} \oplus P_{j}=K+P_{j}$, then $P_{i} \cong\left(P_{i} \oplus P_{j}\right) / P_{j}=$ $\left(K+P_{j}\right) / P_{j} \cong K /\left(K \cap P_{j}\right)$ is a cyclic module. Thus form some $m \in P_{i} \oplus P_{j}$
$K=m R+\left(K \cap P_{j}\right)$. By $P G D{ }_{1}$ for $P_{i} \oplus P_{j}$ and by lemma (2.13) we get $m R=N \oplus S$ with $\mathrm{N} \leq \oplus \mathrm{P}_{\mathrm{i}} \oplus \mathrm{P}_{\mathrm{j}}, \mathrm{So} \mathrm{S} \leq \operatorname{Rad}\left(\mathrm{P}_{\mathrm{i}} \oplus \mathrm{P}_{\mathrm{j}}\right)$ hence $\mathrm{P}_{\mathrm{i}} \oplus \mathrm{P}_{\mathrm{j}}=\mathrm{K} \oplus \mathrm{P}_{\mathrm{j}}=(\mathrm{N} \oplus \mathrm{S})+\left(\mathrm{K} \cap \mathrm{P}_{\mathrm{j}}\right)+\mathrm{P}_{\mathrm{j}}=$ $\mathrm{N}+\mathrm{P}_{\mathrm{j}}$ and by $\left(\mathrm{D}_{3}\right)$ for $\mathrm{P}_{\mathrm{i}} \oplus \mathrm{P}_{\mathrm{j},}$, we have $\mathrm{P}_{\mathrm{i}} \oplus \mathrm{P}_{\mathrm{j}}$ $=N+P_{j}$ with $N \leq K$. Hence by lemma (3.8) P_{i} is P_{j}-projective for all $\mathrm{i} \neq \mathrm{j}$, therefor by lemma (3.2), M is quasi- discrete.
$(2) \Rightarrow(1)$ it is obvious.

Proposition (3.10):-

Suppose that M is a module over a local ring R. If M has PGD_{1}, then a cyclic submodule of M is either small in M or a summand of M.

Proof:

"The proof follows from lemma (3.6) and the fact that every cyclic module over a local ring is a local module".

Definition (3.11)[3]:-

Suppose that M_{1} and M_{2} be R-modules M_{1} is said to be Pprojective relative to M_{2} (or M_{1} is $M_{2^{-}}$Pprojective), if for each $m_{2} \in M_{2}$ epimorphism g: $\mathrm{m}_{2} \mathrm{R} \rightarrow \mathrm{m}_{2} \mathrm{R} / \mathrm{K}$ and each homomorphism $\varphi: \mathrm{M}_{1} \rightarrow \mathrm{~m}_{1} \mathrm{R} / \mathrm{K}$, there exists a homomorphism $\mathrm{f}: \mathrm{M}_{1} \rightarrow \mathrm{~m}_{2} \mathrm{R}$ with gof $=\varphi$.

Remark (3.12) [3]:-

Cleary every M- projective module is $\mathrm{M}-\mathrm{P}$ projectiv, if M is a cyclic module then each M- Pprojective modul is M - projective module, there are R -modules M_{1} and M_{2}, where M_{1} is M_{2} - Pprojective whilist M_{1} is no M_{2}-projective. Example $\mathrm{M}_{1}=\mathrm{Q}$ (the set of all rational number) $\mathrm{R}=\mathrm{Z}$ and $\mathrm{M}_{2}=\bigoplus_{\mathrm{i} \in \mathrm{I}} \mathrm{Z}$, where $\mathrm{f}: \bigoplus_{\mathrm{i} \in \mathrm{I}} \mathrm{Z} \rightarrow \mathrm{Q}$ is an epimorphism (as Q is a homomorphic image of a free

Z-module). Clearly Q is $\oplus_{\mathrm{i} \in \mathrm{F}}$ - projective for every finite subset F of I , hence Q is $\left(\oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{Z}\right)$-P projective, while Q is not $\left(\oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{Z}\right)$-projective, since f does not split (due to Q not a projective Z-module).

Lemma (3.13):-

Let $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ be an R-module. Then the following are equivalent".

1- M_{1} is M_{2}-Pprojective
2- M_{1} is $\mathrm{m}_{2} \mathrm{R}$ - projective for all that $\mathrm{m}_{2} \in \mathrm{M}_{2}$
For all $\mathrm{m}_{2} \in \mathrm{M}_{2}$, if $\mathrm{M}_{1} \oplus \mathrm{~m}_{2} \mathrm{R}=\mathrm{m}_{2} \mathrm{R}+\mathrm{Y}$, then there is $\mathrm{L} \leq \mathrm{Y}$ such that $\mathrm{M}_{1} \oplus \mathrm{~m}_{2} \mathrm{R}=\mathrm{L}$ $\oplus \mathrm{m}_{2} \mathrm{R}$.

Proof:

$(1) \Rightarrow \quad(2)$ by definition of relative Pprojective
(2) \Rightarrow (3) by lemma (3.8)
(3) \Rightarrow (1) by lemma(3.8)

Corollary (3.14):-

Let $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ a module over local ring R - module M_{1} and M_{2} are relatively Pprojective in that case M has PGD_{1}, if and only if every one M_{1} and M_{2} have PGD_{1}.

Proof:

\Leftrightarrow Suppose that C are arbitrary cyclic submodule of M then $C=\left(m_{1}+m_{2}\right) R$, where $m_{1} \in M_{1}, m_{2} \in M_{2}$, since M_{1} and M_{2} have PGD_{1}, then we have nothing to prove either $\mathrm{m}_{1}=0$ or $\mathrm{m}_{2}=0$.

Now to avoid triviality we may consider C is not a small submodule of M since $C=\left(m_{1}+m_{2}\right) R \leq m_{1} R+m_{2} R$, we have $m_{1} R$ or $\mathrm{m}_{2} \mathrm{R}$ is not small in M. Without loss of generality we may assume $m_{1} R$ is no small in M , hence it is not small in M_{1} by pro position (3.10), $\mathrm{m}_{1} \mathrm{R}$ is a summand of M_{1} and hence $m_{1} R$ is M_{2}-Pprojective hence $m_{1} R$ is $m_{2} R$ projective.

Since $m_{1} R \oplus m_{2} R=\left(m_{1}+m_{2}\right) R+m_{2} R$, we have by lemma (3.13) that there is $\mathrm{N} \leq\left(\mathrm{m}_{1}\right.$ $\left.+m_{2}\right) R$ with $m_{1} R \oplus m_{2} R=N \oplus m_{2} R$.It follows that $\left(m_{1}+m_{2}\right) R=N \oplus\left[\left(m_{1}+m_{2}\right) R \cap m_{2} R\right]$. "Since C is a local module and $\mathrm{m}_{2} \mathrm{R}$ is not contained in C , we have that $\mathrm{C}=\mathrm{N}$.To show that N is a summand of M .

It is clear that" $\mathrm{m}_{1} \mathrm{R} \oplus \mathrm{M}_{2}=\mathrm{N}+\mathrm{M}_{2}$ and hence $\mathrm{N} \cap \mathrm{M}_{2}=\mathrm{N} \cap\left(\mathrm{N} \oplus \mathrm{m}_{2} \mathrm{R}\right) \cap \mathrm{M}_{2}=\left(\mathrm{m}_{1} \mathrm{R}\right.$ $\left.\oplus \mathrm{m}_{2} \mathrm{R}\right) \cap \mathrm{M}_{2} \cap \mathrm{~N}=\mathrm{m}_{2} \mathrm{R} \cap \mathrm{N}=0$ (since $\mathrm{N}=\mathrm{C}$).As $\mathrm{m}_{1} \mathrm{R} \leq \oplus \mathrm{M}_{1}$, where $\mathrm{N} \oplus \mathrm{M}_{2}=\mathrm{m}_{1} \mathrm{R}$ $\oplus \mathrm{M}_{2} \leq \oplus \mathrm{M} \mathrm{C}=\mathrm{N} \leq \oplus \mathrm{M}$. Therefore $\mathrm{C} \oplus \mathrm{L}=\mathrm{M}$. The converse follows from proposition (2.8).

References

[1] Fleuery P. "Hollow modules, and local Endmorphism Ring, Pac". J. Math, (53), 379-385, 1974.
[2] Keskin D. "On lifting Modules, Comm. Algbra" 28(7), 3427-3440, 2000.
[3] Kamal M. and yousef A. "on principally lifting module" V.2, 127-137, 2007.
[4] Wisbauer R. "Foundations of module and ring theory, Gordon and Breagh, Reading", 1991.
[5] Clark J. Lomp C. Vanaja N. and wisbauer R. "lifting modules, Brikhauser-Basel, Ist Edition", 2006.
[6] Ben A. laroussi hamdouni, "On lifting modules, University of Baghdad, The College of Science", A Thesis of MCS, 2001.
[7] Xue W. "Characterizations of Semi perfect and Perfect rings, Publications Matematiques", 40115-125, 1996
[8] Wang Y. and Ding N. "Generalized supplemented Modules", Taiwanese journal of Math, 10 (6), 1589-1601, 2006
[9] Mohamed S. and Muller B.J. "Continuous and discrete modules, Cambridge University Press", 1990.
[10] Kamal M. and yousef A. "On supplementation and generalized projective modules" to appear in J, Egyptain Math. Soc, 2013.
[11] Goodearl K.R. "Ring Theory, Pure and Applied Math.", Marcel-Dekker.(33), 1976.
[12] Anderson F. W. and Fuller K.R. "Ring and Categories of Modules", Springer Verlage, New York. 1992.

