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Abstract 

The purpose of this paper is studying the effect of magnetic hydrodynamic (MHD) of unsteady 

flow with fractional Burger’s model between two oscillating parallel plates. The fractional order 

derivative in described in the Riemann-Liouville sense. The solutions which we obtained of the 

velocity field and the shear stress by using Laplace transform and Fourier transform in the 

expression of Mittage-Lefller function. Furthermore, the influence of the parameters on the velocity 

field spotlighted by means of the several graphs.  [DOI: 10.22401/JNUS.20.4.13] 
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Introduction 

The significance for flow of non-Newtonian 

fluids have much grown due to the 

development in technological capabilities 

(inclusive of foodstuffs, artificial propel-ants, 

molten plastics and numerous others), 

whereas, it is not easy to propose an only one 

model, that show characteristics of non- 

Newtonian fluids as in Newtonian fluids.So 

there were many of the constituent equations 

suggestion [1–3]. Rate type models have 

obtained particular consideration. A thermo-

dynamic framework as being put into region to 

expand a rate type model referred to burger's 

model [4]. That applies to illustrate the 

movement of the earth’s mantle. In addition, 

The Burgers’ model is used to characterize 

visco-elastic materials, equivalent to asphalt in 

Geo-mechanics. Lately, Fractional derivatives 

[5], are discovered to particularly soft for 

illustrating the action of viscoelastic fluids, 

several researchers should investigate fully 

various problems associated with fluids, the 

constitutive equations for non-Newtonian 

fluids are changed by using the time derivative 

of an integer order called the Riemann-

Liouville fractional calculus operators. Najeeb. 

A. K et al [6] have been studied the unsteady 

flow of an incompressible Maxwell fluid with 

fractional derivative induced by a sudden drive 

plate, the no-slip hypothesis between the wall 

and the fluid is none longer solid. Constantin. 

F et al. [7] have investigated the flow of a 

generalized Oldroyd -B fluid because of 

constantly accelerating plate, Dumitru. V.et al 

[8] have studied unsteady flow of an 

incompressible generalized Oldroyd-B fluid 

induced by an infinite plate subject to a time-

dependent shear-stress. Dhiman. and Uma. B 

[9] discussed the visco-elastic flow of an 

incompressible generalized Oldroyd-B fluid 

between two infinite parallel plates. Yaqing. L 

and Liancun. Z et.al [10] discussed the 

oscillating flows and heat transfer of a 

generalized Oldroyed-B fluid in a magnetic 

field. in Liancun. Z and Xinxin. Z et.al [11], 

discussed the MHD flow of a generalized 

Burgers’ fluid due to an exponential 

accelerating plate, khan. M, et al [12], 

discussed the exact solutions for the oscillating 

motions of a fractional Burgers’ fluid due to 

cosine and sine oscillations of an infinite flat 

plate. In Dhiman.B and Uma [13], studied the 

unsteady incompressible flow of a generalized 

Oldroyd-B fluid between two oscillating 

parallel plates in the presence of a transverse 

magnetic field. 

In the present work, we studied the effect of 

the magnetic field on the flow of an 

incompressible generalized Burger’s fluid. The 

solutions which we obtained of the velocity 

field and the shear stress by using Laplace 

transform and Fourier transform for the 

fractional calculus. 
 

1- Basics concepts 

In this section, we prepare some definitions 

which will be used. 
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Definition1.1 ([5], [14]) : 

The Riemann-Liouville fractional derivative of 

order    , of function X(t) is given by 
 

   
 

  ( )  
 

 (   )
(
 

  
)
 

∫ (   )     
 

 
 ( )     

         
 

The initial time   is often set to be zero. 

Where  ( ) is the Euler gamma function  
 

Definition1.2 ([5], [14]) : 

The Riemann-Liouville fractional integral, 

let X be an integrable function of order 

  >0, define as 
 

    
  ( )  

 

 ( )
∫ (   )   
 

 
 ( )     

 

Definition1.3 Generalized Mittage-leffler 

function ([15-16]): 

In 1971 Prabhakar introduced the three 

parameter Mittag-leffler function or general-

ized Mittage-leffler function or Prabhakar 

function. 
 

    
 ( )  ∑

( ) 

   (    )
 
       (   )   (   )  

 

Where ( )   (   )  (     )  
The function appeared in the kernel of a first 

order integrate equation which Prabhakar 

treated by using fractional calculus. 

 

2-The description of the problem 

Supposed that an incompressible 

generalized Burger’s fluid limited by means of 

two infinite parallel plates in Fig.(1), the plates 

start of the beginning at relaxation at t   , 

the plates oscillated in its plane with the 

velocity     (   ) and     (   ) where V is 

the velocity fluid, as a result shear the fluid 

velocity moved step by step. we have taken 

along for x- coordinate, y- coordinate are taken 

vertically to the parallel plates at sequentially 

in the presence of a magnetic field B0 applied 

parallel to y-coordinate, hence, an initial 

condition and the boundary condition are 

given by  
 

 (   )             .............................. (1) 

 (   )      (   )  (   )      (   )   
 ................................ (2) 

 
Fig.(1): Geometry model of the problem. 

 

3-Basic governing equations 

The fundamental equation of unsteady 

Burger’s fluid and an incompressible is given 

by:  
 

          

 (    
  ̃ 

    
  ̃ 

  )   (    
 
 ̌ 
 
)    ................. (3) 

 

Where  ̃ 
   

    

  
, T is the Cauchy stress 

tensor, -pI denotes the indeterminate spherical 

stress, S is the extra stress tensor,  

    ( )  is the first Rivlin Ericksen 

tensor,      is the velocity gradient,    

viscosity coefficient,      and     (   ) the 

relaxation and retardation times respectively, 

    a new material constant of Burger’s fluid 

and     are fractional parameters, such that 

        and  ̌ 
  converted time 

derivative define by  
 

 ̌ 
     

   (   )              ....................... (4) 

 ̌ 
 
    

 
                 ............................. (5) 

 

Where  ̃ 
     ̃ 

 ( ̃ 
   ) 

In the Eq.(4) and Eq.(5),V is the velocity 

vector and,  is the gradient operator,   
    

 
 

are based on Riemann-Liouville’s definition 

which is defined by [5],[14]as:  
 

  
  ( )  

 

 (   )

 

  
∫

 ( )

(   ) 
         

 

 
  ............... (6) 

 

Here  ( ) denotes the Gamma function. We 

take the stress and velocity of the form  
 

    (   )    (   )  ̂   ........................................... (7) 



Journal of Al-Nahrain University                   Vol.20 (4), December, 2017, pp.81-88                                         Science 

83 

Where  (   ) is the velocity component in the 

x-direction, we obtain  
 

   *
 

  

  
 

   
   

+  (  )  *

   
  

  
  

   

+   ....... (8) 

 

Where,     

Substituting Eq.(8) into Eq.(4), we get Eq.(9), 

substituting Eq.(8) into Eq.(5), we get Eq.(10), 

and taking account of the initial condition 

 (   )   ; y > 0 the fluid begin at rest at t=0. 

Where                          .  
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By using Eq.(9), Eq.(10) into Eq.(3), we 

obtain  
 

(    
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)
  (   )

  
    .. (11) 

 

Where        .We consider a generalized 

Burger’s fluid between two infinite parallel 

discs in a presence of a force magnetic field 

  ,that acts in the direction of the positive y-

axis, then in the presence of the magnetic body 

force    
   the equation of motion yields: 

 

 
  (   )

  
 

 

  
       

  (   )   ................................ (12) 

 

Where   is a constant and   is the density of 

fluid. Substituting     between the Eq.( 11) 

and Eq.(12) we have the governing equation : 
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Where   
 

 
 is the kinematic viscosity and 

  
   

 

 
  

 

 

4-Calculation Velocity Field: 

Manipulate the non- dimensional quantities 
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We obtain the Eq.(13) in non- dimensional 

quantities form as 
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(Omitting the dimensionless mark “*’’) 
 

  (   )     (   )     (     )    ........................... (15) 

  (   )     (     )            ............................. (16) 
 

And use finite Fourier sine transform [17] 

in Eq.(14), we get : 
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Where   (   )  ∫  (   )
 

 
   (   )   is 

represent the Finite Fourier sine transform of 

 (   ), and usage of the Eq.(16) then Eq.(17) 

may be rewritten as: 
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Applying Laplace transform to Eq. (18)[5], 

then using   (   )   , we obtain the 

equation  
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We rewrite Eq. (19) into series in order to 

avoid the lengthy procedure of residues and 

integrals by using Appendix (A1)  
 

 ̅ (   )  
(  )   

  

 

     
 (  ∑

(  ) 

(  ) (   )
  

     

∑
(   )    

  (     ) 

   

   

∑
  

  (   ) 
∑

  

  (   ) 

 

   

 

   

   

(  
 ) (  

 )   
            

  
 (   )

    
      

    

(  
  
   )

   )   

 
 

  

 

     
 (  

∑
(  ) 

(  ) (   )
 
   ∑

(   )   

  (     ) 

   
      

∑
  

  (   ) 

 

   

∑
  (  

 ) 

  (   )   

 

   

 

    
      

    

(  
  
   )

   )  
  
 

  
((  )     )  

∑
(  ) 

(  ) (   )
 
   

 

  
 (   )

∑
  

  (   ) 
 
    ∑

  

   (    ) 

 
      

∑
   

  (    ) 
  
    ∑

  

  (   ) 
 
    ∑

  (    )

  (   ) 
 
    (  

 )        

(  
 )           (      )

 

(  
  
   )

     ......... (20) 

 

We’ve a major Laplace transformation of 

the (n- th order derivative) of Mittag–Leffler 

function,     ( ) present by [15-16]: 
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Taking inverse Laplace transform for Eq.(20) 

and by using (Appendix A3), we obtain 
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Where 
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Utilizing inverse finite Fourier sine 

transform for Eq.(22), we get the velocity field 
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5- Calculation of the shear stress:- 
Applying the Laplace transform to the 

equation given below: 
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So that       (   ), hence, we obtain  
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Where  ̅(   ) is an image function of velocity 

field  (   ), therefore  ̅(   ) have been 

obtained from Eq.(23). And using the Laplace 

transform, we get 
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Where, the differentiation of Eq.(25) with 

respect to y, we get 
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Substituting the Eq.(26) into Eq.(24),we get : 
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Lengthy but straightforward calculation 

allow us to determine τ (y,t) from Eq.(28) and 

the simple dissolution, by using (A1,see also 

Appendix),we get 
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Finally using the inverse Laplace transform 

for Eq.(28) to get the shear stress τ (y, t): 
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Results and Discussion 
In this paper, we’ve been offered the flow 

of a generalized burger's fluid between two 

oscillating infinite parallel plates. The velocity 

field and also the shear stress are determined 

by means that of finite Fourier sine transform 

and Laplace transform in series type in terms 

of Mittag-Leffler function. Furthermore, 

several shapes are sketched to show the 

behavior of diverse parameters contributory at 

the expressions of the velocity Field.  

Fig.(2), show an impact of fractional 

parameter α on the movement of the fluid. The 

parameter α takes decreasing values, the 

velocity field will increase. Fig.(3) demonstrate 

the velocity changes with fractional parameter 

β, the velocity effect increased with increased 

values of β. we can see their effects on 

fractional parameters β, α motions are 

opposite. Fig.(4) shows the influence the time 

on the velocity field, the increasing the 

velocity field when t increase, Fig.(5) is 

plotted to demonstrate the effects of magnetic 

hydrodynamic (MHD), It is observed that the 

flow velocity is a decreasing with the 

increasing values of the parameter N. Figs. (6) 

and (7) displays the influence of       on 

velocity field. The velocity effect decreased 

with increased values of     In addition we see 

opposite with values of    . 
 

 
Fig.(2): Velocity Field for α=0.1, 0.3,0.5 For 

N=5, β =0.5, t =3π/4,   = 3,   =4,   = 5, 

  =1.2,   =1.4. 

 

 
 

Fig.(3): Velocity Field for β=0.3, 0.5,0.7 For 

N=5, t =3π/4,   = 2,   =5,   = 6,   =1.3, 

  =1.4, α=0.5, 
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Fig.(4) :Velocity Field for t= 6π/4, 5π/4, 7π/4 

For N=5, β=0.6,   =6,   =5,   =3, α=0.2, 

  =1.2,   =1.4 

 

 
 

Fig. (5) :Velocity Field for N=5, 10,15 For t= 

π/4, β=0.7,   =6,   =4,   =3, α=0.3, 

  =1.2,   =1.3. 

 

 
 

Fig.(6) :Velocity Field    =1.1, 1.5,1.7 For 

N=5, β=0.5,t= π/4,   =6,   =6,   =3, 

α=0.6,   =1.2. 

 
 

Fig.(7): Velocity Field for   =1.4,1.6,1.8 For 

N=5, β=0.4,   =6,   =3,   =2, α=0.5, 

  =1.5, t= π/4 
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