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Abstract 

The group of the elliptic curve points forms an Abelian group, which is a suitable choice for 
constructing a good problem similar to Discrete Logarithm Problem. This paper introduces a brief 
overview of the Menezes-Vanestone Elliptic Curves Cryptosystem (MVECC), and attempts to improve 
it by suggesting a new variation on MVECC to make encryption more efficient than the original elliptic 
curves cryptosystems. 
 
Introduction 

With the invention of public-key 
cryptography in 1976 by Whitfield Diffie and 
Martin Hellman, numerous public-key 
cryptographic systems have proposed. All of 
these systems rely on the difficulty of a 
mathematical problem for their security.  

Elliptic curves are mathematical constructs 
that have studied by mathematicians since the 
seventeenth century[6]. Elliptic curves are not 
ellipse. They so named because they described 
by cubic equation, similar to these, that, used for 
calculating the circumference of an ellipse. So 
the word elliptic actually came from theory of 
the elliptic integrals.Unlike earlier cryptosystem, 
an elliptic curve works with a finite Abelian 
group formed by the points on an elliptic curve 
defined over a finite field [4,7]. Eilliptic Curve 
CryptoSystem (ECCS) includes key distribution, 
encryption/decryption schemes, and digital 
signature algorithm (DSA). The key distribution 
algorithm used to share a secret key, the 
encryption/ decryption algorithm enables 
confidential communication, and the DSA used 
to authenticate the signer and validate the 
integrity of the message. 

In 1985, Lenstra succeeded in using the 
elliptic curves for integer factorization, this 
result suggests the possibility of applying 
elliptic curve to public-key cryptosystem [4,5, 
and 7]. 

Miller and Koblitz were the first to propose 
cryptosystem that employs elliptic curves 
independently [4]. The point addition operation 

in ECC is the counterpart of modular 
multiplication in RSA and multiple addition of 
point (scalar multiplication) is the counterpart of 
the modular exponentiation [5]. To form 
cryptographic system using elliptic curves, one 
needs to find a “hard problem” corresponding to 
the complexity of factoring the product of two 
primes or taking the discrete logarithm.  

This paper organized as follows: 
 

Menezes-Vanstone Elliptic Curve  
Cryptosystem (MVECC) 

This cryptosystem has no analogue for 
Discrete Logarithm Problem (DLP). Once one 
has a curve and a point on it, one is sure to 
succeed in embedding data into the system. That 
is not true for the elliptic curve analogue of 
DLP, it is a variant of the ElGamal analogue. 

In this system the finite field Fq, the elliptic 
curve E, and the “base point” B ∈ E (preferably, 
but not necessarily a generator of the curve) are 
public information. Bob randomly chooses a 
secret integer d (1 <d<N, where N is the number 
of points of E) and publishes the point dB. If 
Alice wants to send the message M (as any two 
number) to Bob, she will choose a secret random 
integer e (1<e<N) and send the pair [(c1,c2),eB], 
where 
(k1, k2) = edB 
(m1, m2) = M    and 
c1 = m1* k1  mod q  
c2 = m2* k2  mod q  
Bob will then multiply the second point in the 
pair by  d  to find  d(eB) ((k1,k2)=deB) and 
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compute the inverse of each number in this point 
(i.e. k1* k1

-1=1 mod q , and  k2* k2
-1=1 mod q), 

and find the original message M=(m1, m2) as 
follows 
m1 = c1* k1

-1  mod q  
m2 = c2* k2

-1  mod q 
In the meantime, Charlie has only seen eB 

and dB, without solving the ECDLP, there is no 
way for him to find M [10].  

The difference between the analogue of 
ElGamal and MVECC is that Alice will “mask” 
her plaitext instead of the embedding it. 
Therefore, the advantage in the MVECC is the 
message may be any random pair of number. 

 
Example 1:- Let elliptic curve E defined over Fp  
(where p=4129) with parameters a=160 and b=1, 
where 4*a3 + 27b2=155 mod 4129 is:  
E(F4129): y 2= x 3+160 x+1,  
where 4*a3 +27b2≠ 0 mod 4129 
Let B= (19, 2683) as a base point  
Suppose the private key of Bob is d=621 then 
the public key of Bob is  
Q=dB=621(19, 2683)= (2474, 921), and suppose 
Alice selects a random number which is e=1724. 
For Aliceto send a message M=(1357,2468) to 
Bob, she does following  
Compute eQ=1724(2474, 921)=(4042, 542) 
Compute    eB=1724(19, 2683)=(392, 664) 
Compute  C: 
C = ( c1, c2) 
(k1, k2) = eQ =(4042, 542) 
(m1, m2) = M =(1357,2468) 
c1 = m1 * k1  mod p 
c1 = 1357 * 4042   mod 4129 = 1682  
c2 = m2 * k2  mod p 
c2 = 2468 * 542   mod 4129 = 3989 
Then Alice sends  
Cm ={C,eB = (1682,3989), (392,664)} to Bob. 
To decrypt the ciphertext, Bob does following: 
Compute d(eB)=621(392,64)=(4042,542)=(k1,k2). 
 

Compute   (k1
-1  mod p, k2

-1 mod p): 
                  k1

-1 =4042 -1 mod 4129=1756 
                  k2

-1 =542 -1 mod 4129=1516 
 

Compute   M:   m1= c1 * k1
-1   mod p 

m1= 1682* 1756    mod 4129 = 1357 
m2= c2 * k2

-1  mod  p 
m2= 3989 * 1516  mod  4129 = 2468 

The Proposed Enhanced Method of MVECC 
In the elliptic curve encryption/decryption 

schemes, the plaintext becomes twice as long as 
the cipher text. This characteristic may exploited 
to make the system more efficient in security or 
more efficient in performance. 

We propose several variants of MVECC 
these represent the plaintext message as any two 
random numbers as follows. 

Suppose Alice wants to send a message 
M=(m1, m2) to Bob. Let d denote Bob’s secret 
key and Q = dB denote Bob’s public key. Alice 
chooses a random integer e and sends Cm,  
Cm = {C, eB} 
where    
C = (c1, c2) 
(k1, k2) = eQ 
c1= m1 k2 - m2     mod p 
c2= m1 k1 + m2     mod p 
To decrypt the ciphertext Bob computes  
(k1, k2) = d(eB)  
m1= (c1 + c2) * (k1 + k2) –1        mod p 
m2= (c2 k2 -c1 k1) * (k1 + k2) –1      mod p 
To prove this: 
We have  
m1= (c1 + c2) (k1 + k2) –1 mod p   
    = [( m1 k2- m2)+(m1k1+ m2)](k1+k2) -1   mod p   

      = (m1 k2-m2+ m1 k1+ m2) (k1+k2) –1    mod p 
    = m1(k1 + k2) (k1+k2) –1    mod p 
     = m1    mod p 
We have  
m2= (c2 k2 - c1 k1) (k1+ k2) –1        mod p  
    =[(m1k1+m2)k2-(m1 k2-m2)k1](k1+k2) –1 mod p 
    =(m1k1k2+m2k-m1k1k2+m2 k1)(k1+k2) –1 mod p 
    = (2 m2 k2) (2k2) –1   mod p 
    = m2 (2k2) (2k2) –1     mod p 
    = m2    mod p 
 
Example 2:- Let elliptic curve E be defined over 
Fp (where p=4129) with parameters a=160 and 
b=1, where 4*a3 +27b2=155 mod 4129 is:  
  E(F4129): y 2 = x 3 + 160 x + 1, 
where  4*a3 + 27b2≠ 0 mod 4129. 
Let B= (19, 2683) as a base point  
Suppose the private key of Bob is d=621 then 
the public key of Bob are 
Q=dB=621(19, 2683) = (2474, 921), and 
suppose Alice selects a random number which 
is e =1724. 



Journal of Al-Nahrain University                           Vol.12(1), March, 2009, pp.162-165                                          Science 

 

To send Alice a message M=(1357,2468) to 
Bob, she does following :  
Compute     eQ=1724(2474, 921) = (4042, 542) 
Compute      eB=1724(19, 2683) = (392, 664) 
Compute C: 
               C = ( c1, c2) 
               (k1, k2) = eQ=(4042, 542)  
               (m1, m2) = M =(1357,2468) 
                c1= m1 *k2 - m2 mod p 
                c1=1357*542 -2468 mod 4129 = 2193 
                c2= m1 *k1 + m2 mod p 
                c2 = 1357*4042 +2468 mod 4129 = 21 
 

Then Alice sends  
Cm ={C,eB}={(2193, 21), (392, 664)} to Bob. 
To decrypt the ciphertext, Bob does following: 
Compute 
d(eB)=621(392, 664)=(4042, 542) = (k1, k2). 
Compute (k1 + k2)-1: 
              k1 + k2 =4042 +542  mod 4129=455. 
              (k1 +  k2)-1 = 455 -1 mod 4129=2550. 
 
Compute M : 
                  m1= (c1 + c2) * (k1 + k2) –1  mod p. 
                 m1=  (2193+ 21)* 2550 mod 4129  
                      = 2214 * 2550 mod 4129 =1357                
m2= (c2 k2-c1 k1)*(k1+ k2) –1  mod p 
m2=(21*542–219*4042)*2550 mod 4129 =2468 
 
Computational Complexity 

In this section, the computational complexity 
of the encryption and decryption functions for 
the MVECC and the proposed method is 
calculated. 

The O-notation has been extremely useful in 
helping analyst to classify algorithms by 
performance and in guiding algorithm designers 
to search for the “best” algorithms for important 
problem. 

So addition two s-bit number requires s bit 
operations. That is [6]: 
T(s-bit + s-bit) = O(s) 
For the input numbers of size n decimal digits 
T(n + n) = O(log n) , 
where the number of bits of n equal log2 n. 

The multiplication of two s-bits binary 
integers requires s2 (s * s) bit operation, because 
it needs s addition operations. That is: 

T(s-bit * s-bit) = O(s2) 

For the input numbers of size n decimal digits 
T(n * n) = O(log n)2 , 
where the number of bits of n equals log2 n. 

The Computational Complexity for the 
MVECC compared to the proposed methods is 
as follows: 
Let the size of the input message unit is n in 
MVECC Method the encryption function is : 
c1= m1 * k1 
c2= m2 * k2 
then:  
      T(c1)=O(log n)2   bit operation. 
      T(c2)=O(log n)2   bit operation. 
The decryption function is: 
   m1= c1 * k1

-1 
  m2= c2 * k2

-1 
then: 
  T(m1)=O(log n)2 + T(k1

-1)   
T(k1

-1) = O(log n)3 , by extend Euclid’s method  
T(m1) = O(log n)2 + O(log n)3  bit operation. 
T(m2) = O(log n)2  + O(log n)3  bit operation. 
In Enhanced Method of MVECC  
The encryption function is as follows: 
       c1= m1 k2 - m2  mod p 
        c2= m1 k1 + m2    mod p 
Then:  
T(c1)= O( (log n) 2) + O(log n)  bit operation. 
T(c2)= O( (log n) 2) + O(log n)  bit operation. 
The decryption function is: 
m1= (c1 + c2) * (k1 + k2) –1 mod p 
m2= (c2 k2 - c1 k1) * (k1 + k2) –1 mod p 
then, 
T(m1)=O(log n)2 + O(log n) + T((k1 + k2) -1)   
T((k1 + k2) -1) = O(log n) + O(log n)3  
T(m1)=O(logn)2+O(2 log n)+O(log n)3 bit 
operation. 
T(m2)=O(3 log n)2+O(2log n)+O(log n)3 bit 
operation. 
 

Conclusion 
After this, it is clear that the Menezes-

Vanstone scheme has advantage that it does not 
need encoding the plaintext message in the 
elliptic curve. This makes it more efficient than 
the original ElGamal scheme. However, it needs 
computing the inverse of the two numbers in the 
key point. The plaintext as long as the cipher 
text and the key are pairs of two numbers. This 
characteristic exploited to make the system more 
efficient. 
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We proposed new variations of the MVECC. 
This variation gives the system more security 
because it mixes between the two numbers of 
the two-plaintext unit, it may be more confusion 
than the MVECC, and it needs calculating the 
inverses operation once only. 
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 :الخلاصة

 أن مجموعة نقاط المنحنى البيضوي تشـكل مجموعـة  
ر مناسب لبناء حيز مشابه لمشـكلة  اأبيلية، والتي تكون أختي

في هذا البحث سنقدم نظرة مبسطة الـى   .اللوغاريتم المتقطع
فانستون للمنحنيات البيضـوية  -نظام التشفير بطريقة مينزس

سين هذه الطريقة مما يجعلهـا اكثـر   ونقدم مقترح متنوع لتح
 .كفاءة من الطريقة الاصلية

 


