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Abstract

This paper presents a discriminant algorithm that seeks to separate different classes as much as
possible for discriminant analysis or dimension reduction. The optimization is achieved through the
maximization of the Fisher ratio (which is defined as the ratio of the between-class scatter to the sum of

within-class scatters).

This algorithm for feature extraction shows improvement over the conventional feature selection
algorithms used in remote sensing as well with other applications. The conducted experiments are
accomplished using both ssimulated Gaussian and real airborne MSS/TM satellite data for both large
and small sample size. Although the conducted experiments are performed over the case of two classes,
extension to n-dimensions can be easily obtained using the binary decision tree.

Introduction

Feature extraction plays important role in the
problems of pattern classification. By feature
extraction the n-dimensional space is reduced to
a lower dimensional one. This reduction is
performed under the condition that certain
criteriaare preserved or minimized.

This problem is special importance in the
classification of remotely sensed data. This
follows from the fact that the number of the
training samples (i.e., pre-labeled samples) are
usually difficult or expensive to obtan.
Furthermore, the number of the bands in the
multi spectral scanner may be as large as 24and
this number is expected to be increased to 50-
100 in the future [1]. This increase in the
number of dimensions with the limited sample
size will lead to Hughes phenomena [2]. This
causes the increase probability of classification
error with the increase of the number of bands.
Consequently, dimensionality reduction has to
be performed to improve classification accuracy.

Feature extraction or selection in remote
sensing is usually performed using the KL
transform [6], the divergence measure or the J.M
distance. In this paper, feature extraction is
accomplished by minimizing the sum of the
within class scatters and maximizing the
between-class scatter.

Fisher Dimensionality Reduction

Consider the two sets of samples A and B.
Let A contains a samples and B contains b
samples. Each sample in the two classes A and
B isrepresented by n-dimensiona vector.

Let x; and y; (1<i<a, 1<j<b) be the vector in
A and B respectively. The means m; and m, of
A and B are given by:

a

Therefore, the distance between the two
classesis given by:

D=m, - m,

The within class scatters W, and W, of A and
B are given by:

W, = (% = M) (% = M), e (2a)
i=1
And,
b
szé(yj-mz)t(yj-mz), ................ (2b)

j=1

Where, t denotes the transpose of the matrix.
The total within class matrix is equa to
W, +W,=W.



Let d,, da,....., dn be m orthonormal (1x m)
vectors (m<n)over which the projection is
performed. These vectors are used to project the
samples x; and y; from the original space into m-
dimensional space to get the samples u; and v,
respectively. The samples u and v are (1xm)
vectors that can be written in the form

U' = (Ug yeeeensUpg yeeeens Uy )
V] = (Vg eV reeeens Vi )
Where
Ug =d X and Vi =dYj e, 3

In the m-dimensional space the between class
scatter N is given by:

N =(diD)? +(diD)* +...+(d! D)?

While the total within class scatter D is
given by

In this paper the projection is performed
through the maximization of the ratio (F) of the
between class scatter to the within class scatter,
i.e.,

Maximize F =E
D

Subject to the condition that the vectors d,,
d,,....,d,, are orthonormal.

The projection over a plane is of significant
importance. This follows from the fact that the
intrinsic dimensionality of the available remote
sensing date is two. Furthermore the projection
over plane can be used in the on-line interactive
graphic systems [3]. For the projection over
plane F is given by:

_(diD)* +(d;D)?
dyWd; +d\Wd,
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The vectors d; and d, that maximize the
above ratio (subjected to the condition that d,
and d, are orthonormal) can be evaluated by a

simple iterative method. This method starts with
two orthonormal vectors d;(1) and d,(1). For

each iteration (i), one of the vectors, say d,(i), is
kept constant while the other dJ(i) is evauated
to maximize the objective function:

F(i+1)= ((dl(i+1)D)2 +(dL(i+1)D)2)s
(d{(i +1)Wdy (i +1)+d5(i +1)Wd2(i+1))
+14[di(i +1)dp(i +1)]
+1 o[ dy(i +1)dy(i +1)- 1]

Where, | ; andl , arethe Lagrange multipliers.

For each iteration the vector d, is kept
constant, i.e.

AR T T (D N (8)

Using Newton method, the vector d,(i+1) can be
written as.

dy(i+1)=d,(i)+ddy(i) v, 9)
Where
ddz(i)zeNdz(i)F(i) .............................. (10)

The constant ¢ determines the speed by which
the iterative process will converge. Also, it
determines the accuracy in evauating the two
vectors d; and d,. Too small values for & will

decrease the speed of convergence while high
values for ¢ will decrease the accuracy and
increase the speed of convergence. The vector
Ndz(i)F(i) is obtained by differentiating F(i)

with respect to the vector d,(i) to get
Ndz(i)F(i):E%D(i)[og(i)D]2 - 2N(i)Wd2(i)g/
[D())? +1 1d1(i)+1 2dp(i)  eeererrrrennns (11)
Where,
D(i)=d; (i )Wd; (i) +d;(i )Wd,
and
N(i)=[d;(i)D] * +[d;(i)D]
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To evaluateN ;), the values of 1, | , have

to determined. Since

A (i + 1), (i +1)=0 o, (12a)
and,

dy(i + 1), (i 1) =1 e, (12b)
Using equation's (8) and (9), one will get:

SO LD I N (13a)
and,

A3()A (1) =0 e (13b)

Multiplying equation (11) by d;(i) and using
equation (13a), |, can be determined. Also,
multiplying equation (11) by d(i) and using
equation (13b), |, can be determined. The
vector N, ;,F(i) is then evaluated using

equation (11). Furthermore, the vector d}(i +1)
can be evauated (for the next tria i+1) using
eguation (9). The two vectors derived in Ref [3]
can be used for the first trial, where

dy(1)=aW ™ (m - M) e (14)
and

— | -1_D(bN_l]2D -129
d,() b+W —Db/\/'l]SDBN ]%D ...... (15)

Where, a and b are the normalization
constants.

Comparison between feature extraction
methods

In this section, it will be shown that the
Fisher feature extraction possesses some
interesting properties that make it superior over
other methods especially in remote sensing
problems.

In the following, it will be proved that for any
projection over a plane, the probability of
classification error will have a lower limit. This
limit is maximized by the projection over Fisher
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plane. This result is achieved through extending
the Chebyshev inequality.

Let f(x,y) and g(x,y) be the probability density
functions of classes 1 and 2, respectively, after
projection over a plane by any of the feature
extraction methods. In this plane, let h;, h, be

the distance between the means of the two
classes in the first and second dimensions. Also,
let S, and S, be the within class scatters of

classes 1 and 2 respectively. Then

¥ ¥
E(x +y2)=Qc‘2x2 +y?)f(x,y )dxdy

Since E(x2+y2) is equal to S, then from the
above equation one may get:

S> O Xy f(xy)dxdy
[X>(hy 7 2)]yl>(hy / 2)
or,

X>(hy /1 2)]|y1>(hp 1 2)
(X* +y?)f(x,y)dxdy

But the above integral is equa to the
probability of classification error in class 1 (P,).

Thus,
A4S, >(h2 + 2 )P, e (16)
Similarly, for class 2

4S, >(h? + 2 )Py e (17)

Where, P, is the probability of classification
error in class 2.
Summing inequalities (16) and (17) to get

A4S +S,)>(hZ+hZ) P +P,) e (18)

But (S, +S,) is equal to the total within
class scatter and (h?+h7) is equa to the
between class scatter. Furthermore, (P,+P,) is

equal to the total probability of error (Py).
Consequently, equation (18) is reduced to



It should be noted that the above inequality
doesn't work for the projection over a plane
only. It can be applied for the projection over
any space of dimensions lower than the origina
gpace. It is obvious that equation (19)
determines a lower limit for the probability of
error. But the am of Fisher dimensionality
reduction is to maximize F. Thus by this
projection, the lower limit is maximized.

It has been stated [4] ,[7] that for the multi-
variant Gaussian case (with U, (i) and s,
denoting, respectively, the mean and variance of
k in class i) with variances assumed equal for
both classes, then if the variables are

independent and
Ik =|Uk(1)s_ Uk(2)|>0 for all k
k

then the probability of error tends to zero with
increasing the number of the dimensions if

0O ¥ .
a oy I diverges.

In the following it will be proved that the
above result can be obtained for any probability
density function after projection over Fisher
discriminate vector. In another word, after
projection over Fisher discriminate vector, the
probability of error tends to zero when

O ¥ 5
akzlgk diverges.

This result follows from equation (19) (where
F is evaluated after projection over the vector

(a,...a,...,a,) ). Then:

.2
F:geg_ a,q%/geé A’ 7T e, (20a)
i=1 b 8i:1 9
Where
a A7 1 e (20b)

i=1
Choosing a=a(Alci®), where o is the
normalization constant, then equation (20a)
becomes:
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This ratio [8] tends to ¥ as n approaches¥ ,
since, by the projection over the Fisher
discriminant vector F is maximized, then by this
projection F should tend to «. Consequently, by
the virtue of equation (19) the probability of
error tends to zero.

From the above result, it may be concluded
that adding more informative dimensions will
improve the classifier performance. This
important result is not guaranteed when using
KL transform. On the contrary, adding more
dimensions in the KL transform may spoil the
whole performance. This follows from the fact
that this transform gives projection over the
dimensions of higher variance. However, the
variance in the data may come from the within

or between class scatters. Since the KL can't
discriminate between these two scatters, then
adding dimensions of high within class scatters
will deteriorate the classifier performance.

By the feature selection methods such as
divergence and JM distance, a subset of
dimensions is selected for the classifier design.
Therefore a considerable loss in the
classification accuracy will occur if the original
space contains many valuable dimensions.

Experimental results

Simulated Gaussian (using central point
theorem) and MSS data have been used for the
comparison between feature extraction methods.
1. Simulated results: sets of two n-dimensiona

Gaussian classes are generated for the test.

For each test, the two classes have the same

covariance matrix and each contains (a)

samples. These samples are called the design

set that can be used for the classifier design.

The generator, that is used to generate the

design s¢t, is aso used to generate 200 test

samples. The test samples are then classified
by the classifier (designed by the design set).

Four methods of classification are used with

each set. The first one uses the Bays classifier

over the original n-dimensional space. The
second one is performed through the
projection over the Fisher plane and applying
the Bays rule using two dimensiona data
The third and forth methods are performed by
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applying the Bays rule with two dimensional
data. The data is obtained by the projection
over a plane using the KL and the divergence
methods respectively. Graphs (1) to (8) show
samples of the results. For each graph, (n)
and (a) are kept constant and the classifier
performance is evaluated for different values
of the Mahalanobis distance M=(m,- mz)t >
1(ml- m,). Form this distance, the minimum
probability of error P, can be evaluated
where P=0.5-erf(M"?/2). Graphs (1) to (4)
show the results for the date with equad
(D/s) for dl the dimensions. From these

graphs it is obvious that, with the divergence
methods, there is a considerable loss in the
classifier accuracy compared with the other
methods. Graphs (5) to (8) shows the results
for different (A/s). From these graphs it is
clear that the KL method doesn’'t give
acceptable results compared with the other
methods. From graphs (1) to (8) it is clear
that, with the Fisher method, the classifier
performance is improved with increasing the
number of the dimensions. This result is not
guaranteed when using other methods.

2. TM/MSS data: the feature extraction methods
mentioned previously have been used to
discriminate  between the water and
vegetation obtained from 6 bands TM/MSS
data. Fifteen samples for each class are used
in the test. With this low sample size the U
method or "leave-one-out" is recommended
[5] to get good results. By this method, 14
samples were used as the design set, while
the remaining one is used as the test set. The
test is repeated 15 times and the average of
results is evaluated. With the Fisher method,
it is found that the probability of error is
equal to 3.3% for the test set while it is equal
to 3.6% for the design set. For the KL method
the probabilities of error are equal to 14.3%
and 16.80% respectively. For the divergence
methods, these are equal to 14.3% and 9%
respectively. By using the Bays rule in the
original space, these probabilities are equal to
14.3% and 6% respectively. From as these
result, it may be concluded the Fisher method
gives the best results.
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Conclusions

Feature extraction method by maximizing the
Fisher ratio is presented. In this paper the
emphasis is on the projection over aplane. It has
been found that with increasing the number of
the dimensions, the Fisher method will give
better performance. This result is not guaranteed
when using the KL method. Furthermore, there
may be a considerable loss in the classification
accuracy when using any of the feature selection
method. Thus the Fisher method is more suitable
because of the large number of available bands
in remotely sensed date and this number is
expected to be increased in the future.
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Graphs 1 to 8 represent probabilities of correct
classification vs. Mahalaobis distance for
sample sizes (=99 and 20) and dimensiona
lities (n=12 and 6). In each graph, (1) refers to
Fisher method, (2) refers to KL method, (3)
refers to divergence method and (4) refers to
Bays method over n-dotted curves refer to tests
over design sets while continuous curves refer to
tests over test sets.
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