HYPERCYCLICITY AND SUPERCYCLICITYFOR SOME CLASSES OF OPERATORS

Buthainah A. Ahmed and Hiba F. Al-Janaby Department of Mathematics, College of Science, University of Baghdad.

Abstract

In this paper, we prove that, if T is the quotient of a decomposable on a separable Banach space (M-hyponormal operator on a real Hilbert space), then T is hypercyclic operators. We also show that these classes of operators are supercyclic operators.

Key words and phrases: Hypercyclic operator, supercyclic operator, decomposable operator, M-hyponormal operator, single valued extension property (SVEP), Bishop's property (β), Dunford's property (ζ), decomposition property (δ).

Introduction

Let *X* be a complex Banach space, and $\mathcal{L}(T)$ be the set of all bounded linear operators on *X*, we also denote as usual the spectrum of *T* by $\sigma(T)$. If $T \in \mathcal{L}(X)$, then a part of *T* is a bounded operator obtained by restricting *T* to an invariant closed subspace *M*, say $T|_M$, a part of the spectrum of *T* is denoted by, $\sigma(T|_M)$, where *M* is an invariant closed subspace of *T*.

An operator $T \in \mathcal{L}(X)$ is called *hypercyclic* if there is a vector $x \in X$ with dense orbit $\{x, Tx, T^2x, ...\}$, and is called *supercyclic* if there is a vector $x \in X$ { $cT^nx : n \ge 0, c \in \mathbb{C}$ }, is dense in X, see[3]. $T \in \mathcal{L}(X)$ is said to be *decomposable* if every open cover $\mathbb{C} = U \cup V$ of the complex plane \mathbb{C} by two open sets U and V effects a splitting of the spectrum $\sigma(T)$ and of the space X, in the sense that there exist T-invariant closed linear subspaces Y and Z of X for which $\sigma(T|_T) \subseteq U$, $\sigma(T|_Z) \subseteq V$, and X = Y + Z, for example, all normal operators on a Hilbert space, compact operators and generalized scalar operators on Banach spaces are decomposable, see[6].

Also, for a *T*-invariant closed subspace *M* of *T*, let $T / M \in \mathcal{L}(X / M)$ denote the operator induced by $T \in \mathcal{L}(X)$ on the quotient space

X / M and called it the quotient of operator, It is known that every quotient space is Banach space, if X is Banach space, see [6].

Following to [2], let *H* be a complex Hilbert space. $T \in \mathcal{L}(H)$, *T* is said to be *M*-hyponormal operator, if there exists a constant number M > 0 such that $|| (T - \lambda I)^* x || \le M || (T - \lambda I) x ||$ for each complex number λ . It is known that every hyponormal operator and every normal operator are *M*-hyponormal operators. The purpose of the present paper is to study the quotient of a decomposable on a complex Banach space and the *M*-hyponormal operator on a real Hilbert space to be hypercyclic or supercyclic under sufficient conditions.

Preliminaries

An operator $T \in \mathcal{L}(X)$ is said to be have single valued extension property (SVEP) at λ_0 if for every open set $U \subseteq \mathbb{C}$ containing λ_0 the only analytic solution $f: U \to X$ of the equation

$$(T - \lambda I)f(\lambda) = 0$$
 $(\lambda \in U)$

is the zero function., an operator T is said to have SVEP if T has SVEP at every $\lambda \in \mathbb{C}, ([4], [6])$

Given $T \in \mathcal{L}(X)$, the *local resolvent set* $p_T(x)$ of T at the point $x \in X$ is defined as the

union of all open subsets $U \subseteq \mathbb{C}$ for which there is an analytic function $f: U \rightarrow X$ such that

 $(T - \lambda I)f(\lambda) = x \quad (\lambda \in U)$

The *local spectrum* $\sigma_T(x)$ of T at x is then defined as

 $\sigma_T(x) = \mathbb{C} \setminus \rho_T(x)$

For $T \in \mathcal{L}(X)$, we define the *local* (resp. *glocal*) *spectral subspaces* of T as follows. Given a set $F \subseteq \mathbb{C}$ (resp. a closed set $G \subseteq \mathbb{C}$).

 $X_T(F) = \{ x \in X : \sigma_T(x) \subseteq F \}.$

(resp.

 $\mathcal{X}_T(G) = \{x \in X: \text{there exists an analytic} function <math>f: \mathbb{C} \setminus G \to X$ such that $(T - \lambda I)f(\lambda) = x$ for all $\lambda \in \mathbb{C} \setminus G\}$).

Note that **T** has SVEP if and only if $X_T(F) = \mathcal{X}_T(F)$ for all closed sets $F \subseteq \mathbb{C}$, [6, Proposition (3.3.2)].

An operator $T \in \mathcal{L}(X)$ has Dunford's property (C) if the local spectral subspace $X_T(F)$ is closed for every closed set $F \subseteq \mathbb{C}$. We also say that T has Bishop's property (B) if for every sequence $f_n: U \to X$ such that $(T - \mathcal{M})f_n(\mathcal{X}) \to 0$ uniformly on compact subsets in U, it follows that $f_n \to 0$ uniformly on compact subsets in U. It is well known [6, 7] that Bishop's property (B) \Rightarrow Dunford's property (C) \Rightarrow SVEP.

Moreover, an operator $T \in \mathcal{L}(X)$ has decomposition property (δ) if $X = \mathcal{X}_T(\overline{U}) + \mathcal{X}_T(\overline{V})$ for every open cover $\{U, V\}$ of \mathbb{C} .

As shown in [1], an operator $T \in \mathcal{L}(X)$ has property (3) iff it is the quotient of a decomposable operator. Moreover properties (β) and (δ) are dual to each other, in the sense that an operator $T \in \mathcal{L}(X)$ has property (β) iff its adjoint has property (δ), and conversely, T has property (δ) iff its adjoint has property (β).

The following result from Feldman, Miller and Miller [3], gives the relation between parts of the spectrum and the local spectra of an operator with Dunford's property (C).

Proposition (2.1):

If $T \in \mathcal{L}(X)$ has Dunford's property (C), then $\sigma_T(x) = \sigma(T|_{X_T(F)})$ whenever $F = \sigma_T(x)$ for some nonzero $x \in X$.

The following result from Feldman, Miller and Miller [3], gives sufficient condition for an operator to be hypercyclic, we denote the interior and exterior of the unit circle by $\mathbb{D}, \mathbb{C}\setminus\overline{\mathbb{D}}$ respectively.

Corollary (2.2)

Let X be a complex Banach space and suppose that $T \in \mathcal{L}(X)$ has the decomposition property (δ). If $\sigma_{T^*}(x^*) \cap \mathbb{D} \neq \emptyset$ and $\sigma_{T^*}(x^*) \cap (\mathbb{C} \setminus \overline{\mathbb{D}}) \neq \emptyset$ for every nonzero $x^* \in X^*$. Then T is hypercyclic.

If A is a compact set in the complex plane and $\epsilon > 0$, then $B(A, \epsilon)$ denote the ϵ -neighborhood of A, that is, $B(A, \epsilon) =$ $\{z : dist(z, A) < \epsilon\}$. For the proof of the following classic result see Newman [7], Corollary 1.

Lemma (2.3)

If K is any compact set in the complex plane, A is a component of K, and $\epsilon > 0$, then there exists disjoint open sets U, V such that $K \subseteq U \bigcup V$ and $A \subseteq U \subseteq B(A, \epsilon)$.

If $\rho \ge 0$, we denote the circle $\{z \in \mathbb{C} : |z| = \rho\}$ by Γ_{ρ} . The interior and exterior of Γ_{ρ} are the regions $int \Gamma_{\rho} = \{z \in \mathbb{C} : |z| < \rho\}$ and $ext \Gamma_{\rho} = \{z \in \mathbb{C} : |z| > \rho\}$. Recall that an operator *T* of is said to be ρ -outer (outer with respect to Γ_{ρ}) or ρ -inner (inner with respect to Γ_{ρ}) provided that *T* satisfies conditions either (a) $X_T(ext \Gamma_{\rho})$ is dense and for every $\epsilon > 0$, $X_T(int X_{\rho-\epsilon})$, or (b) $X_T(int \Gamma_{\rho})$ is dense and for every $\epsilon > 0$, $X_T(ext \Gamma_{\rho-\epsilon})$ is dense, respectively.

The following Theorem is a stronger form of a result due to Herrero [5, Proposition (3.1)].

Theorem (2.4)

If $T \in \mathcal{L}(X)$ is a supercyclic operator on a separable Banach space X, then there exists a circle Γ_{ρ} , $\rho \geq 0$, such that $\sigma(T^*|_M) \cap \Gamma_{\rho} \neq \emptyset$ for every nonzero weak*closed T^* -invariant subspace M of X^* .

In particular, every component of the spectrum of T intersects Γ_{ρ} .

If T is a supercyclic operator, then any circle as in Theorem (2.4) will be called a *supercyclicity circle* for T.

The following result from Feldman, Miller and Miller [3], gives sufficient condition for an operator to be supercyclic

Corollary (2.5):

Let X be a complex Banach space and assume that $T \in \mathcal{L}(X)$ has the decomposition property (S). If there exists a circle Γ_{ρ} , $\rho \ge 0$, satisfying either:

- a For every nonzero $x^* \in X^*$, $\sigma_{T^*}(x^*)$ intersects both Γ_{σ} and $int\Gamma_{\sigma}$, or
- **b** For every nonzero $x^* \in X^*$, $\sigma_{T^*}(x^*)$ intersects both Γ_{ρ} and $ext\Gamma_{\rho}$. Then T is supercyclic.

Main Results For hypercyclicity Proposition (3.1):

If T is a quotient of a decomposable operator on a complex Banach space X, and $\sigma(T^*|_{M^*}) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_{M^*}) \cap (\mathbb{C} \setminus \overline{\mathbb{D}}) = \emptyset$ for every hyperinvariant M^* of T^* , then T is hypercyclic.

Proof:

Let *T* be a quotient of a decomposable operator on *X*, then *T* has property (δ). Hence, *T*^{*} has property (β), and so *T*^{*} has property (*C*). Since $\sigma(T^*|_{M^*}) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_{M^*}) \cap (\mathbb{C} \setminus \overline{\mathbb{D}}) = \emptyset$ for every hyperinvariant *M*^{*} of *T*^{*}, and *X*^{*}_{*T**}(*F*) is hyperinvariant for every closed set *F* \subseteq \mathbb{C} , then $\sigma(T^*|_{X^*_{T^*}(F)}) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_{X^*_{T^*}(F)}) \cap (\mathbb{C} \setminus \overline{\mathbb{D}}) = \emptyset$ Since *T*^{*} has property

(C), then $\sigma_{T^*}(x^*) = \sigma\left(T^*|_{X_{T^*}^*(F)}\right)$ whenever $F = \sigma_{T^*}(x^*)$ for some nonzero $x^* \in X^*$ by Proposition (2.1), it follows that $\sigma_{T^*}(x^*) \cap \mathbb{D} = \emptyset$ and $\sigma_{T^*}(x^*) \cap (\mathbb{C} \setminus \overline{\mathbb{D}}) = \emptyset$ for every nonzero $x^* \in X^*$. Thus Corollary (2.2) applies to give that *T* is hypercyclic.

Corollary (3.2):

If **T** is a quotient of a decomposable operator on **X**, and **T** is both inner and outer with respect to a circle Γ_{ρ} (where inner and outer with respect to a circle Γ_{ρ} is defined above), $\rho > 0$, then a multiple of **T** is hypercyclic.

Proof:

If *T* is both inner and outer with respect to Γ_{ρ} , then $\frac{1}{\rho}T$ will be hypercyclic by Propsition (3.1).

We now present new results for M-hyponormal operator on a real Hilbert space which is needed, then later

Proposition (3.3):

If T is M-hyponormal operator on a real Hilbert space H, then T^* has Bishop's property (β).

Proof:

Let $U \subseteq \mathbb{C}$ be an open set, and consider a sequence of analytic functions $f_n: U \to H$ for which $(T^* - \lambda I)f_n(\lambda) \to 0$ as $n \to \infty$ locally uniformly on *U*. We want to show that $f_n \to 0$ as $n \to \infty$, again locally uniformly on *U*. Since *T* is M-hyponormal operator, then *T* has property (\mathcal{G}) , by [6, Proposition (2.4.9)]. Hence $f_n \to 0$ as $n \to \infty$ uniformly on all compact subsets of *U*, for every sequence of analytic functions $f_n: U \to H$ for which $(T - \lambda I)f_n(\lambda) \to 0$ as $n \to \infty$ uniformly on all compact subsets of *U*, but we need $f_n \to o$ as $n \to \infty$ locally uniformly on *U*, when $(T^* - \lambda I)f_n(\lambda) \to 0$ as $n \to \infty$ locally uniformly on *U* Again, since *T* is *M*-hyponormal operator, then there exists a constant number M > 0 such that

 $\| (T - \lambda I)^* x \| \le M \| (T - \lambda I) x \| \text{ for all } \lambda \in \mathbb{R},$ $x \in H. \text{ Thus we have}$

 $\| (T - \lambda I)^* f_n(\lambda) \| \le M \| (T - \lambda I) f_n(\lambda) \| \quad \text{for}$ all $\lambda \in U$, $f_n(\lambda) \in H$. So $(T - \lambda I)^* f_n(\lambda) \to 0$ as $n \to \infty$ Therefore T^* has Bishop's property (β).

Remark (3.4):

Proposition (3.3) is not true if H is a complex Hilbert space.

Now we shall prove that every M-hyponormal operator on a real Hilbert space is hypercyclic.

Proposition (3.5):

IF T is M-hyponormal operator on a real Hilbert space H, and $\sigma(T^*|_M) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_M) \cap (\mathbb{C} \setminus \overline{\mathbb{D}}) = \emptyset$ for every hyperinvariant Mof T*. Then T is hypercyclic.

Proof:

If *T* is *M*-hyponormal operator on a real space *H*, then *T*^{*} has property (*β*), by Proposition (3.3). Thus *T*^{*} has property (*C*), and so *T* has property (*β*). Now, since $\sigma(T^*|_M) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_M) \cap (\mathbb{R} \setminus \overline{\mathbb{D}}) = \emptyset$ for every hyperinvariant *M* of *T*^{*}, and $H_{T^*}(F)$ is hyperinvariant for every closed set $F \subseteq \mathbb{R}$, then $\sigma(T^*|_{H_{T^*}(F)}) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_{H_{T^*}(F)}) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_{H_{T^*}(F)}) \cap \mathbb{D} = \emptyset$ for every hyperinvariant for every closed set $F \subseteq \mathbb{R}$, then $\sigma(T^*|_{H_{T^*}(F)}) \cap (\mathbb{R} \setminus \overline{\mathbb{D}}) = \emptyset$ Since T^* has property (*C*), then $\sigma_{T^*}(x) = \sigma(T^*|_{H_{T^*}(F)})$

whenever $F = \sigma_{T^*}(x)$ for some nonzero $x \in H$, by Proposition (2.1), it follows that $\sigma_{T^*}(x) \cap \mathbb{D} = \emptyset$ and $\sigma_{T^*}(x^*) \cap (\mathbb{R} \setminus \overline{\mathbb{D}}) = \emptyset$ for every nonzero $x \in H$. Therefore *T* is hypercyclic by Corollary (2.2).

Corollary (3.6):

If **T** is *M*-hyponormal operator on a real Hilbert space **H**, and **T** is both inner and outer with respect to a circle Γ_{ρ} (where inner and outer with respect to a circle Γ_{ρ} is defined above), $\rho > 0$, then a multiple of T is hypercyclic.

Proof:

If *T* is both inner and outer with respect to Γ_{ρ} , then $\frac{1}{\rho}T$ will be hypercyclic by Proposition (3.5).

Main Results for Supercyclic Proposition (4.1):

If T is a quotient of a decomposable operator on a complex Banach space X, and there exists a circle Γ_{ρ} , $\rho \ge 0$, such that either:

a-For every hyperinvariant subspace M^* of T^* , $\sigma(T^*|_{M^*})$ intersects Γ_{ρ} and int Γ_{ρ} , or

b-For every hyperinvariant subspace M^* of T^* , $\sigma(T^*|_{M^*})$ intersects Γ_{ρ} and ext Γ_{ρ} .

Then T is supercyclic.

Proof:

Since T is a quotient of a decomposable operator on X, then T has property (δ). Hence T^{*} has property (β) , and so T^* has property (C). If $\sigma(T^*|_{M^*})$ intersects Γ_{ρ} and Γ_{ρ} , for every hyperinvariant subspace M^* of T^* . And since $X^*_{T^*}(F)$ is hyperinvariant for every closed set $F \subseteq \mathbb{C}$, then $\sigma(T^*|_{X^*_{T^*}(F)})$ intersects Γ_{ρ} and $int \Gamma_{\rho}$. Since T^* has property (C), then $\sigma_{T^*}(x^*) = \sigma(T^*|_{X^*_{T^*}(F)})$ whenever $F = \sigma_{T^*}(x^*)$ for some nonzero $x^* \in X^*$, by Proposition (2.1), it follows that $\sigma_{T^*}(x^*)$ intersects both Γ_{ρ} and $int \Gamma_{\rho}$, for every nonzero $x^* \in X^*$. Thus Corollary (2.5) applies to give that T is supercyclic. Similarly, if $\sigma(T^*|_{M^*})$ intersects Γ_{ρ} and ext Γ_{ρ} for every hyperinvariant subspace M^* of T^* , then T is supercyclic.

We say that an operator is *purely supercyclic*, if it pure (It mains the restriction of operator on any nontrivial invariant subspace is not normal), supercyclic and no multiple of it is hypercyclic.

Corollary (4.2):

Journal of Al-Nahrain University

If **T** is a quotient decomposable operator on **X**, and **T** is purely supercyclic, then **T** has unique supercyclicity circle.

Proof:

If there are two supercyclicity circles, Γ_{ρ_1} and Γ_{ρ_2} with $0 \le \rho_1 < \rho_2$, then every part of the spectrum of T^* intersects both Γ_{ρ_1} and Γ_{ρ_2} . Now choose a ρ such that $\rho_1 < \rho < \rho_2$. An application of Lemma (2.3) and the fact that every part of $\sigma(T^*)$ must intersect both Γ_{ρ_1} and Γ_{ρ_2} , imply that every part of $\sigma(T^*)$ will intersect Γ_{ρ} , as well as the interior and exterior of Γ_{ρ} . Thus, T is both ρ -inner and ρ -outer, and the previous result implies that a multiple of T is hypercyclic, contrary to our assumption.

Corollary (4.3):

If $\{T_n\}$ is a bounded sequence of quotient of decomposable operators such that for every n, T_n is supercyclic, then $\bigoplus_n T_n$ is supercyclic if and only if there is a common supercyclicity circle, Γ_ρ , $\rho \ge 0$, and T_n is ρ -inner for every nor T_n is ρ -outer for every n.

Proof:

Let $T = \bigoplus_n T_n$. If T is supercyclic, then a supercyclicity circle for **T** will be a supercyclicity circle for each T_n . Similarly, if T is ρ -inner (or ρ -outer), then T_n is ρ -inner (or ρ -outer) for each *n*. Conversely, suppose Γ_{ρ} , is a supercyclicity circle for each T_{n} and each T_n is ρ -outer. We need to check that if M^* is a hyperinvariant subspace for T^* , then $\sigma(T^*|_{M^*})$ intersects both Γ_{α} and ext Γ_{α} . However, since M^* is hyperinvariant, it must be invariant under every coordinate projection. Thus $M^* = \bigoplus_n M_n^*$ where M_n^* is a hyperinvariant subspace of T_n^* . Thus, $\sigma(T^*|_{M^*}) \supseteq \sigma(T^*_n|_{M^*_n})$ for each *n*. So, if *n* is such that $M_n^* \neq \{0\}$, then by assumption $\sigma(T_n^*|_{M_n^*})$ intersects both Γ_{ρ} and $ext \Gamma_{\rho}$. Thus $\sigma(T^*|_{M^*})$ also intersects both Γ_{ρ} and $ext \Gamma_{\rho}$. So, Theorem (4.1) implies that T is supercyclic. If each T_{re} is ρ —inner, then the proof is similar.

Proposition (4.4):

If **T** is M-hyponormal operator on a real Hilbert space H, and there exists a circle Γ_{ρ} , $\rho \ge 0$, such that either: **a**-For every hyperinvariant subspace M of T^* , $\sigma(T^*|_M)$ intersects Γ_{ρ} and int Γ_{ρ} , or **b**-For every hyperinvariant subspace M of T^* , $\sigma(T^*|_M)$ intersects Γ_{ρ} and ext Γ_{ρ} . Then **T** is supercyclic.

Proof:

Since T is M-hyponormal operator on a real Hilbert space H, then T^* has property (β), by Proposition (3.3). Thus T^* has property (C), and so T has property (δ). If $\sigma(T^*|_M)$ intersects Γ_{ρ} and Γ_{ρ} , for every hyperinvariant subspace M of T^* . And since $H_{T^*}(F)$ is hyperinvariant for every closed set $F \subseteq \mathbb{C}$, then $\sigma(T^*|_{H_{T^*}(F)})$ intersects Γ_{ρ} and int Γ_{ρ} . Now since T^* has property (C), then $\sigma_{T^*}(x^*) = \sigma(T^*|_{H_{T^*}(F)}) \quad \text{whenever} \quad F = \sigma_{T^*}(x^*)$ for some nonzero $x^* \in H$ by Proposition (2.1), it follows that and $\sigma_{T^*}(x^*)$ intersects both Γ_{ρ} and int Γ_{ρ} , for every nonzero $x^* \in H$. Thus Corollary (2.5)Tis applies to give that supercyclic.Similarly, if $\sigma(T^*|_{M^*})$ intersects Γ_{ρ} and $ext \Gamma_{\rho}$ for every hyperinvariant subspace M of T^* , then T is supercyclic.

Corollary (4.5):

If **T** is **M**-hyponormal operator on a real Hilbert space **H**, and **T** is purely supercyclic, then **T** has unique supercyclicity circle.

Proof:

If there are two supercyclicity circles, Γ_{ρ_1} and Γ_{ρ_2} with $0 \le \rho_1 < \rho_2$, then every part of the spectrum of T^* intersects both Γ_{ρ_1} and Γ_{ρ_2} . Now choose a ρ such that $\rho_1 < \rho < \rho_2$. An application of Lemma (2.3) and the fact that every part of $\sigma(T^*)$ must intersect both Γ_{ρ_1} and Γ_{ρ_2} , imply that every part of $\sigma(T^*)$ will intersect Γ_{ρ} , as well as the interior and exterior of Γ_{ρ} . Thus, T is both ρ -inner and ρ -outer, and the previous result implies that a multiple of T is hypercyclic, contrary to our assumption.

Corollary (4.6):

If $\{T_n\}$ is a bounded sequence of M-hyponormal operators on a real Hilbert space H such that for every n, T_n is supercyclic, then $\bigoplus_n T_n$ is supercyclic if and only if there is a common supercyclicity circle, Γ_ρ , $\rho \ge 0$, and T_n is ρ -inner for every n or T_n is ρ -outer for every n.

Proof:

Let $= \bigoplus_n T_n$. If T is supercyclic, then a supercyclicity circle for **T** will be a supercyclicity circle for each T_n . Similarly, if T is ρ -inner (or ρ -outer), then T_n is ρ -inner (or ρ -outer) for each *n*. Conversely, suppose Γ_{ρ} , is a supercyclicity circle for each T_{m} and each T_{m} is ρ – outer. We need to check that if M is a hyperinvariant subspace for T^* , then $\sigma(T^*|_M)$ intersects both Γ_{ρ} and ext Γ_{ρ} . However, since M is hyperinvariant, it must be invariant under every coordinate projection. Thus $M = \bigoplus_n M_n$ where M_n is a hyperinvariant subspace of T_n^* . Thus, $\sigma(T^*|_M) \supseteq \sigma(T^*_n|_{M_n})$ for each *n*. So, if *n* is such that $M_n \neq \{0\}$, then by assumption $\sigma(T_n^*|_{M_n})$ intersects both Γ_{ρ} and ext Γ_{ρ} . Thus $\sigma(T^*|_M)$ also intersects both Γ_{ρ} and ext Γ_{ρ} . So, Theorem (4.4) implies that T is supercyclic. If each T_n is ρ –inner, then the proof is similar.

References

- E. Albrecht and J. Eschmeier, "Analytic functional models and local spectral theory", Proc. London Math. Soc., Vol. 3, No. 2, (1997), pp. 323-348.
- [2] S.C. Arora and R.Kumar, "*M*-hyponormal operators", Yokohama Math. J., Vol. 28, (1980), pp. 41-44.
- [3] N.S. Feldman, T.L. Miller, and V.G. Miller, "Hypercyclic and Supercyclic Cohyponormal Operators", Acta Sci. Math. (Szeged), Vol. 68, (2002), pp. 303–328.
- [4] J.K. Finch, "The single valued extension property on a Banach space", Pacific J. Math., Vol. 58, (1975), pp. 61–69.
- [5] D. Herrero, "Limits of Hypercyclic and Supercyclic Operators", J. Funct. Anal. Vol. 99, (1991), pp.179–190.
- [6] K.B. Laursen , and M.M. Neumann, An Introduction to Local Spectral Theory", Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, London, 2000, pp. 1–97.
- [7] M.H.A. Newman, Elements of the Topology of Plane Sets of Points", Dover 1992, pp. 83.

الخلاصة

T في هذا البحث نثبت بان المؤثر كوشي القابل للتحليل على فضاء غير منتهي وقابل للفصل بناخ X المعرف على حقل الاعداد العقدية والموثر M - فوق السوية T على فضاء غير منتهي هلبرت H المعرف على حقل الاعداد الحقيقية هما مؤثر إن فوق الدائرية وكذلك هما مؤثر إن فائق الدائرية.