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Abstract 

It has been observed for some time that the standard (classical) discretization methods of differential 
equations often produce difference equations that do not share their dynamics Mickens[21]. An 

illustrative example is the logistic difference equations )x1(x
dt
dx

−β= . 

Where x(t) represent the density of species A at time t, β is positive number, Euler’s discretization 
scheme produces the logistic difference equation  

x(n+1) = µx (n) (1-x(n)),  
Which possesses a remarkably different dynamics such as period-doubling bifurcation route to 

chaos. A more popular discretization method is to modify the given differential equation to another 
with piecewise-constant arguments and then to integrate the modified equation. In some instance, this 
produces a different equation whose dynamics is closed to its original differential equation. However, 
oftentimes this is not the case. Nevertheless, many authors [1, 3, 7, 8, 9, 10] find it interesting to study 
the resulting difference equations. This is not a criticism of these author’s research, since the study of 
nonlinear difference equations is of paramount importance regardless of whether or not they have 
connections with differential equations. But what we are actually saying is that from the point of view 
of numerical analysis such study is of less importance. This paper itself with those numerical schemes 
that produce difference equations whose dynamics resembles that of their continuous counter-parts. 
The most fruitful methods are those of Mickens[14] (for asymptotically stable systems) and of 
Kahan[16] (for periodic systems). 

The paper is organized as follows. Section 2 establishes the basic stability results for Lotka-Volterra 
differential systems. Section 3 surveys some classical discretization methods that are widely used and 
show their shortcomings. Section 4 provides the reader with essential intgredients of Mickens 
nonstandard discretization scheme. In section 5, we discretize a periodic Lotka-Volterra differential 
system using Kahan’s scheme[16]. It is shown that the solutions of the resulting difference equation lie 
on closed curves surrounding the positive equilibrium point. In section 6, we consider a Kolmogrove 
continuous model of cooperative system[13]. This model was discretized in[7] using the method of 
piecewise-constant argument. Surprisingly, the resulting difference equation is dynamically consistent 
with its continuous counterpart. 
 
Stability of Lotka - Volterra Differential 
Equations 

Consider two species A and B. Then we have 
three types of relationship between them. The 
first type is competition, in which A and B 
competes for common resources such as food, 
living space, etc. Here the presence of B 
adversely affects the growth of A and vice versa. 
The second type of relationship between A and 
B is cooperation, where the presence of B 
produces positive effects on the growth of A and 

vice versa. The third and last type is predator-
prey or host-parasite relationship. If A is the 
prey (host) and B is the predator (parasite), then 
the presence of B produces a negative effect on 
the growth of A, while the presence of A 
produces positive effects on the growth of B K. 
Gopalsamy[5]. 

Now, let x(t) be the density of species A at 
time t , and y(t) be the density of species B at 
time t K. Gopalsamy[6]. Then the growth rate of 
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species A and B can be modeled by the 
following system of differential equations: 

 










−−=

−−=

)]t(ya)t(xar)[t(y
dt
dy

)]t(ya)t(xar)[t(x
dt
dx

22212

12111

 ........ (2.1) 

 
Equation (2.1) is often referred to as a Lotka-

Volterra system, was introduced by Volterra in 
1931[21] and by Lotka in 1920 [12]. Here, r1, 
and r2 represent intrinsic growth (or decay) rate 
for species A, and B respectively, while a11, a22 
represents the negative effects of squabbles 
among members of the same species A, and B, 
respectively. Finally, a12 represents the effect on 
the growth of species A from species B, and a21 
represents the effect on the growth of species B 
from species A. It is now evident that a11 ≥ 0 and  
a22 ≥ 0. However, for the signs of a12 and a21, we 
have three cases: 

 
Case I: Competitive species: a12 ≥ 0, a21 ≥ 0.  
Case II: Cooperative species: a12 ≤ 0, a21 ≤ 0. 
Case III: Predator-prey species: a12 > 0, a21 < 0 
or a12 < 0, a21 > 0 

-a12 x(t) y(t) < 0 The presence of B produces 
a negative effect on the growth of A.  

-a21 x(t) y(t) > 0 The presence of A produces 
a positive effect on the growth of B. 
If we write eq.(2.1) in the form 

)y,x(g
dt
dy     ),y,x(f

dt
dx

==  

Then we say that (x*, y*) is an equilibrium 
point if f(x*, y*) = g(x*, y*) = 0. The equilibrium 
point (x*, y*) is said to be stable if for any open 
neighborhood U of (x*, y*) there exists an open 
neighborhood V of (x*, y*) such that if (x0, y0) ∈ 
V then: 

(x (t, x0), y(t, y0)) ∈ U for all t ≥ 0. If in 
addition, )y,x())y,t(y),x,t(x(lim **

00t
=

∞→
 for all 

(x0, y0) in an open neighborhood W of  
(x*,y*), then (x*,y*) is said to be asymptotically 
stable if W = R2, then (x*, y*) is said to be 
globally asymptotically stable. 

Observe that if system (2.1) possess a 
positive equilibrium point (x*, y*) then it must 
satisfy the equations; 

 

1
*

12
*

11 ryaxa =+  ..................................... (2.2) 
 ryaxa 2

*
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Hence Cramer’s Role 
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We are in a position to state the main stability 

result for system (2.1).  
 
Theorem [2] 
Suppose that system (2.1) has an 

asymptotically stable positive equilibrium point 
(x*, y*) then (x*, y*) is globally asymptotically 
stable if a11 > 0, a22 > 0. 
 
Classical Discretization 

There are numerous discretization schemes in 
numerical analysis literature. The simplest 
numerical scheme is the forward Euler in which 

dx/dt is replaced 
h

)t(x)ht(x −+  and dx/dt is 

replaced by 
h

)t(y)ht(y −+  , where h is the step 

size of the numerical method. Making this 
replacement in eq.(2.1) and letting t = nh, x(t) = 
x(nh) = x(n), and y(t) = y(nh) = y(n) yield the 
difference system; 

 





−−+=+
−−+=+

)]n(hya)n(hxahr1)[n(y)1n(y
)]n(hya)n(hxahr1)[n(x)1n(x

22212

12111
 

 .................................. (3.1) 
 

Observed that the dynamics of Eq. (3.1) 
differs form that of Eq. (2.1) and for some 
parameter values may exhibit chaotic behavior. 
Hence, the search for a better numerical scheme 
continues. Another popular method is to 
consider Eq. (2.1) with a piecewise constant 
arguments [22] as follows: 
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 ......... (3.2) 

 
Where 0 ≤ n ≤ t < n+1, and  t  is the greatest 
integer in t. Integrating both sides of Eq. (3.2) 
yields; 
 

)1n,n[t
)]n(ya)n(xarexp[)n(y)t(y
)]n(ya)n(xarexp[)n(x)t(x
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 .... (3.3) 

 
If we let t → n+1 in the preceding system, we 

obtain the following system of difference 
equations.  

 





−−=+
−−=+

)]n(ya)n(xarexp[)n(y)1n(y
)]n(ya)n(xarexp[)n(x)1n(x

22212

12111  

 .................................. (3.4) 
 
System (3.4) has been investigated by 

Krawcewicz and Rogers [10] for the case of 
cooperative systems (a12 ≤ 0, a21 < 0) and by 
Jiang and Rogers[9] for competitive systems      
(a12 ≥ 0, a21 ≥ 0). In both cases, it was shown that 
system (3.4) may exhibit a dynamical behavior 
quite different from its continuing counterpart 
(2.1). 

In spite of its deficiency, system (3.3) has 
been given a lot of attention by several authors 
including Hofbauer[8], Dohtani[3]. 
 
Nonstandard Discretization Schemes 

One of the main aims of numerical analysis is 
to find a numerical scheme that produces 
difference equations that exhibits the same 
qualitative behavior as its continuous 
counterpart (differential equations). We say that 
a difference equation is dynamically consistent 
with its differential equation if they both posses 
the same dynamics such as stability, Bifurcation 
and chaos. In [14], Mickens developed 
successful nonstandard discretization schemes 
that produce what every numerical analyst 
dreams about, namely dynamically consistency. 

Here pargraf we adapt Mickens method to the 
setting of biological models mainly of Lotka-
Volterra type. To illustrate Mickens general 
scheme, we start with a very simple example, 
the logistics differential equation: 
 

))t(bxa)(t(x
dt
dx

−= ............................... (4.1) 

Integrating Eq. (4.1) from t to t+h yields  
 

)t(bx)
a

1e(1

)t(xe)ht(x ah

ah

−
+

=+  ................... (4.2) 

We now let t = nh, and x(nh) = x(n) in (4.2). 
Hence, we have  

+∈
−

+
=+ Zn,

)n(bx)
a

1e(1

)n(xe)1n(x ah

ah

 ...... (4.3) 

Observe that the solutions of Eq. (4.1) and 
Eq. (4.3) are equal on Z+, regardless of the value 

of the step size h setting 
a

1e)h(
ah −

=ϕ  Eq. (4.2) 

may be written in the form: 
 

)ht(x)t(bx)t(ax
)h(

)t(x)ht(x
+−=

ϕ
−+  ...(4.4) 

Notice that (4.4) is similar to the difference 
equation obtained by forward Euler’s method 
with two major differences: (i) h in the 
denominator of the left hand side is now 
replaced by a function of h, φ(h) , (ii) the term 
x2(t) is now replaced by x(t) x(t+h). The 
resulting equation is given by; 

 

)1n(x)h(b1
)n(x)h(a1)1n(x

−ϕ+
ϕ+

=+  

We now formulize the above steps for the 
general differential equation: 

 










=

=

))t(y),t(x,t(g
dt
dy

))t(y),t(x,t(f
dt
dx

 .............................. (4.5) 
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Step 1: Replace the derivative dx/dt by an 

expression of the form 
)h(

)t(x)ht(x

1ϕ
−+ , where 

φ1(h) = h +O(h), and dy/dt by the expression of 

the form 
)h(

)t(y)ht(y

2ϕ
−+  where φ2(h) = h +O(h). 

 
 
 
 
 
 
 
 
 
 
Step 2: Vary the nonlinear terms by non-local 
expressions for example, 

For step 1, the main question is how to chose 
the appropriate function φ1(h) and φ2(h). At this 
time, we are unable to give a general method for 
the selection of these “denominator" functions. 
However, we will demonstrate to the reader 
some special techniques that produce 
appropriate “denominator” function[11]. 

As for step 2, the selection of appropriate 
expressions provides to be simple for 
competitive and cooperative Lotka-Volterra 
systems and most challenging for predator-prey 
model[11]. While performing step 2, one should 
make sure that solutions with non- negative 
initial value must stay non-negative all the time, 
i.e., the cone; 

}0y,0x:)y,x{(2 ≥≥=ℜ+  Must be invariant. 
 
Other Nonstandard Numerical Schemes 

In this section, we consider the discretization 
of the following simple predator-prey model; 

 










δ+γ=

β+α=

xy  x 
dt
dy

xy  x 
dt
dx

 ................................... (5.1) 

Where x(t) represents the density of the prey 
at time t , and y(t) represents the density of the 
predator at time t.  

 

If α < 0 , β > 0 , γ > 0 , δ < 0 .................. (5.2) 
 
Then (-α/β, -γ/δ) is the only positive 

equilibrium point of the system (5.1). All other 
solutions are periodic and lie on closed curves 
surrounding the equilibrium point (x*, y*). 

If we apply Mickens discretization scheme, 
the resulting difference equation possesses 
solutions that either spiral in towards the 
equilibrium point (x*, y*) or spiral out of the 
equilibrium point (x*, y*). 

In [16], the author employed a discretization 
scheme attributed to W. Kahan that produces a 
difference equation whose solutions stay on 
closed curves. 

He proposed the following discretization 
scheme: 

 










+++
δ

+++
γ

=
−+

+++
β

+++
α

=
−+

))ht(y)t(x)t(y)ht(x(
2

))t(y)ht(y(
2h

)t(y)ht(y

))ht(y)t(x)t(y)ht(x(
2

))t(x)ht(x(
2h

)t(x)ht(x

 

 .................................. (5.3) 
 
Which yield the difference system;  
 


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












δ
−

γ
−

+
δ

+
γ

+
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β
−

α
−

+
β

+
α

+
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)]n(x
2
h

2
h1[

)]1n(x
2
h

2
h1[

)n(y)1n(y

)]n(y
2
h

2
h1[

)]1n(y
2
h

2
h1[

)n(x)1n(x

 ...... (5.4) 

 
Note that the discretization (5.3) differs from 

all classical discretization schemes. It replaces 
the nonlinear term x(t)y(t) by (1/2) (x(t+h) 
y(t)+x(t) y(t+h)) while it is replaced by (1/2) 
(x(t+h) y(t+h) + x(t)y(t)) in the standard 
trapezoidal rule and by: 

(1/2) (x(t+h) + x(t)) (y(t+h) + y(t)) in the 
midpoint rule. 

To explain Kahan’s scheme (5.3) works 
while most of other numerical schemes produce 
spiraling solutions, the author in [16] observed 
that for systems of differential equations in the 
plane, the situation where all trajectories in the 

x2(t)     x(t) x(t+h) 
y2(t)     y(t) y(t+h) 
 
y(t) x(t)  x(t) y(t+h) 

 
x(t+h) y(t) 
 

x(t) y(t) 
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phase spaces are closed curves in nongeneric, 
i.e., atypical. Hence in this case any small 
perturbation of the right-hand side may change 
the closed curves into spirals. The effect of 
numerical integration amount to changing the 
system being solved into a nearby system whose 
solutions would typically spiral.  

There is, however, a class of differential 
equations in the plane where closed curves are 
typical. This is the class of canonical Hamilto-
nian systems of the form; 

 










∂
∂

=

∂
∂

−=

x
H

dt
dy

y
H

dt
dx

 ........................................... (5.5) 

 
Where H=H(x,y) is a Hamiltonian function 

[17]. The most important of system (5.5) is that 
is trajectories are the level curves of the 
Hamiltonian function H. Moreover, if all 
trajectories of system (5.5) are closed then all 
nearby Hamiltonian systems also have closed 
trajectories. We also observe that the flow φh 
induced by system (5.5), where φh(x(t),y(t)) = 
(x(t+h), y(t+h)) is an area-preserving map. 
Hence we should look for a numerical scheme 
that is also area-preserving. 

Such numerical schemes are called canonical. 
This precisely what Kahan’s scheme (5.3) 
achieves? Now, according to KAM theory[17], a 
canonical numerical method applied to a 
canonical Hamiltonian system preserves the 
property of closed curves. It is straightforward 
to verify that the system (5.1) is not Hamiltonian 
since its vector field (f,g) is not divergence free, 

i.e., 
y
g

x
h

∂
∂

+
∂
∂  fails to be identically zero, where 

f(x,y) = αx + βxy and g(x,y) = γy + δxy. 
However, by the change of variable ξ = lnx, η = 
ln y, system (5.1) becomes; 










δ+γ=
η

β+α=
ξ

ξ

η

e   
dt
d

e   
dt
d

 ....................................... (5.6) 

Observe that system (5.6) is divergent free, 

i.e. 0
y
g~

x
f~

=
∂
∂

+
∂
∂ , 

Where ηβ+α=ηξ e  ),(f~ , ξδ+γ=ηξ e  ),(g~ . 
The corresponding Hamiltonian function of 

(5.6) is given by )e(M )e(N),(H~ ηξ +=ηξ , where 

N(z) is the antiderivative of 
z

z δ+γ  and M(z) is 

the anti derivative of 
z

z β−α−  .  

Hence ξξ δ+ξγ= e    )e(N , ηη β−ηα= e  -  )e(M .  
Observe that the trajectories of systems (5.6) 

lie on the level curves of H~  in the (ξ, η) plane. 
This implies that the trajectories of the system 
(5.1) lie on the level curves of the function:  

 

yylnxxln
)yln,x(lnH~)y,x(H

β−α−δ+γ=
=  ........... (5.7)  

 

Observe that system (5.1) can be written in 
the following noncanonical Hamiltonian system; 
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



∂
∂

σ
=

∂
∂

σ
−=

x
H

)y,x(
t

dt
dy

y
H

)y,x(
1

dt
dx

................................ (5.8)  

Where σ(x,y) = 1/xy. 
 
A Kolmogorov Model of Cooperative Systems  

In [13], Robert may suggested the following 
differential system to model a cooperative 
system of two species with densities x(t) and 
y(t):  
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
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













α+β

−=





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


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)t(x
)t(y1)t(yr

dt
dy

)t(y
)t(x1)t(xr

dt
dx

22
2

11
1

 ............... (6.1) 

Where r1,r2,α1, β1, α2, β2 are positive numbers. 
Model (6.1) it is known that if: 
 α1α2 < 1, then system (6.1) has globally 
asymptotically stable positive equilibrium point 
(x*,y*) [6]. Although the discretization in (3.2) 
and (3.3) produced a dynamically inconsistent 
difference equation for Model (2.1), it has been 
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effective in dealing with Model (6.1)[7]. As in 
(3.2), we consider a modification of system (6.1) 
to a system of picewise-constant argument  
 

 
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 ............ (6.2)  

 

Where  t  denotes the greatest integer in t. 
Integrating both side of (6.2) on [n , n+1)  

And letting t → n+1 yields the difference 
systems: 
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r

r

1

r

r

2

2

1
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 ........... (6.3)  

 

Where n ∈ Z+, and R1(n) = β1+ α1 y(n),  
R2(n) = β2+ α2 x(n) . It can be shown that all 
positive solutions of Eq. (6.3) are bounded away 
from zero. Moreover, if α1 α2 < 1, then all 
positive solutions of Eq.(6.3) are bounded 
above[7].  

Now, if α1 α2 < 1, then there exists a positive 
equilibrium point (x*, y*) which satisfies the 
equations:  

 







β−=−α

β−=α+−

 yx
yx

2
**

2

1
*

1
*

 ................................ (6.4)  

 

The linearized system around (x*,y*) has the 
coefficient matrix: 

 










−α
−α

=
−−

−−

22

11

rr
2

r
1

r

e)e1(
)e1(e

B  ............. (6.5)  

 

It is easy to verify that matrix B satisfies the 
Schur-Cohn criterion. Hence the equilibrium 
point (x*,y*) is (locally) asymptotically stable. 

Indeed, Gopalsamy and Liu[7] proved that 
(x*,y*) is globally asymptotically stable. Hence 
(6.3) is dynamically consistent with the 
differential system (6.1)  
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  الخلاصة
) القياسية(ائق المتقطعة لقد لوحظ لمدة من الزمن أن الطر

المعيارية للمعادلات التفاضلية غالبا ما تنتج معدلات فروق لا 
تتشارك معها بالديناميكية، والمثال التوضيحي هـو المعادلـة   

  -:التفاضلية الشائعة
)x1(x

dt
dx

−β=  

المتقطعة تنـتج معـادلات فـروق    ) Euler's(خطة اويلر
   .شائعة

))n(x1)(n(x)1n(x −µ=+  
والتي تمتلك بصورة واضحة ديناميكية مختلفة، مثلا لهـا  
تفرع دوري مضاعف بصورة فوضوية، طرق حل المعادلات 
الشائعة المتقطعة هي بتغيير المعادلات التفاضلية المعطاة إلى 
أخرى متقطعة بصورة ثابتة، ومـن ثـم نكامـل المعـادلات     

  .المحورة
تي ديناميكيتهـا  في بعض الأمثلة هذا ينتج معادلة فروق ال

مع ذلك في اغلب الأحيان فان . قريبة من المعادلات الأصلية
المعادلات المذكورة أنفاً ليست تكاملية دائما مع إن المـؤلفين  

ــائج ] 10، 9، 8، 7، 3، 1[ ــة النت ــا بدراس ــدون اهتمام يب
ولسنا هنا فـي موضـع نقـد لبحـوث     . للمعادلات التفاضلية

ت الفروق غير الخطيـة ذات  المؤلفين، منذ ذلك الحين معادلا
أهمية رئيسة بغض النظر إذا كانت أو لم تكـن ذات ارتبـاط   

ولكن ما نقوله حقيقة انه من وجهة نظر . بالمعادلات التفاضلية
  .التحليل العددي فان تلك الدراسة ذات أهمية اقل

هذا البحث يتضمن في ذاته المخططات العددية التي تنتج 
معادلات فروق التي ديناميكيتها مشابهة إلى القسـم المكمـل   

 Mickens [14]أغلب الطرائق الناتجة منسوبة إلى. المستمر
ــتقرار ( ــة للاس ــة المقارب ــى) الأنظم               Kahan [16]وال
  ).الأنظمة الدورية(

الجزء الأول يمثل عرض موجز  نظم البحث بالشكل الآتي
     الجـزء الثـاني أظهـر النتـائج الثابتـة لطريقـة      . للبحث

(Lotka-Volterra)  للأنظمة التفاضلية أما الجزء الثالث فهو
نظرة عامة لبعض الطرائق القياسية التي تستعمل بشكل واسع 
وإظهار قصورها، أما الجزء الرابع يقدم للقـارئ الأجـزاء   



Shawki a. M. Abbas  

 133 

ذات المخطط المتقطع غير  Mickensة من المقومة الضروري
 ـأما الجزء الخـامس فخصـص للنظـام التفا   . القياسي               ليض
ـــ  ــتخدام   (Lotka-Voltera)ل ــدوري باس ــع ال المتقط
لقد تبين أن حل معـادلات الفـرق   . Kahan’s [16]مخطط

. الناتجة يقع على منحني مغلق حول نقطة موجبـة متوازنـة  
 (Kolmogorov)شـاهد الأنمـوذج   وفي الجزء السـادس ن 

] 7[، هذا الأنموذج الذي قطَّـع فـي  ]13[مستمر لنظام مساعد
مستخدمين المناقشة على طريقة القطعة الثابتـة، للاسـتزادة   

 ].21[ينظر
 


