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Abstract
It has been observed for some time that the standard (classical) discretization methods of differential
equations often produce difference equations that do not share their dynamics Mickeng21]. An

illustrative example is the logistic difference equations % =bx(1- x).

Where x(t) represent the density of species A at timet, b is positive number, Euler’s discretization
scheme produces the logistic difference equation

x(nt1) = mx (n) (1-x(n)),

Which possesses a remarkably different dynamics such as period-doubling bifurcation route to
chaos. A more popular discretization method is to modify the given differential equation to another
with piecewise-constant arguments and then to integrate the modified equation. In some instance, this
produces a different equation whose dynamics is closed to its original differential equation. However,
oftentimes this is not the case. Nevertheless, many authors [1, 3, 7, 8, 9, 10] find it interesting to study
the resulting difference equations. This is not a criticism of these author’s research, since the study of
nonlinear difference equations is of paramount importance regardiess of whether or not they have
connections with differential equations. But what we are actually saying is that from the point of view
of numerical analysis such study is of less importance. This paper itself with those numerical schemes
that produce difference equations whose dynamics resembles that of their continuous counter-parts.
The most fruitful methods are those of Mickeng[14] (for asymptotically stable systems) and of
Kahan[16] (for periodic systems).

The paper is organized as follows. Section 2 establishes the basic stability results for Lotka-Volterra
differential systems. Section 3 surveys some classical discretization methods that are widely used and
show their shortcomings. Section 4 provides the reader with essential intgredients of Mickens
nonstandard discretization scheme. In section 5, we discretize a periodic Lotka-Volterra differential
system using Kahan's scheme[16]. It is shown that the solutions of the resulting difference equation lie
on closed curves surrounding the positive equilibrium point. In section 6, we consider a Kolmogrove
continuous model of cooperative system[13]. This model was discretized in[7] using the method of
piecewise-constant argument. Surprisingly, the resulting difference equation is dynamically consistent
with its continuous counterpart.

Stability of Lotka - Volterra Differential vice versa. The third and last type is predator-
Equations prey or host-parasite relationship. If A is the

Consider two species A and B. Then we have prey (host) and B is the predator (parasite), then
three types of relationship between them. The the presence of B produces a negative effect on
first type is competition, in which A and B the growth of A, while the presence of A

competes for common resources such as food, produces positive effects on the growth of B K.
living space, etc. Here the presence of B Gopalsamy[5].
adversely affects the growth of A and vice versa. Now, let x(t) be the density of species A at

The second type of relationship between A and time t , and y(t) be the density of species B at
B is cooperation, where the presence of B timet K. Gopalsamy[6]. Then the growth rate of
produces positive effects on the growth of A and
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species A and B can be modeled by the
following system of differential equations:

?j__x(t)[r a x(t) - aﬂy(tnT

dy-y(mr a,x(1) - azzy(mi)

Equation (2.1) is often referred to as a Lotka
Volterra system, was introduced by Volterrain
1931[21] and by Lotka in 1920 [12]. Here, rq,
and r represent intrinsic growth (or decay) rate
for species A, and B respectively, while a1, a»
represents the negative effects of squabbles
among members of the same species A, and B,
respectively. Finally, a;» represents the effect on
the growth of species A from species B, and ay;
represents the effect on the growth of species B
from species A. It is now evident that &3 > 0 and
a2> 0. However, for the signs of &, and a1, we
have three cases:

Case|: Competitive species. a12> 0, an > 0.
Case | l: Cooperative species: a2< 0, ap; <O0.
Case |11: Predator-prey species: a;2> 0, an < 0
ora;<0,8:>0

-ay2 X(t) y(t) < 0 The presence of B produces
anegative effect on the growth of A.

-a1 X(t) y(t) > 0 The presence of A produces
a positive effect on the growth of B.
If wewriteeq.(2.1) in the form

dx dy _
—=f(x,y), a—g(x.y)

dt

Then we say that (x y') is an equilibrium
point if f(x y) =g(X',y") = 0. The equilibrium
point (x', y) is sad to be stable if for any open
neighborhood U of (x', y') there exists an open
neighborhood V of (x', y') such that if (Xo, yo) 1
V then:

(X (t, Xo), Y(t, yo)) T U for al t > 0. If in
addition, It(i@ry(x(t,xo),y(t,yo)):(x*,y*) for al

(Xo, Yo) in an open neighborhood W of
(x",y), then (x',y) is said to be asymptotically
stable if W = R? then (X', y) is said to be
globally asymptotically stable.
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Observe that if system_ (2;1) possess a
positive equilibrium point (X, y) then it must
satisfy the equations,

X F ALY T s (2.2)
AuX F85Y T, e, (2.3)
Hence Cramer’s Role
— ey, - Na, Yy = rd - hay (2.4)
ay185, - Q1585 81185, - A8y

We are in a position to state the main stability
result for system (2.1).

Theorem [2]

Suppose that system (21) has an
asymptotically stable positive equilibrium point
(x',y) then (x', y) is globally asymptotically
stableif a;1> 0, &> 0.

Classical Discretization

There are numerous discretization schemesin
numerical analysis literature. The simplest
numerical scheme is the forward Euler in which

dx/dt is replaced M and dx/dt is

replaced by

w , Where h is the step

size of the numerical method. Making this
replacement in eq.(2.1) and letting t = nh, x(t) =
x(nh) = x(n), and y(t) = y(nh) = y(n) yield the
difference system;

X(n+1) =x(M[1+15h- ahx(n)- a,hy(m)]
y(n+1) = y(M[1+rh- ahx(n) - ahy(n)]

Observed that the dynamics of Eq. (3.1)
differs form that of Eq. (2.1) and for some
parameter values may exhibit chaotic behavior.
Hence, the search for a better numerical scheme
continues. Another popular method is to
consider Eq. (2.1) with a piecewise constant
arguments [22] asfollows:
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. ..
o =X ax(@0- a,y(@l;
& _ !
dt

y(O[r, - ayx(&0 - azzy(él)]:i:)

Where 0 < n <t < n+l, and ¢ is the greatest

integer in t. Integrating both sides of Eq. (3.2)
yields;

X(t) = x(n) explr, - a,x(n) - a,y(n)] i
y(t) = y(n) explr, - a,x(n) - a,y(M)]p... (3.3)
tT [n,n+1)

If welett — n+1in the preceding system, we
obtain the following system of difference
eguations.

X(n +1) = X(n) eXp[rl - allx(n) - alzy(n)] l;J
y(n+1) = y(n) explr, - 2,x(n) - a,y(M]h

System (3.4) has been investigated by
Krawcewicz and Rogers [10] for the case of
cooperative systems (a2 < 0, a1 < 0) and by
Jiang and Rogerg[9] for competitive systems
(212> 0, @1 > 0). In both cases, it was shown that
system (3.4) may exhibit a dynamical behavior
quite different from its continuing counterpart
(2.2).

In spite of its deficiency, system (3.3) has
been given a lot of attention by severa authors
including Hofbauer[8], Dohtani[3].

Nonstandard Discretization Schemes

One of the main aims of numerical analysisis
to find a numerica scheme that produces
difference equations that exhibits the same
gualitative  behavior as its continuous
counterpart (differential equations). We say that
a difference equation is dynamically consistent
with its differential equation if they both posses
the same dynamics such as stability, Bifurcation
and chaos. In [14], Mickens developed
successful nonstandard discretization schemes
that produce what every numerica anayst
dreams about, namely dynamically consistency.
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Here pargraf we adapt Mickens method to the
setting of biologica models mainly of Lotka-
Volterra type. To illustrate Mickens genera
scheme, we start with a very simple example,
the logistics differential equation:

dx

o =X(t)(@- bX(L)) coorererereenereeeeen 4.2
Integrating EQ. (4.1) fromt to t+h yields
x(t+h) = ‘fx(t) ................... (4.2)
1+ Hx(t

We now let t = nh, and x(nh) = x(n) in (4.2).
Hence, we have
e”x(n)
e’ -1
a

Observe that the solutions of Eg. (4.1) and
Eq. (4.3) are equa on Z*, regardless of the value

ah_
of the step size h setting j (h) =~

x(n+1) =

1+(

)box(n)

Eq. (4.2)

may be written in the form:

x(t+h)- x(t)
i (h)

Notice that (4.4) is similar to the difference
equation obtained by forward Euler's method
with two maor differences. (i) h in the
denominator of the left hand side is now
replaced by a function of h, ¢(h) , (ii) the term
x?(t) is now replaced by x(t) x(t+h). The
resulting equation is given by;

= ax(t) - bx(t)x(t+h) ...(4.4)

_ 1+g (h)x(n)
~1+bj (N)x(n- 1)

We now formulize the above steps for the
general differential equation:

x(n+1)

dx _ u
- f (t,X(t),y(t)):{:,/
dy _ “



Step 1: Replace the derivative dx/dt by an
x(t+h)- x(t)

j1(h)
¢1(h) = h +O(h), and dy/dt by the expression of

the form Y= YO pere oah) = h +0(h).

expression of the form , Where

j 2(h)
Xt — x(t) x(t+h)
() —— Y y(t+h)
y(t) x(t) x(t) y(t+h)
X(t+h) y(t)
X(t) y(t)

Step 2: Vary the nonlinear terms by non-local
expressions for example,

For step 1, the main question is how to chose
the appropriate function ¢;(h) and ¢2(h). At this
time, we are unable to give a genera method for
the selection of these “denominator" functions.
However, we will demonstrate to the reader
some speciad techniques that produce
appropriate “denominator” function[11].

As for step 2, the selection of appropriate
expressions provides to be simple for
competitive and cooperative Lotka-Volterra
systems and most challenging for predator-prey
model[11]. While performing step 2, one should
make sure that solutions with non- negative
initial value must stay non-negative al the time,
i.e., the cone;

A?={(x,y):x3 0,y3 0} Must beinvariant.

Other Nonstandard Numerical Schemes
In this section, we consider the discretization
of the following simple predator-prey model;

—=ax+bxy
dt f
VR (5.1)
dy—gx+dxy'
t b

Where x(t) represents the density of the prey
a timet , and y(t) represents the density of the
predator at timet.
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fa<0,p>0,y>0,08<0

Then (-a/B, -y/3) is the only positive
equilibrium point of the system (5.1). All other
solutions are periodic and lie on closed curves
surrounding the equilibrium point (X, y').

If we apply Mickens discretization scheme,
the resulting difference equation possesses
solutions that e|ther splral in towards the
equilibrium point (x y) or spira out of the
equilibrium point (X, y).

In [16], the author employed a discretization
scheme attributed to W. Kahan that produces a
difference equation whose solutions stay on
closed curves.

He proposed the following discretization
scheme:

X(t+h)- x(t)

_a b U
h = E(x(t +h) +x(t)) + 5(x(t +h)y(t) +x(t)y(t+ h))-t

(R RN PR DR
T S ) )+ Y £ xOY(E )
.................................. (5.3)
Which yield the difference system;
[1+ ah + b2h y(n+1)] tj
x(n+1) =x(n) .- ah_ bh !
2 " .o (59)
[1+@+—x(n+1)] !
y(n+1) =y(n) L dh i
2 b

Note that the discretization (5.3) differs from
all classical discretization schemes. It replaces
the nonlinear term x(t)y(t) by (1/2) (x(t+h)
y(t)+x(t) y(t+h)) while it is replaced by (1/2)
(x(t+h) y(t+h) + x(t)y(t)) in the standard
trapezoidal rule and by:

(1/2) (x(t+h) + x(t)) (y(t+h) + y(t)) in the
midpoint rule.

To explain Kahan's scheme (5.3) works
while most of other numerical schemes produce
spiraling solutions, the author in [16] observed
that for systems of differential equations in the
plane, the situation where all trgectories in the
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phase spaces are closed curves in nongeneric,
i.e, atypica. Hence in this case any small
perturbation of the right-hand side may change
the closed curves into spirals. The effect of
numerical integration amount to changing the
system being solved into a nearby system whose
solutions would typically spiral.

There is, however, a class of differentia
eguations in the plane where closed curves are
typical. This is the class of canonical Hamilto-
nian systems of the form;

dx __THa
d Tyt
........................................... (5.5)
&y _TH |
dt Tx p

Where H=H(x,y) is a Hamiltonian function
[17]. The most important of system (5.5) is that
is trgectories are the level curves of the
Hamiltonian function H. Moreover, if all
tragjectories of system (5.5) are closed then all
nearby Hamiltonian systems also have closed
trajectories. We also observe that the flow on,
induced by system (5.5), where on(x(t),y(t)) =
(x(t+h), y(t+h)) is an area-preserving map.
Hence we should look for a numerical scheme
that is also area-preserving.

Such numerical schemes are called canonical.
This precisely what Kahan's scheme (5.3)
achieves? Now, according to KAM theory[17], a
canonical numerica method applied to a
canonical Hamiltonian system preserves the
property of closed curves. It is straightforward
to verify that the system (5.1) is not Hamiltonian
since its vector field (f,g) is not divergence free,

1,79 tails to beidentically zero, where
ix Ty

f(x,y) = ax + bxy and g(x,y) = gy + dxy.
However, by the change of variable & = Inx, n =
Iny, system (5.1) becomes,

i.e,
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Observe that system (5.6) is divergent free,

Where f (x,h)=a +be", §(x,h)=g+de*.
The corresponding Hamiltonian function of
(5.6) is given by H(x,h) = N(e*) + M(e") , where

N(z) is the antiderivative of c+dz
z

and M(2) is

-a-bz
. :

Hence N(e*)=gx+de*, M(e")=-a h- be".
Observe that the trajectories of systems (5.6)

lie on the level curves of H in the (&, m) plane.
This implies that the trajectories of the system
(5.1) lieon thelevel curves of the function:

the anti derivative of

H(x,y) = H(Inx,Iny)
=glnx+dx- alny-by

Observe that system (5.1) can be written in
the following noncanonical Hamiltonian system;

&__ 1 THu
dt s(xy) Tyt

/ eee e e 5.8
&t 9
da  s(x,y) X b

Where o(x,y) = 1/xy.

A Kolmogorov Modd of Cooper ative Systems
In [13], Robert may suggested the following

differential system to model a cooperative

system of two species with densities x(t) and

y(t):

ox(t) ou
+alY(t)z|

——r ()gl -
o|

dy_ _y@® 9
B 5 brra (],

Where ry,r2,01, B1, a2, B2 are positive numbers.
Model (6.1) it is known that if:

a0 < 1, then system (6.1) has globally
asymptotically stable positive equilibrium point
(x',y) [6]. Although the discretization in (3.2)
and (3.3) produced a dynamically inconsistent
difference equation for Model (2.1), it has been



effective in dealing with Model (6.1)[7]. As in
(3.2), we consider a modification of system (6.1)
to asystem of picewise-constant argument

dx _ RO oU
" ”? b, +a,y(@0 5!
= ny(t )agl

Cyo o
b,+a x(etu)a)
Where ¢t denotes the greatest integer in t.
Integrating both side of (6.2) on [n, n+1)
And letting t — n+1 yields the difference
systems:

x(n+1) = r1x(n) _i_l
T |
ER (n X( )1/ N
y(n+1) = erzy(n) : ........... .
@
R ( ) b
Where n T Z', and Ry(n) = B+ a1 Y(n),

Ra(n) = B2t a2 x(n) . It can be shown that all
positive solutions of Eq. (6.3) are bounded away
from zero. Moreover, if a; ax < 1, then al
positive solutions of EQ.(6.3) are bounded
above[7].

Now, if a; a2 < 1, then there exists a positive
equilibrium point (x’, y) which satisfies the
equations:

- x +ayy =-b,§l

a,x -y =-b,

The linearized system around (x',y’) has the
coefficient matrix:

g=g ¢
§a2(1- e ")

It is easy to verify that matrix B satisfies the
Schur-Cohn criterion. Hence the equilibrium
point (xX,y') is (locally) asymptotically stable.

Indeed, Gopalsamy and Liu[7] proved that
(x",y) is globally asymptotically stable. Hence
(6.3) is dynamicaly consistent with the
differential system (6.1)

1- )0
A © QL (6.5)
e 2

1%}
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