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Abstract 

The standard classical discretization methods of differential equations often produce difference 
equations that do not share dynamics with their continuous counterparts; Recently,[4] has 
developed successful non-standard discretization schemes that produce dynamical consistency, 
which numerical analysis value highly. Many authors have adapted these methods to various 
biological models. We reviewed a non-standard discretized biological model of a Lotka-Volterrs 
Predator-Prey system in a general form and discussed the stability analysis of its periodic solutions. 
We also discussed a numerical example of this analysis using the non-standard discretized Predator-
Prey model the name of executed program for drawing and calculation is “MATLAB 7.0”. 

 
Introduction 

A wide variety of numerical schemes are 
available to solve the dynamical systems that 
cannot be solved analytically. The standard 
classical discretization methods involved in 
these numerical schemes often produce 
systems of difference equations that do not 
inherit the dynamical properties of their 
continuous counterparts. When they exist, 
stability of fixed points and periodic solutions 
are the most important properties of 
continuous dynamical systems and discretized 
model. Thus, a discretization methods 
involved in numerical scheme is useful if the 
solution of that scheme is exact for at least a 
subclass of original system, if it preserves the 
dynamics, and if it conserves energy like its 
continuous analogue. 

Mickens developed non - standard 
discretization methods that have proved to be 
very fruitful, producing numerical schemes 
that are highly desirable because they meet the 
criteria above. These methods are relatively 
easy to implement and have much greater 
computational efficiency than standard 
numerical methods. The relative importance of 
advection and biological and chemical reaction 
is directly incorporated into the corresponding 
numerical scheme, large time steps can be 
taken without affecting the accuracy of the 
numerical solutions. Generally, non-standard 
methods can be used in numerical schemes to 
construct highly accurate algorithms for 
solving a varity of stiff dynamical systems,[8]. 

Many researchers [Dohtani, 1992; Gopalsamy 
& Liu, 1999; Jian & Rogers, 1987], applyied 
these techniques to obtain numerical solutions 
to the various differential equations that rise in 
interesting problems in the natural and 
engineering sciences. [Al-Kahby al, 2000] and 
his Co-workers have used non-standard 
discretization methods with some biological 
models, they applied this approach to 
discretize the competitive and cooperative 
models of predator-prey. In that work, they 
consider the simple predator-prey model: 
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If β1< 0, β2> 0, α1> 0 and α2 < 0, then 
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equilibrium point of the system and all other 
solutions are periodic and lie on closed curves 
surrounding the equilibrium point (u*,v*). 
They showed that if applying Mickens' 
discretization method to above predator-prey 
model, the resulting difference equations 
possess solutions that either spiral in toward 
the positive equilibrium point (u*,v*) or spiral 
out of it. As defined elsewhere [Al-Kahby al, 
2000] we say that a difference equation is 
dynamically consistent with counterpart 
continuous dynamical system if they both 
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posses the same dynamic with respect to 
stability. Using this discretized system, can 
demonstrate the stability of periodic solutions 
around the positive equilibrium points (such as 
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continuous and difference systems. We proved 
this by preserving area in non-canonical 
Hamiltonian systems. Finally, based upon our 
analytical results, we discuss numerical 
example to demonstrate the stability of 
periodic solution. 
 
Elementary Bifurcation of Non-standard 
Discretization Models 

In this section we construct non-standard 
discretization models for some elementary 
example to demonstrate dynamic consistency 
between the discretized models and the 
original systems. 

 
Transcritical Bifurcation 
 

Our first example is the famous one–
parameter logistic differential equation  
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It is clear that 0* =x and 
b

x µ
=*  are the 

two fixed points for (2). Taking bxf x 2−=′ µ , 
we have µ=′xf  for 0* =x  and µ−=′xf  for 

b
x µ

=*  . These two fixed points have different 

stabilities regardless of the value of b ≠ 0 and 
they exchange stability at the bifurcation point. 
There for, eq.(2) has a transcritical bifurcation 
for the value of μ = 0 . 

Applying Mickens’ non-standard 
discretization method [Mickens, 2000] to 
eq.(2) we obtain  
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The h in Euler’s method is replared here by 
Φ (h), a function of h, for details on special 
techniques that produce an appropriate Φ(h) 
refer to, [3]. 
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1 + b Φ(h)xn ≠ 0 
 

For details on special techniques that 
produce an approximate φ(h) , refer to [ Liu & 
Elaydi,2001]. Clearly eq.(3) has the same  
fixed points as eq.(2). Let  
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first fixed point 0* =x  , we have 
)(1)0,( hH x µϕµ +==′   and hence,  

1)0,0( ==′xH , 1)0,( <′ µxH , for μ < 0, and  
1)0,( >′ µxH  for μ > 0 (note that φ(h) > 0 ). For 

the second fixed point 
b
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μ < 0. This means that μ = 0 is the bifurcation 
value. The exchange of stability leads to 
Transcritical bifurcation and the bifurcation 
diagram is the same as eq.(2) see Fig.(1). 
Therefore, eq.(2) and eq.(3) concide in 
bifurcation value and type. 
 
Saddle-Node Bifurcation 

Consider 
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Equations (4) and (5) have the same fixed 

points 0* =x  for μ = 0 and  for 

different signs of  μ (≠ 0) and b, and hence 
they have the same saddle–node bifurcation 
diagrams for  μ = 0. see Fig.(2). Although we 
could present more such examples. 
 
Numerical Example:- 

Consider the predator-prey model (1) 
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Hence, u(t) represent the density of the 
predator  at time t and v(t)  represent the 
density of prey at time t , nothing that in the 
Lofka - Volterra predator - prey system 
β1<0,β2>0, and α2 < 0, it follows that the only 

positive equilibrium point ),(
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is non-hyperbolic with eigenvalues 
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known to be stable, [3] and surrounded by 
nested closed curves (periodic orbits). This 
model can be written as:  
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Where the Hamiltonian H, described by :- 
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Now consider the non-standard discretized 
model of (1). The equation corresponding to 
equation 
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for this model are: 
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For simplicity we take β1=-1, β2=1,α1= 1 

and α2= -1, so the positive fixed point w* is 
(1,1), so we may choose φ1(h) = 1- e-h and 
φ2(h) = eh-1. Figs. (3-b to 3-e) show periodic 
solutions for different values of h with the 
same initial condition (1.2,1.2). Note that 
starting from (1.2,1.2), the amplitudes are the 
same, but different values of h yield different 
time periods. The time series solutions, in 
these figures show that, for the same initial 

conditions, h and the larger time period are 
inversely correlated. For example, in Fig (3-b) 
with h=0.1 and initial condition (1.2,1.2), the 
time period is almost 60. With the same 
starting point (1.2,1.2) for h= 0.5 this time 
period is 15 and for h=1 it is 5 (see Figs. (3-c 
and 3-d)). As we can see in Fig. (3-f), these 
periodic solutions break down. Indeed all 
periodic solutions in the first quadrant are 
dependent upon the two elements h (the 
variable in functions φ1 and φ2) and the initial 
condition. The variable h may range through 
the interval (0, ln(3+2 2  )) and for these 
values of h, the initial condition for u = v 
ranges through the interval (1,7). If we fix h, 
then Figs. (4-b to 4-e) illustrate different 
amplitudes for different values of initial 
conditions. For example, in Fig.(4-c) with 
h=0.1 and starting point (1.5,1.5), the 
amplitude is 1.4 while it is 3.5 in Fig (4-d), for 
the same h and starting point (2.5,2.5). In Fig. 
4-b we note that even in small neighborhoods 
of the fixed point (1,1), the periodic solution 
can be predicted. Here, the starting point is 
(1.05,1.05), which is close to the fixed point. 
As shown in Fig.(4-a), there is no periodic 
solution for starting point (1,1) with values of 

)2,0(∈h . Finally, the relation between h and 
the initial condition necessary to preserve the 
periodic solutions in the neighborhood of (1,1) 
is shown in Fig.(5). In this figure the area 
between the curve and the line x=1 is the 
region on which the periodic solutions are 
preserved using the non-standard discretization 
model, for the predator-prey model (1). These 
results are not only consistent with other 
similar results [Gander](see2), but also 
produce a larger region on which periodic 
solutions exist by using our discretized model. 
 
Conclusion  

In our model problem, we used Micken’s 
method to discretized the general form of the 
Lotka–Volterra predator–prey system. This 
system was written as a canonical  
Hamiltonian system. 

The stability of the periodic solutions of our 
model problems in both the continuous system 
and its discretized counterparts. This stability 
analysis completes the work of other authors, 
[1]. All of these results show that Mickens' 
non-standard discretization methods produce 
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discretized systems that inherit the 
corresponding dynamical properties of the 
original continuous systems. The phase-
portraits in the (u,v) plane, as illustrated in 
Figs. (6-a and 6-b), show additional periodic 
solutions to system for fixed value of h=0.1 
with different initial conditions. These figures 
show that the first quadrant periodic solutions 
determined by using the non-standard 
discretization model are smooth curves, are 
more accurate and exist in a large region than 
the similar ones found by other discretization 
methods, [2]. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. (1): Transcritical bifurcation in systems 
(2) for different values of μ with b = 1. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.(2): Saddle–node bifurcation in 
system(4)or(5) for different value μ with           

b = 1. 
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Fig. (3): Time series solutions for different values of h. In all these figures we began with the 
initial condition (1.2,1.2). The values of h and the larger time period are inversely correlated.   

(a) study state solution for h=0. The value of h is 0.1, 0.5, 1 and 1.2 in figures (b) to (e), 
respectively. In (f), h = 2. 
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Fig. (4): Time series solutions for h = 0.1 with different initial conditions. Differing amplitudes 
are shown in figures (b) to (e) for initial conditions (1.05,1.05), (1.5,1.5), (2.5,2.5) and (5,5) 

respectively. The starting point in (a) is (1,1). 
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Fig.(5): The area between the curve and the 
line x = 1 is the region on which periodic 

solutions are preserved using the                
non-standard discretization model for 

predator-prey model (1). 
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Fig.(6): Phase-portraits in the (u,v) plane of 
the discretized system for varying initial 

conditions and fixed h=0.1. Smooth periodic 
solutions illustrate the accuracy of the 
solutions of this discretized system for 

system(1). 
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  الخلاصة 
أن المعادلات التفاضلية غالباً ما تنتج معادلات مختلفة 
عند استخدام إحدى الطرائق المتقطعة القياسية الكلاسيكية 

استمرارية  التي لا تتشارك ديناميكيا مع نظيراتها ذات
       طور بنجاح أسلوب وحديثاً. الحركة

)schemesnon-standard discretization(كون  والذيي
تكون فيها ) Dynamical Consistency( ة متوافقةحرك
  .التحليلات العددية كبيرة دقة

لقد وظف العديد من المؤلفين هذه الطرائق بوصفها 
وفي هذا البحث قام . موديلات لتطبيقات حياتية مختلفة

(a) 

(b) 
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      الباحث بمراجعة البحوث السابقة في مجال
)biological model non-standard discretizatized( 

 )Lotkca-Volterra predator-prey system(والخاصة بنظام
) Stability analysis(بشكل عام ومناقشة تحليل الاستقرار

وكذلك تم تطبيق عدد من الأمثلة لاستخدام . للحلول الدورية
)non-standard discretized predator–prey model( 

ومناقشة النتائج المستحصلة، أما اسم البرنامج الذي استخدم 
  ".Matlab 7.0"في الرسم و الحساب فهو


