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Abstract 

Security is a broad topic and covers a multitude of sins. In its simplest form, it is concerned with 

people trying to access remote services that they are not authorized to use. Cryptology is the science 

and studies of systems for secrete communication. It consists of two complementary fields of study: 

Cryptography and Cryptanalysis. The application of genetic algorithm in cryptanalysis of knapsack 

cipher is suggested by Spillman. This paper considers a new approach to cryptanalysis knapsack 

cipher based on the representation of the population as a probability distribution over the set of 

solutions; this is called compact Genetic Algorithm (cGA). Tests have been presented to clarify the 

results obtained. The results show that cGA achieve the breaking of the ciphertext. Moreover, the 

comparison among Spillman results, simple GA (sGA) and our results are also provided. The 

results show that cGA is worth to be considered for the attack of trapdoor 0-1 knapsack cipher. 
 

Keywords: compact genetic algorithm (cGA), knapsack cipher, Merkle-Hellman knapsack cipher, simple 

genetic algorithm (sGA),  

 

Introduction 

Data security in computer network is 

becoming increasingly important owing to the 

expanding role of distributed computation, 

distributed databases, and telecommunication 

applications such as electronic mail and 

electronic funds transfer [1]. So, it appears the 

need to develop a scheme that guarantees to 

protect the information from the attacker. 

Cryptology is at the heart of providing such 

guarantee. Cryptology is the science of 

building and analyzing different encryption 

methods. Cryptology consists of two subfields; 

Cryptography & Cryptanalysis. Cryptography 

is the science of building new powerful and 

efficient encryption and decryption methods. It 

deals with the techniques for conveying 

information securely. The basic aim of 

cryptography is to allow the intended 

recipients of a message to receive the message 

properly while preventing eavesdroppers from 

understanding the message. Cryptanalysis is 

the science and study of method of breaking 

cryptographic techniques i.e. ciphers. In other 

words it can be described as the process of 

searching for flaws or oversights in the design 

of ciphers [2]. 

This paper introduces a new evolutionary 

way to attack the Merkle-Hellman Knapsack 

cipher using Compact Genetic Algorithm 

(cGA). The idea behind Merkle-Hellman 

Knapsack algorithm is to encode a binary 

message as a solution to knapsack problem. 

The first application which uses the 

evolutionary optimization methods including 

GA in the cryptanalysis of knapsack cipher 

was suggested by Spillman in 1993 [2]. The 

goal of this GA is to translate each number 

into correct Knapsack, which represents the 

ASCII code for the plaintext characters. Then 

in 2006, Garg P. et al. improved the efficiency 

of Spillman's Genetic Algorithm attack on 

Knapsack cipher[3]. They take certain 

restrictions on the encoding algorithm. These 

are: only ASCII code is encrypted, the 

superincreasing sequence has only eight 

elements (one element for each bit in the 8-bit 

ASCII code), and plaintext has no more than 

100 characters length. They concluded that the 

efficiency of the GA attack can be improved, 

even more than Spillman's GA, by tuning 

several GA parameters. 

Recently, Abdul Halim et al. [4] proposed a 

binary Particle Swarm Optimization (PSO) 

algorithm for cryptanalysis of knapsack 

cipher.   

Of all the issues connected with GA  ِ  ِ s 

such as population size, genetic operators 

(e.g., selection, crossover, and mutation), and 

encoding methods, etc., that guarantee an 
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optimal solution quickly enough has been a 

topic of intense research [5] [6].  

Harik et al. [9] proposed the compact GA 

(cGA) as an estimation of distribution 

algorithm (EDA) that generates offspring 

population according to the estimated 

probabilistic model of parent population 

instead of using traditional recombination and 

mutation operators [10][11]. The cGA 

represents the population as a probability 

(distribution) vector (PV) over the set of 

solutions and operationally mimics the order-

one behavior of simple GA (sGA) with 

uniform crossover using a small amount of 

memory [8].  

The rest of the paper is organized as 

follows. Section 2 briefly describes the 

Knapsack cipher problem with examples. In 

section 3, the proposed compact GA with the 

algorithm is described. Section 4 presents the 

cGA as a cryptanalyzer. In section 5 results 

obtained from several test problems with a 

summary of the results, and the conclusion 

will be in section 6. 
 

Cryptography & 0-1 Knapsack Problem 

The knapsack problem is an example of a 

combinatorial optimization problem, which 

seeks to maximize the benefit of objects in a 

knapsack without exceeding its capacity. 

Knapsack problem is NP problem (non-

deterministic polynomial) problems which 

there are no known algorithms that would 

guarantee to run in a polynomial time [1].   

One of first knapsack cipher problem was 

proposed by Markle and Hellman in 1975 

which utilized a NP-complete problem for its 

security. The knapsack cipher problem is 

formulated as follows. 

Let us assume the values n21 MMM ,...,,  

and the sum S are given. Let it be necessary to 

compute values n21 bbb ,...,,  values, so that 

nn2211 bMbMbMS  ... . The values of 

coefficient b i can be equal 0 or 1. The 1 value 

shows that object will fit into the knapsack, 0 

value will not be in the knapsack. 

The Markle-Hellman knapsack cipher encrypts 

a message as a knapsack problem. The 

plaintext block transforms into binary string 

(the length of block has equal number of 

elements in the knapsack sequence). One value 

determines that an element will be in target 

sum. This sum is a ciphered message.              

Table (1) shows an example of solving the 

knapsack problem for the entry numbers 

sequence:2 5  13  21  42  and  84. 
 

Table (1) 

Example of Knapsack Encryption. 
 

 

 

 

 

 
 

The public/private key aspect of this 

approach lies in the fact that there are actually 

two different knapsack problems referred to as 

the easy knapsack and hard knapsack. The 

Markle-Hellman algorithm is based on this 

property. The private key is a sequence of 

numbers for a superincreasing knapsack 

problem. The public key is a sequence of 

numbers for a normal knapsack problem with 

the same solution. 

Easy knapsacks have a sequence of 

numbers that are superincreasing that is, each 

number is greater than the sum of previous 

numbers: 






1i

1j

ji aa   for i = 2,..,n (where ia  is 

ith element of the sequence). For example {2, 

5, 13, 21, 42, 84} is a superincreasing 

sequence but {1, 4, 3, 10, 9, 25} is not. The 

knapsack solution with the superincreasing 

sequence proceeds as follows. The target sum 

is compared with a greatest number in the 

sequence. If the target sum is smaller than this 

number, the knapsack will not fill, otherwise it 

will. Then the smaller element is subtracted 

from the target sum, and the result of the 

subtraction is compared with the next element. 

Such operation is done until the smallest 

number of sequence is reached. If the target 

sum is reduced to 0 values, then solution 

exists. In other case solution doesn't exist. For 

example, consider a total knapsack target sum 

is 104 and the sequence of weights is {2, 5, 13, 

21, 42, and 84}. The largest weight, 84, is less 

than 104, so 84 is in the knapsack. Subtracting 

84 from 104 leaves 20. The next number 42 is 

greater than 20, so 42 is not in the knapsack. 

The next weight 21 is greater than 20, so 21 is 

not in the knapsack. The next weight 13 is less 

 

Plaintext Knapsack sequence Ciphertext 

1 1 1 0 0 1 2  5  13  21  42  84 2+5+13+84= 104 

0 1 0 1 1 0 2  5  13  21  42  84 5+21+42 = 68  

0 0 0 0 0 1 2  5  13  21  42  84 84           =  84 
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than 20, so 13 is in the knapsack. Subtracting 

13 from 20 leaves 7. Continuing this process 

will show that both 5 and 2 are in the knapsack 

and the total weight is brought to 0, which 

indicates that a solution has been found. The 

plaintext that resulted from a ciphertext value 

of 104 would be 111001. The superincreasing 

knapsack is easy to decode, which means that 

it does not protect the data. Anyone can 

recover the bit pattern from the target sum for 

a superincreasing knapsack if the elements of 

the superincreasing knapsack are known. 

Markle and Hellman suggested that such a 

simple knapsack can be converted into a 

trapdoor knapsack which is difficult to break. 

The algorithm works as in Fig.(1): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.(1): Pseudo-code of trapdoor                           

0-1Knapsack cipher algorithm. 
 

The trapdoor sequence A could be 

published as a public key (encryption key). 

The private (secret) key for this cipher consists 

of a simple knapsack sequence A', so-called 

trapdoor, values m,w, w 1 . 

The encoding is done as follows. The 

message is divided into n bits block (each 

block contains as many elements as simple 

knapsack sequence). Values in the message 

block shows that the element will be in the 

target sum. The target sum of each block is a 

ciphertext. 

The decoding consists of the following. 

Each number of the ciphered message is 

multiplied through w 1  mod m and the result 

of this operation is plaintext [1]. 

Since the trapdoor 0-1 knapsack cipher 

problem is a NP problem, approaches such as 

dynamic programming, backtracking, branch 

and bound, etc. are not very useful for solving 

it. So, compact GA is used to prove that it is 

the best approach in obtaining solutions to 

problems traditionally thought of as 

computationally infeasible such as the 

knapsack cipher problem. 
 

Compact Genetic Algorithm (cGA) 

The Compact Genetic Algorithm (cGA) is 

similar to the PBIL (Population Based 

Incremental Learning) but requires fewer 

steps, fewer parameters and less of a gene 

sample [12]. 

The cGA manages its population as a 

probability vector (PV) over the set of 

solutions (i.e., only models its existence), 

thereby mimicking the order-one behavior of 

the sGA with uniform crossover using a small 

amount of memory [9]  [13]. 

Fig.(2) describes pseudo-code of the cGA. 

The values of PV   ,,1,1,0  iip l, wherel 

is the number of genes (i.e., the length of the 

chromosome), measures the proportion of “1” 

alleles in the ith locus of the simulated 

population [9][13]. The PV is initially assigned 

0.5 to represent a randomly generated 

population. In every generation (i.e., iteration), 

competing chromosomes are generated on the 

basis of the current PV, and their probabilities 

are updated to favor a better chromosome (i.e., 

winner). It is noted that the generation of 

chromosomes from PV simulates the effects of 

crossover that leads to a decor-relation of the 

population‟s genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.(2):Pseudo-code of the cGA. 

Step1. Select a simple knapsack superincreasing 

sequence of elements  n21 a'a'a'A  '   
 

Step2. Select an integer value m greater than the 

sum of all elements of the superincreasing 

sequence. 
 

Step3. Select another integer w that the 

gcd(m,w)=1, that's number m and w are 

reciprocally prime. 
 

Step4. Find the inverse of the w mod  1-w-m  

Step5. Construct the hard knapsack sequence  

A= w A' mod m, i.e. ii wa'a  mod m. 

Parameters.    n: population size       l: chromosome length 
 

Step1.    Initialize probability vector  

               for i := 1 to l do         p[i] := 0.5; 
 

Step2.  Generate two chromosomes from the probability  

             vector 

               a:= generate(p);          b:= generate(p) 
 

Step3.    Let them compete 

              winner, loser := compete (a, b); 
 

Step4.    Update the probability vector 

                for i:=1 to l do  

                      if   winner [i]    loser[i]   then 

                             if   winner[ i]  == 1  then p[i] := p[i] + 1/n; 

                               else p[i] := p[i] – 1/n ; 
 

Step5.   Check if the probability vector has converged. 

               Go to Step 2, if it is not satisfied. 
 

Step6.  The probability vector p[i] represents the final  

              solution. 
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In a simulated population of size n, the 

probability ip  is increased (decreased) by 1/n 

when the ith locus of the winner has an allele 

of “0” (“1”). If both the winner and the loser 

have the same allele in each locus, then the 

probability remains the same. This scheme is 

equivalent to (steady – state) pair-wise 

tournament selection [9]. The cGA is 

terminated when all the probabilities converge 

to zero or one. The convergent PV itself 

represents the final solution. It is seen that the 

cGA requires l * 2log (n + 1) bits of memory 

while the sGA requires l * n bits [9]. Thus, 

large population size can be effectively 

exploited without unduly compromising on 

memory requirements [13]. 
 

Compact GA as a Cryptanalyzer 

The cryptographer hopes that the security of 

0-1 knapsack depends upon the cryptanalyst 

being unable to break the message except by 

brute force – by trying all possible objects in 

the knapsack. For 8-bit strings, brute force 

would require trying 2
8

=256 bit strings. 

Cryptanalysis of the original knapsack 

encryption system exhibits one of the 

problems faced by encryption systems that are 

based upon difficult mathematical procedures. 

It turned out that the security of the knapsack 

cryptosystem was not equivalent to the 

solution of the knapsack problem; there was an 

unexpected cryptanalysis based upon the 

solution of an easier problem 

The cryptanalysis starts from cipher text, 

which has an integer form. Each number 

represents a target sum of hard knapsack 

problem. The goal of the compact GA is to 

translate each number into the correct 

knapsack, which represents the ASCII code for 

the plaintext characters. 

The size of the population n has range in 

between (10 to 100).  

The compact GA is implemented as an 

interconnection of the following modules: 
 

Initialization and Encoding 

The certain restrictions are defined on the   

encoding algorithm: 

(1) Only the ASCII code will be encrypted. 

(2) The superincreasing sequence will have 

l =8 elements; these number of elements 

guarantee that each character has a 

unique encoding (There are 256 ASCII 

codes and 8 elements length will allow 

to encrypt 2 8  characters). 

(3) Every field of the probability vector PV 

is initialized to 0.5. 
 

Random number generator  

The compact GA needs in every step two 

random numbers, each having a bitstring (0‟s 

and 1‟s) length of 8. The two individuals a and 

b (bitstrings of length 8 each) are generated. 

So, there are two identical chromosomes 

working in parallel, but using different initial 

seeds. 
 

Fitness Evaluator 

Based on the fitness function which is 

proposed by Spillman [1], given in Equation 1. 

The fitness value evaluates how the given sum 

is close to the target value for the knapsack. 

The value of the fitness function should be in 

the range of 0 to 1. Fitness value 1 indicates an 

exact match with the target sum for the 

knapsack. If the value of sum is greater than 

targets then it has a lower fitness value of 

chromosome, in this way it produces the 

infeasible solution. If the value of sum is less 

than target then it will produce a high fitness 

value and produce feasible solutions. Feasible 

solutions have a greater chance of being 

followed by the algorithm. 
 

Fitness = 














































6

1

2

1

1

1

MaxDiff

Sum-Target

Target

Sum-Target

              

 

Let M= {m 1 , m 2 ,…, m n }, m i    {0, 1} be   an 

arbitrary solution and the public key  

A= {a 1 , a 2 ,…, a n } 

 

Sum = 


n

1j

jj ma      ,     Target = 
j

ja          ,      

FullSum = 


n

1j

ja  

MaxDiff = max {Target, FullSum – Target} 

 
 

 

If Sum ≤ Target 

If Sum > Target 

...1 
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... 2 

Compete 

The Compete is a procedure that compares 

2 integers (meaning 2 bitstrings), a and b and 

has an output either '1' (if a > b), or '0'                   

(if a < b). The comparison depends on the 

Fitness Evaluators module. 
 

Probability Update  

As the population has n chromosomes, the 

probability vector PV must be able to be 

incremented or decremented by a minimal 

value of 1/n.  There is no need to represent the 

probability as the float number it actually is. 

As the probability has always values 

between '0' and '1' and can be written as the 

sum of the negative powers of 2, with '0' or '1' 

as coefficients, the probability vector contains 

the bitstring of these coefficients. 

Incrementing and decrementing it by the 

minimal value means to change at least one 

value of this bitstring. Formally speaking the 

p[i] is represented as follows: 

if    f a  ≥ f b  then 

                  if a[i] = 1 then  

                     p[i] = min (1, p[i] +
n

1
) 

                  if a[i] = 0 then 

                    p[i] = max (0, p[i] -
n

1
) 

         else 

                  if b[i] = 1 then  

                     p[i] = min (1, p[i] +
n

1
) 

                 if b[i] = 0 then 

                    p[i] = max (0, p[i] -
n

1
) 

So, the Probability Vector PV (p[i]) stores 

the bitstring that represents the probability. 

The operations that it needs to perform are 

increment and decrement the bitstring by one 

unit. 
 

Stop (Termination) Condition 

After executing the above mentioned steps, 

a new generation is created and the steps are 

repeated until the stop condition is reached. 

The algorithm will stop when the fitness 

function reaches to the value 1 or each field of 

the probability vector p[i] is equal to „0‟ or 

„1‟. 

 

 

Experimental Results 
This section presents simulation results and 

compares the compact GA with simple GA 

and Spillman's results, all in terms of solution 

quality and in the number of function 

evaluations taken. All experiments are 

averaged over 100 runs, but the best 6 runs are 

illustrated. 

The simple GA uses binary tournament 

selection without replacement, and uniform 

crossover with exchange probability 0.5. 

Mutation is not used, and crossover is applied 

all the time. All runs end when the population 

fully converges that is when all the individuals 

have the same alleles at each gene position.  

In compact GA the population's size (n) and 

the chromosome length (l) are set to 20-50 and 

8 respectively. The algorithm starts with 

probability register is initialized with 0.5, so 

that at the beginning, there are equal chances 

for every bit of the future chromosome to be 

either '0' or '1' at the end of the algorithm. The 

fitness function decides whether it's better to 

increase or decrease the entry in the 

probability register.  

The 8 elements (Spillman used 15 elements) 

sequence of hard knapsack problem (21031 

63093 16371 11711 23422 58555 16615 

54322) is used to encode 8 bits ASCII code. 

This sequence has been created from 

superincreasing sequence (1 3 7 13 26 65 119 

267), m equal to 65423 and w integer equal to 

21031 (w 1  = 5363). The MACRO word has 

been encrypted. The target sum (ciphertext) of 

the word is (65728 37646 100739 103130 

128821) [2].  

Table (2) and Table (3) illustrate the 

experimental results of compact GA and 

simple GA respectively with population size  

(n =25), where (F is the number of function 

evaluation taken until convergence for the 

various numbers of generations) and (% is the 

percentage of the search space), and it is 

calculated as follows: 

 

100*%
 size space searchtotal

econvergenc until gen. of no.*  s(n)chromosome of no.
  

 

where in cGA, the no. of chromosomes (n) is 

already equal to 2.  
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Table (2) 

Experimental Results with compact GA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table (3) 

Experimental Results with simple GA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average results of the two tables are 

illustrated in Table (4) and Table (5). 

Table (4) 

Average results of cGA. 

 

 

 

 

 

 

 

 

 

Table (5) 

Average results of sGA. 

 

 

 

 

 

 

 

 

 

 

The match between the two algorithms 

seems quiet different, and gives evidence that 

the two are doing roughly different thing and 

they are some how "not equivalent". Note, 

while the sGA has a memory requirement of 

n l bits, the cGA requires only lnlog 2 bits, 

and in the number of function evaluation the 

sGA requires  

 econvergenc until sgeneration of non . , 

while cGA requires only  

 econvergenc until sgeneration of no ..2  

In cGA experimental results Table (4) the 

average of the number of function evaluation 

is (8.1) with (3.1 %) of the search space, while 

simple GA (Table 5) costs (214) function 

evaluation times with (83.6 %) of the search 

space.  

The results shown in table 4 are compared 

and analyzed with Spillman's results Table (6). 

Spillman's algorithm always gives correct 

results. When comparing with our results in 

Table (4), we can show that cGA also gives 

the correct results and near to results as 

obtained by Spillman‟s.   

Table (6) 

Spillman's Results. 

 

 

 

 

 

 

 

 

 

The Spillman's algorithm Table (6) searches 

on average less than (2 %) of the space. The 

divergence of the result is explained that the 

area of possible results in Spillman's work is 
152  i.e. 32678 and in our work is 82 . 

 

 Run1 Run2 Run3 

Char F % F % F % 

M 10 3.9 14 5.46 12 4.68 

A 4 1.51 4 1.51 6 2.34 

C 12 4.68 14 5.46 16 6.25 

R 8 3.12 10 3.9 6 2.34 

O 4 1.51 4 1.51 4 1.51 

 Run4 Run5 Run6 

Char F % F % F % 

M 10 3.9 8 3.12 10 3.9 

A 6 2.34 4 1.51 4 1.51 

C 14 5.46 16 6.25 14 5.46 

R 8 3.12 6 2.34 4 1.51 

O 4 1.51 4 1.51 4 1.51 

 

 

 Run1 Run2 Run3 

Char F % F % F % 

M 325 126.9 225 87.8 200 78.1 

A 225 87.8 125 48.8 250 97.6 

C 375 146.4 375 146.4 350 136.7 

R 250 97.6 225 87.8 150 58.5 

O 100 39.1 100 39.1 125 48.8 

 Run4 Run5 Run6 

Char F % F % F % 

M 325 126.9 200 78.1 200 78.1 

A 125 48.8 150 58.5 125 48.8 

C 300 117.1 375 146.4 300 117.1 

R 275 107.4 200 78.1 150 58.5 

O 100 39.1 100 39.1 100 39.1 

 

 

 

AVERAGE 

char F % 

M 10.7 4.16 

A 4.6 1.7 

C 14.3 5.6 

R 7 2.7 

O 4 1.51 

Average 8.1 3.1 

 

 

AVERAGE 

char F % 

M 245.8 95.9 

A 166.6 65.1 

C 345.8 135 

R 208.3 81.3 

O 104.1 40.7 

Average 214 83.6 

 

 

CHAR # CHROMOSOME % 

M 810 2.0 

A 80 0.2 

C 1860 6.0 

R 460 1.0 

O 650 0.1 

Average 650 1.9 
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Fig.(3): Comparison of the fitness evaluation through generations of 

the best run for cGA and sGA for the word “MACRO”. 

 (a) the letter “M”.  

(b) the letter “A”.  

(c) the letter “C”. 

(d) the letter “R”.  

(e) the letter “O”. 

 

Fig.(3) shows the comparison of the fitness 

evolution through generations of the best run 

between cGA and sGA for each letter in the 

word "MACRO". 
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Conclusion 

In this paper we have seen that cGA can be 

a powerful tool for solving cryptanalysis 

problem. It shows how the cGA may help in 

solving the trapdoor 0-1 knapsack cipher 

problem. 

We have found that cGA is more efficient 

than the sGA which applies multiple runs to 

attack the ciphertext, where cGA may find the 

correct solution with only one or two runs. 

The proposed algorithm can search the 

solution space effectively and speedily without 

compromising on memory and computational 

requirements.  

Finally, this study has introduced new ideas 

that have important ramifications for GA 

design. In this paper we learned more about 

cGA, more about its complex dynamics and 

opened new doors towards the goal of having 

more efficient GAs. 
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 الخلاصة 
سررر المعلوماتورررمومورررتموتورررت متعسرررممتا  ررر معل  اررر موررر م

عنرررلمم...بهررر المعلوبسررر معلأونارررلمعلوجرررموومتل ررر ملهررر  مو  رررت 
اخررررمنمبونررررممعلأهررررخمنمعل ارررر موخررررتلا مب رررر ع  معلوماتوررررموم
علو سررررال.ماارررر معلمهرررر ا موررررتماارررر مل  عسررررلم ن وررررلمعوم ررررمووم

ا ررم.متمماام ممبررلمعلهرر   علسرر المتورر ممورر مم اررا مو واررا مووررمم
إ مم بارررقمم ناررررلمعلختع وواررررلمعلت ع اررررلملمماارررر م  ا ررررلمعلمهرررر ا م

((knapsackم معقم عملمو مقب ممSpillmanف معلب عال.مإ مم
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مماارر معلهرر  عومت لررامعاموررم عمورر عمعلبمرردما رر  من رر  مج ارر  مل
اارررمممو ارررر معلأفررر ع م وررررتو معمموملاررررلماارررمموجوتاررررلمعلماررررت م

منارررلمعلووررر ت ل.علو  تمرررلمتورررتمورررمماسررروممبملختع ووارررلمعلجا
تمرررر مم رررر ا مارررر  معخمبررررم عومااا ررررمملام  رررر مورررر م ررررملمعلنمررررم  م
علو ب رررل.مم  ررر معلنمرررم  مبررر  معلختع ووارررلمعلجانارررلمعلووررر ت لم

ا رررم مو م نررر ورررممورررمممررر مملقرررم   ماارررمم سررر مهررر   معلن رررتنمتع 
ت  ا رررررلممعلختع ووارررررلمعلجانارررررلمممSpillmanمم ا رررررلمب  ا رررررلم

مررررم  ممبررررا مإ معلوبسرررر ل.متوررررمموررررتم   رررر مورررر م لررررا مفررررم ممعلن
معلختع ووارلمعلجاناررلمعلوورر ت لمورر مجر ا  مبرر  ممممورر م   ا ررل

مو ملالمف ماواالممماا معله  عو.م
م

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


