
Journal of Al-Nahrain University Vol.12 (2), June, 2009, pp.137-145 Science

 731

COMPACT GENETIC ALGORITHM FOR CRYPTANALYSIS

TRAPDOOR 0-1 KNAPSACK CIPHER

Rawa'a Dawoud Hassan Al-Dabbagh

Department of Computer Science , College of Science , University of Baghdad-Iraq.

rawaaiq04@yahoo.com.

Abstract

Security is a broad topic and covers a multitude of sins. In its simplest form, it is concerned with

people trying to access remote services that they are not authorized to use. Cryptology is the science

and studies of systems for secrete communication. It consists of two complementary fields of study:

Cryptography and Cryptanalysis. The application of genetic algorithm in cryptanalysis of knapsack

cipher is suggested by Spillman. This paper considers a new approach to cryptanalysis knapsack

cipher based on the representation of the population as a probability distribution over the set of

solutions; this is called compact Genetic Algorithm (cGA). Tests have been presented to clarify the

results obtained. The results show that cGA achieve the breaking of the ciphertext. Moreover, the

comparison among Spillman results, simple GA (sGA) and our results are also provided. The

results show that cGA is worth to be considered for the attack of trapdoor 0-1 knapsack cipher.

Keywords: compact genetic algorithm (cGA), knapsack cipher, Merkle-Hellman knapsack cipher, simple

genetic algorithm (sGA),

Introduction

Data security in computer network is

becoming increasingly important owing to the

expanding role of distributed computation,

distributed databases, and telecommunication

applications such as electronic mail and

electronic funds transfer [1]. So, it appears the

need to develop a scheme that guarantees to

protect the information from the attacker.

Cryptology is at the heart of providing such

guarantee. Cryptology is the science of

building and analyzing different encryption

methods. Cryptology consists of two subfields;

Cryptography & Cryptanalysis. Cryptography

is the science of building new powerful and

efficient encryption and decryption methods. It

deals with the techniques for conveying

information securely. The basic aim of

cryptography is to allow the intended

recipients of a message to receive the message

properly while preventing eavesdroppers from

understanding the message. Cryptanalysis is

the science and study of method of breaking

cryptographic techniques i.e. ciphers. In other

words it can be described as the process of

searching for flaws or oversights in the design

of ciphers [2].

This paper introduces a new evolutionary

way to attack the Merkle-Hellman Knapsack

cipher using Compact Genetic Algorithm

(cGA). The idea behind Merkle-Hellman

Knapsack algorithm is to encode a binary

message as a solution to knapsack problem.

The first application which uses the

evolutionary optimization methods including

GA in the cryptanalysis of knapsack cipher

was suggested by Spillman in 1993 [2]. The

goal of this GA is to translate each number

into correct Knapsack, which represents the

ASCII code for the plaintext characters. Then

in 2006, Garg P. et al. improved the efficiency

of Spillman's Genetic Algorithm attack on

Knapsack cipher[3]. They take certain

restrictions on the encoding algorithm. These

are: only ASCII code is encrypted, the

superincreasing sequence has only eight

elements (one element for each bit in the 8-bit

ASCII code), and plaintext has no more than

100 characters length. They concluded that the

efficiency of the GA attack can be improved,

even more than Spillman's GA, by tuning

several GA parameters.

Recently, Abdul Halim et al. [4] proposed a

binary Particle Swarm Optimization (PSO)

algorithm for cryptanalysis of knapsack

cipher.

Of all the issues connected with GA ِ ِ s

such as population size, genetic operators

(e.g., selection, crossover, and mutation), and

encoding methods, etc., that guarantee an

Rawa'a Dawoud

 731

optimal solution quickly enough has been a

topic of intense research [5] [6].

Harik et al. [9] proposed the compact GA

(cGA) as an estimation of distribution

algorithm (EDA) that generates offspring

population according to the estimated

probabilistic model of parent population

instead of using traditional recombination and

mutation operators [10][11]. The cGA

represents the population as a probability

(distribution) vector (PV) over the set of

solutions and operationally mimics the order-

one behavior of simple GA (sGA) with

uniform crossover using a small amount of

memory [8].

The rest of the paper is organized as

follows. Section 2 briefly describes the

Knapsack cipher problem with examples. In

section 3, the proposed compact GA with the

algorithm is described. Section 4 presents the

cGA as a cryptanalyzer. In section 5 results

obtained from several test problems with a

summary of the results, and the conclusion

will be in section 6.

Cryptography & 0-1 Knapsack Problem

The knapsack problem is an example of a

combinatorial optimization problem, which

seeks to maximize the benefit of objects in a

knapsack without exceeding its capacity.

Knapsack problem is NP problem (non-

deterministic polynomial) problems which

there are no known algorithms that would

guarantee to run in a polynomial time [1].

One of first knapsack cipher problem was

proposed by Markle and Hellman in 1975

which utilized a NP-complete problem for its

security. The knapsack cipher problem is

formulated as follows.

Let us assume the values n21 MMM ,...,,

and the sum S are given. Let it be necessary to

compute values n21 bbb ,...,, values, so that

nn2211 bMbMbMS The values of

coefficient b i can be equal 0 or 1. The 1 value

shows that object will fit into the knapsack, 0

value will not be in the knapsack.

The Markle-Hellman knapsack cipher encrypts

a message as a knapsack problem. The

plaintext block transforms into binary string

(the length of block has equal number of

elements in the knapsack sequence). One value

determines that an element will be in target

sum. This sum is a ciphered message.

Table (1) shows an example of solving the

knapsack problem for the entry numbers

sequence:2 5 13 21 42 and 84.

Table (1)

Example of Knapsack Encryption.

The public/private key aspect of this

approach lies in the fact that there are actually

two different knapsack problems referred to as

the easy knapsack and hard knapsack. The

Markle-Hellman algorithm is based on this

property. The private key is a sequence of

numbers for a superincreasing knapsack

problem. The public key is a sequence of

numbers for a normal knapsack problem with

the same solution.

Easy knapsacks have a sequence of

numbers that are superincreasing that is, each

number is greater than the sum of previous

numbers:

1i

1j

ji aa for i = 2,..,n (where ia is

ith element of the sequence). For example {2,

5, 13, 21, 42, 84} is a superincreasing

sequence but {1, 4, 3, 10, 9, 25} is not. The

knapsack solution with the superincreasing

sequence proceeds as follows. The target sum

is compared with a greatest number in the

sequence. If the target sum is smaller than this

number, the knapsack will not fill, otherwise it

will. Then the smaller element is subtracted

from the target sum, and the result of the

subtraction is compared with the next element.

Such operation is done until the smallest

number of sequence is reached. If the target

sum is reduced to 0 values, then solution

exists. In other case solution doesn't exist. For

example, consider a total knapsack target sum

is 104 and the sequence of weights is {2, 5, 13,

21, 42, and 84}. The largest weight, 84, is less

than 104, so 84 is in the knapsack. Subtracting

84 from 104 leaves 20. The next number 42 is

greater than 20, so 42 is not in the knapsack.

The next weight 21 is greater than 20, so 21 is

not in the knapsack. The next weight 13 is less

Plaintext Knapsack sequence Ciphertext

1 1 1 0 0 1 2 5 13 21 42 84 2+5+13+84= 104

0 1 0 1 1 0 2 5 13 21 42 84 5+21+42 = 68

0 0 0 0 0 1 2 5 13 21 42 84 84 = 84

Journal of Al-Nahrain University Vol.12 (2), June, 2009, pp.137-145 Science

 731

than 20, so 13 is in the knapsack. Subtracting

13 from 20 leaves 7. Continuing this process

will show that both 5 and 2 are in the knapsack

and the total weight is brought to 0, which

indicates that a solution has been found. The

plaintext that resulted from a ciphertext value

of 104 would be 111001. The superincreasing

knapsack is easy to decode, which means that

it does not protect the data. Anyone can

recover the bit pattern from the target sum for

a superincreasing knapsack if the elements of

the superincreasing knapsack are known.

Markle and Hellman suggested that such a

simple knapsack can be converted into a

trapdoor knapsack which is difficult to break.

The algorithm works as in Fig.(1):

Fig.(1): Pseudo-code of trapdoor

0-1Knapsack cipher algorithm.

The trapdoor sequence A could be

published as a public key (encryption key).

The private (secret) key for this cipher consists

of a simple knapsack sequence A', so-called

trapdoor, values m,w, w 1 .

The encoding is done as follows. The

message is divided into n bits block (each

block contains as many elements as simple

knapsack sequence). Values in the message

block shows that the element will be in the

target sum. The target sum of each block is a

ciphertext.

The decoding consists of the following.

Each number of the ciphered message is

multiplied through w 1 mod m and the result

of this operation is plaintext [1].

Since the trapdoor 0-1 knapsack cipher

problem is a NP problem, approaches such as

dynamic programming, backtracking, branch

and bound, etc. are not very useful for solving

it. So, compact GA is used to prove that it is

the best approach in obtaining solutions to

problems traditionally thought of as

computationally infeasible such as the

knapsack cipher problem.

Compact Genetic Algorithm (cGA)

The Compact Genetic Algorithm (cGA) is

similar to the PBIL (Population Based

Incremental Learning) but requires fewer

steps, fewer parameters and less of a gene

sample [12].

The cGA manages its population as a

probability vector (PV) over the set of

solutions (i.e., only models its existence),

thereby mimicking the order-one behavior of

the sGA with uniform crossover using a small

amount of memory [9] [13].

Fig.(2) describes pseudo-code of the cGA.

The values of PV ,,1,1,0 iip l, wherel

is the number of genes (i.e., the length of the

chromosome), measures the proportion of “1”

alleles in the ith locus of the simulated

population [9][13]. The PV is initially assigned

0.5 to represent a randomly generated

population. In every generation (i.e., iteration),

competing chromosomes are generated on the

basis of the current PV, and their probabilities

are updated to favor a better chromosome (i.e.,

winner). It is noted that the generation of

chromosomes from PV simulates the effects of

crossover that leads to a decor-relation of the

population‟s genes.

Fig.(2):Pseudo-code of the cGA.

Step1. Select a simple knapsack superincreasing

sequence of elements n21 a'a'a'A '

Step2. Select an integer value m greater than the

sum of all elements of the superincreasing

sequence.

Step3. Select another integer w that the

gcd(m,w)=1, that's number m and w are

reciprocally prime.

Step4. Find the inverse of the w mod 1-w-m

Step5. Construct the hard knapsack sequence

A= w A' mod m, i.e. ii wa'a mod m.

Parameters. n: population size l: chromosome length

Step1. Initialize probability vector

 for i := 1 to l do p[i] := 0.5;

Step2. Generate two chromosomes from the probability

 vector

 a:= generate(p); b:= generate(p)

Step3. Let them compete

 winner, loser := compete (a, b);

Step4. Update the probability vector

 for i:=1 to l do

 if winner [i] loser[i] then

 if winner[i] == 1 then p[i] := p[i] + 1/n;

 else p[i] := p[i] – 1/n ;

Step5. Check if the probability vector has converged.

 Go to Step 2, if it is not satisfied.

Step6. The probability vector p[i] represents the final

 solution.

Rawa'a Dawoud

 741

In a simulated population of size n, the

probability ip is increased (decreased) by 1/n

when the ith locus of the winner has an allele

of “0” (“1”). If both the winner and the loser

have the same allele in each locus, then the

probability remains the same. This scheme is

equivalent to (steady – state) pair-wise

tournament selection [9]. The cGA is

terminated when all the probabilities converge

to zero or one. The convergent PV itself

represents the final solution. It is seen that the

cGA requires l * 2log (n + 1) bits of memory

while the sGA requires l * n bits [9]. Thus,

large population size can be effectively

exploited without unduly compromising on

memory requirements [13].

Compact GA as a Cryptanalyzer

The cryptographer hopes that the security of

0-1 knapsack depends upon the cryptanalyst

being unable to break the message except by

brute force – by trying all possible objects in

the knapsack. For 8-bit strings, brute force

would require trying 2
8

=256 bit strings.

Cryptanalysis of the original knapsack

encryption system exhibits one of the

problems faced by encryption systems that are

based upon difficult mathematical procedures.

It turned out that the security of the knapsack

cryptosystem was not equivalent to the

solution of the knapsack problem; there was an

unexpected cryptanalysis based upon the

solution of an easier problem

The cryptanalysis starts from cipher text,

which has an integer form. Each number

represents a target sum of hard knapsack

problem. The goal of the compact GA is to

translate each number into the correct

knapsack, which represents the ASCII code for

the plaintext characters.

The size of the population n has range in

between (10 to 100).

The compact GA is implemented as an

interconnection of the following modules:

Initialization and Encoding

The certain restrictions are defined on the

encoding algorithm:

(1) Only the ASCII code will be encrypted.

(2) The superincreasing sequence will have

l =8 elements; these number of elements

guarantee that each character has a

unique encoding (There are 256 ASCII

codes and 8 elements length will allow

to encrypt 2 8 characters).

(3) Every field of the probability vector PV

is initialized to 0.5.

Random number generator

The compact GA needs in every step two

random numbers, each having a bitstring (0‟s

and 1‟s) length of 8. The two individuals a and

b (bitstrings of length 8 each) are generated.

So, there are two identical chromosomes

working in parallel, but using different initial

seeds.

Fitness Evaluator

Based on the fitness function which is

proposed by Spillman [1], given in Equation 1.

The fitness value evaluates how the given sum

is close to the target value for the knapsack.

The value of the fitness function should be in

the range of 0 to 1. Fitness value 1 indicates an

exact match with the target sum for the

knapsack. If the value of sum is greater than

targets then it has a lower fitness value of

chromosome, in this way it produces the

infeasible solution. If the value of sum is less

than target then it will produce a high fitness

value and produce feasible solutions. Feasible

solutions have a greater chance of being

followed by the algorithm.

Fitness =

6

1

2

1

1

1

MaxDiff

Sum-Target

Target

Sum-Target

Let M= {m 1 , m 2 ,…, m n }, m i {0, 1} be an

arbitrary solution and the public key

A= {a 1 , a 2 ,…, a n }

Sum =

n

1j

jj ma , Target =
j

ja ,

FullSum =

n

1j

ja

MaxDiff = max {Target, FullSum – Target}

If Sum ≤ Target

If Sum > Target

...1

Journal of Al-Nahrain University Vol.12 (2), June, 2009, pp.137-145 Science

 747

... 2

Compete

The Compete is a procedure that compares

2 integers (meaning 2 bitstrings), a and b and

has an output either '1' (if a > b), or '0'

(if a < b). The comparison depends on the

Fitness Evaluators module.

Probability Update

As the population has n chromosomes, the

probability vector PV must be able to be

incremented or decremented by a minimal

value of 1/n. There is no need to represent the

probability as the float number it actually is.

As the probability has always values

between '0' and '1' and can be written as the

sum of the negative powers of 2, with '0' or '1'

as coefficients, the probability vector contains

the bitstring of these coefficients.

Incrementing and decrementing it by the

minimal value means to change at least one

value of this bitstring. Formally speaking the

p[i] is represented as follows:

if f a ≥ f b then

 if a[i] = 1 then

 p[i] = min (1, p[i] +
n

1
)

 if a[i] = 0 then

 p[i] = max (0, p[i] -
n

1
)

 else

 if b[i] = 1 then

 p[i] = min (1, p[i] +
n

1
)

 if b[i] = 0 then

 p[i] = max (0, p[i] -
n

1
)

So, the Probability Vector PV (p[i]) stores

the bitstring that represents the probability.

The operations that it needs to perform are

increment and decrement the bitstring by one

unit.

Stop (Termination) Condition

After executing the above mentioned steps,

a new generation is created and the steps are

repeated until the stop condition is reached.

The algorithm will stop when the fitness

function reaches to the value 1 or each field of

the probability vector p[i] is equal to „0‟ or

„1‟.

Experimental Results
This section presents simulation results and

compares the compact GA with simple GA

and Spillman's results, all in terms of solution

quality and in the number of function

evaluations taken. All experiments are

averaged over 100 runs, but the best 6 runs are

illustrated.

The simple GA uses binary tournament

selection without replacement, and uniform

crossover with exchange probability 0.5.

Mutation is not used, and crossover is applied

all the time. All runs end when the population

fully converges that is when all the individuals

have the same alleles at each gene position.

In compact GA the population's size (n) and

the chromosome length (l) are set to 20-50 and

8 respectively. The algorithm starts with

probability register is initialized with 0.5, so

that at the beginning, there are equal chances

for every bit of the future chromosome to be

either '0' or '1' at the end of the algorithm. The

fitness function decides whether it's better to

increase or decrease the entry in the

probability register.

The 8 elements (Spillman used 15 elements)

sequence of hard knapsack problem (21031

63093 16371 11711 23422 58555 16615

54322) is used to encode 8 bits ASCII code.

This sequence has been created from

superincreasing sequence (1 3 7 13 26 65 119

267), m equal to 65423 and w integer equal to

21031 (w 1 = 5363). The MACRO word has

been encrypted. The target sum (ciphertext) of

the word is (65728 37646 100739 103130

128821) [2].

Table (2) and Table (3) illustrate the

experimental results of compact GA and

simple GA respectively with population size

(n =25), where (F is the number of function

evaluation taken until convergence for the

various numbers of generations) and (% is the

percentage of the search space), and it is

calculated as follows:

100*%
 size space searchtotal

econvergenc until gen. of no.* s(n)chromosome of no.

where in cGA, the no. of chromosomes (n) is

already equal to 2.

Rawa'a Dawoud

 741

Table (2)

Experimental Results with compact GA.

Table (3)

Experimental Results with simple GA.

The average results of the two tables are

illustrated in Table (4) and Table (5).

Table (4)

Average results of cGA.

Table (5)

Average results of sGA.

The match between the two algorithms

seems quiet different, and gives evidence that

the two are doing roughly different thing and

they are some how "not equivalent". Note,

while the sGA has a memory requirement of

n l bits, the cGA requires only lnlog 2 bits,

and in the number of function evaluation the

sGA requires

 econvergenc until sgeneration of non . ,

while cGA requires only

 econvergenc until sgeneration of no ..2

In cGA experimental results Table (4) the

average of the number of function evaluation

is (8.1) with (3.1 %) of the search space, while

simple GA (Table 5) costs (214) function

evaluation times with (83.6 %) of the search

space.

The results shown in table 4 are compared

and analyzed with Spillman's results Table (6).

Spillman's algorithm always gives correct

results. When comparing with our results in

Table (4), we can show that cGA also gives

the correct results and near to results as

obtained by Spillman‟s.

Table (6)

Spillman's Results.

The Spillman's algorithm Table (6) searches

on average less than (2 %) of the space. The

divergence of the result is explained that the

area of possible results in Spillman's work is
152 i.e. 32678 and in our work is 82 .

 Run1 Run2 Run3

Char F % F % F %

M 10 3.9 14 5.46 12 4.68

A 4 1.51 4 1.51 6 2.34

C 12 4.68 14 5.46 16 6.25

R 8 3.12 10 3.9 6 2.34

O 4 1.51 4 1.51 4 1.51

 Run4 Run5 Run6

Char F % F % F %

M 10 3.9 8 3.12 10 3.9

A 6 2.34 4 1.51 4 1.51

C 14 5.46 16 6.25 14 5.46

R 8 3.12 6 2.34 4 1.51

O 4 1.51 4 1.51 4 1.51

 Run1 Run2 Run3

Char F % F % F %

M 325 126.9 225 87.8 200 78.1

A 225 87.8 125 48.8 250 97.6

C 375 146.4 375 146.4 350 136.7

R 250 97.6 225 87.8 150 58.5

O 100 39.1 100 39.1 125 48.8

 Run4 Run5 Run6

Char F % F % F %

M 325 126.9 200 78.1 200 78.1

A 125 48.8 150 58.5 125 48.8

C 300 117.1 375 146.4 300 117.1

R 275 107.4 200 78.1 150 58.5

O 100 39.1 100 39.1 100 39.1

AVERAGE

char F %

M 10.7 4.16

A 4.6 1.7

C 14.3 5.6

R 7 2.7

O 4 1.51

Average 8.1 3.1

AVERAGE

char F %

M 245.8 95.9

A 166.6 65.1

C 345.8 135

R 208.3 81.3

O 104.1 40.7

Average 214 83.6

CHAR # CHROMOSOME %

M 810 2.0

A 80 0.2

C 1860 6.0

R 460 1.0

O 650 0.1

Average 650 1.9

Journal of Al-Nahrain University Vol.12 (2), June, 2009, pp.137-145 Science

 743

Fig.(3): Comparison of the fitness evaluation through generations of

the best run for cGA and sGA for the word “MACRO”.

 (a) the letter “M”.

(b) the letter “A”.

(c) the letter “C”.

(d) the letter “R”.

(e) the letter “O”.

Fig.(3) shows the comparison of the fitness

evolution through generations of the best run

between cGA and sGA for each letter in the

word "MACRO".

(a)

(b)

(c)

(d)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

generation

fi
tn

e
s
s cGA

sGA

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

generation

fi
tn

e
s
s cGA

sGA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

generations

fi
tn

e
s
s

cGA

sGA

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

generation

fi
tn

e
s
s cGA

sGA

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

generation

fi
tn

e
s
s cGA

sGA

(e)

Rawa'a Dawoud

 744

Conclusion

In this paper we have seen that cGA can be

a powerful tool for solving cryptanalysis

problem. It shows how the cGA may help in

solving the trapdoor 0-1 knapsack cipher

problem.

We have found that cGA is more efficient

than the sGA which applies multiple runs to

attack the ciphertext, where cGA may find the

correct solution with only one or two runs.

The proposed algorithm can search the

solution space effectively and speedily without

compromising on memory and computational

requirements.

Finally, this study has introduced new ideas

that have important ramifications for GA

design. In this paper we learned more about

cGA, more about its complex dynamics and

opened new doors towards the goal of having

more efficient GAs.

References

[1] Subhash C. Kak, "Data Security in

Computer Networks", Computer, Guest

Editor's Introduction, 1983.

[2] Spillman R., “Cryptanalysis of knapsack

ciphers using genetic

algorithm”.Cryptologia, 17(4):367-377,

October 1993.

[3] Garg P., Shastri A., and D.C. Agarwal,

“An enhanced Cryptanalytic Attack on

knapsack cipher using genetic algorithm”,

Transaction on Engineering, Computing

and Technology, vol. 12, 2006.

[4] M. F. Abdul Halim, B. A. Attea, S. M.

Hameed, “A binary particle swarm

optimization for attacking knapsacks

cipher algorithm“, ICCCE08 Conference,

Malaysia, May 2008.

[5] D. E. Goldberg and M. Rundnick, "Genetic

algorithms the variance of fitness,"

Complex Syst., vol.5, no.3, 1991, pp.265-

278.

[6] J. He and X. Yao, "From an individual to a

population: An analysis of the first hitting

time of population-based evolutionary

algorithms," IEEE Trans. Evol. Comput.,

vol. 6, Oct. 2002, pp.495-511.

[7] G. Harik, E. Cantŭ-Paz, D. E. Goldberg,

and B. L. Miller, "The Gambler's ruin

problem, genetic algorithms, and sizing of

populations," Evol. Cmput., vol. 7, 1999,

pp.231-253.

[8] C. W. Ahn and R. S. Ramakrishna, "A

genetic algorithm for shortest path routing

problem and the sizing of populations,"

IEEE Trans. Evol. Comput., vol. 6, Dec.

2002, pp. 566-579.

[9] G. Harik, F. G. Lobo, and D. E. Goldberg,

"The compact genetic algorithm," IEEE

Trans. Evol. Comput., vol. 3, Nov. 1999,

pp. 287-297.

[10] S. Tsutsui, "Probabilistic Model-building

genetic algorithms in per-mutation

representation domain using edge

histogram," in Parallel Problem Solving

from Nature-PPSN VII (Lecture Notes in

Computer science, Vol. 2439), J. J. M.

Guervós, P. Adamidis, H. G. Beyer, J. L.

Fernàndez-Villacańas, and H. P. Schwefel,

Eds. Berlin, Germany: Springer-Verlag,

2002, pp. 224-233.

[11] P. Larraňaga and J. A. Lozano,

Estimation of Distribution Algorithms: A

New Tool for Evolutionary Computation.

Boston, MA: Kluwer, 2002.

[12] Chatchawit Aporntewan, Prabhas

Chongstitvatana, "A Hardware

Implementation of the Compact Genetic

Algorithm," Proceeding of the 2001 IEEE

Congress on Evolutionary Computation

Seoul, Korea, May 27-30, 2001.

[13] R. Baraglia, J. I. Hidago, and R. Perego,

"A hybrid heuristic for the traveling

salesman problem," IEEE Trans. Evol.

Comput., vol. 5 Dec. 2001, pp. 613-622,.

 الخلاصة
سررر المعلوماتورررمومورررتموتورررت متعسرررممتا ررر معل اررر موررر م

عنرررلمم...بهررر المعلوبسررر معلأونارررلمعلوجرررموومتل ررر ملهررر مو رررت
اخررررمنمبونررررممعلأهررررخمنمعل ارررر موخررررتلا مب رررر ع معلوماتوررررموم
علو سررررال.ماارررر معلمهرررر ا موررررتماارررر مل عسررررلم ن وررررلمعوم ررررمووم

ا ررم.متمماام ممبررلمعلهرر علسرر المتورر ممورر مم اررا مو واررا مووررمم
إ مم بارررقمم ناررررلمعلختع وواررررلمعلت ع اررررلملمماارررر م ا ررررلمعلمهرررر ا م

((knapsackم معقم عملمو مقب ممSpillmanف معلب عال.مإ مم

Journal of Al-Nahrain University Vol.12 (2), June, 2009, pp.137-145 Science

 745

مماارر معلهرر عومت لررامعاموررم عمورر عمعلبمرردما رر من رر مج ارر مل
اارررمممو ارررر معلأفررر ع م وررررتو معمموملاررررلماارررمموجوتاررررلمعلماررررت م

منارررلمعلووررر ت ل.علو تمرررلمتورررتمورررمماسررروممبملختع ووارررلمعلجا
تمرررر مم رررر ا مارررر معخمبررررم عومااا ررررمملام رررر مورررر م ررررملمعلنمررررم م
علو ب رررل.مم ررر معلنمرررم مبررر معلختع ووارررلمعلجانارررلمعلووررر ت لم

ا رررم مو م نررر ورررممورررمممررر مملقرررم ماارررمم سررر مهررر معلن رررتنمتع
ت ا رررررلممعلختع ووارررررلمعلجانارررررلمممSpillmanمم ا رررررلمب ا رررررلم

مررررم ممبررررا مإ معلوبسرررر ل.متوررررمموررررتم رررر مورررر م لررررا مفررررم ممعلن
معلختع ووارلمعلجاناررلمعلوورر ت لمورر مجر ا مبرر ممممورر م ا ررل

مو ملالمف ماواالممماا معله عو.م
م

