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Abstract:

A wide variety of topics in pure and applied mathematics involve the problem of counting the
number of lattice points inside a polytope. Perhaps the most famous special case is the theory of
Ehrhart polynomials, which is the basis structure theorem about this type of counting problem.

We present a modified tool to find the Ehrhart polynomial of a convex polytope, by writing a
polytope as a linear system and find the solution of this system using integer programming method
with a modification on this method. This method depends on deriving the vector partition function
as a partial fraction.

Introduction The fundamental result about the structure of
We are interested in computing the number L, (t) is given by theorems (3) and (4).

of integer solutions to the linear system

x € R, (where RY, means d-space of vectors Vector partition function:

with positive components), Ax=b, where the Let ¢,(b)count the integer solutions of

coefficients of A are non negative (mxd)- x>0, Ax=b, AeM_,And beZ". Both

integral matrix and b e Z™.
Let A fixed and study the number of

solutions @, (b) as a function of b, the
function @, (b) often called a vector partition

d,(b) and ¢, (b) are quasi-polynomials, and

can hence be algebraically defined for
arguments which are not integer vector in the
positive span of A. the following identity

functions, which appears in mathematical shows the relationship between the two
areas: Number theory, Discrete Geometry, functions.

Commutative Algebra, Algebraic Geometry,

Representation Theory, Optimization, as well Theorem 1, [2]:

as applications to Chemistry, Biology, Physics, The quasi-polynomials¢, (b) and ¢; (b)

Computer Science and Economics [1]. satisfy
Denote the columns of A by c,,...,c,. For P _ d-rank(A) 4 o
) ) da(=b) =(-1) o ()
a d-polytope, Ehrhart studied the particular
case of @, (b)given by the counting function Corollary 1, [2]:

L(P.ty#(tP~Z%), for positive integer t, this The quasi-polynomials ¢, (b) satisfy
number of lattice points in the dilation tP of P. b (-b) = (=)™ Mg, (~b-T)
before we star, the following lemma is needed

which go to Euler, [2]. Lemma 1, [3]:

Let ®,(b)be a vector partition functions
for the system Ax=b, Ae M,

And beZzZ™, then ®@,(b)equals the

Properties of the Ehrhart polynomials:
A convex polytope P — R is the convex
hull of infinity many points inR’. One can

define P as the bounded intersection of affine coefficients of Z° =z;*,...,zr of the function
half spaces. A polytope is rational if all

. P _p yiop . . f(2) = ! expanded as a
vertices have rational coordinates. P°denote 1—Z%)...(1- Z%)

the relative interior of P. for a positive integer
t, let L,(t) denote the number of integer
points in the dilated polytope tP={tx, x € P}.

power series centered at Z=0. Equivalently, the
coefficients of Z° in f (z) equals the constant

'Yy



. f(Z
termin ——

f(2)
Z

—, SO Eulers
lemma can be stated as:

1

b) = const
¢a(®) 1-Z%)1-2Z%)..1-Z%)Z"

In a series of articles [4, 5, 6], complex

f(2)

Zb

integration of are used to compute
@, (b) for special case of A.
Here we expand @ into partial fractions
Z

to compute
@, (b).

its constant term, and hence

The modified partial fraction method:
This section illustrates the idea of our
computation. Our goal is to derive,

1
b) = const .
¢a(0) 1-Z%)(1-Z%)...1—Z%)Z"
We start by expanding
1
(1-Z%)(1-2Z%)...1-Z%)Z°
fractions in one of the components of Z,
sayz,, therefore,
1 iAk(Zb)

into  partial

2. B,(2)

+3 -

m k=1 1- =1 1

1-Z")1-Z%)..1-Z%)Z"> z;z

Here A, andB,

rational functions in z,,...,z,,, and exponential
in b,. The two sums on the right- hand side
correspond to the analytic and the
meromorphic part with respect toz, =0. The
latter does not contribute to the z,-constant

term, whence
d
d,(b)=const, |, ( - ! —const, (Z%D
2:fm Z 2 m 1 = _ k

2 em k=1

are polynomials in z,,

_ ZA 0,2,,..., m,b)J

—const(
Z22 m k=1

The effect of one partial fraction is to
eliminate one of the variables of the generating
function, at the cost of replacing one rational
function by a sum of such. It is best to
illustrate the above idea through an actual

example.
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An illustrating example
Consider the constraints
X, +2X,+=a
X, +X,+X,=b v X1, X5, X5, X, 20
This can be written as Ax=Db, where
1210
= , and b= (a, b), so
1101
¢, (a,b) counts the integer solutions of the
above system, so by Eulers lemma,
1
(1-2,2,)1-212,)1-2,)1-2,)72,

We first expand into partial fractions with
respect to z,

0, (a,b) = const

1
(1-22,)0-22,)1-2,)3}
Zf+1 Z12b+3 1
-z - 2)(1 ), -2)0-7)
1-17,., 1-17/z, 1-1, =1

Taking constant terms gives

0,(a,b) = constzl[

)
3

Zfb a+3 1 j
2 2 + 2\, a
(1_21) (1_21) (1_21)(1_21)21

7 COﬂStZZ[ 12
(1_21)21 (1_2122)(1_2122)(1_22)2

1 Zb+1

= const - [— L+
(1_ 21)21 (1_ Zl)

b-a+l

=const | —— -
(1-2,)

Our work is to find the constant term of the
above expression with respect to one variable
which isz, , therefore we get,

2b+3
A 1

_I_
(l_ Z1)(]-_ 212) (1_ 21)(1‘

+

#,(a,b) = const
Zl

1 Zb+1 2b+3 1
a[_ : 2T n T 2 D
[a_4ﬂ1 G—ZJ G-ZJG-A) 0—200-4)
Others terms are eliminated since they

contents some variables and we wants only

constant term, therefore
b-a+l

const | ——= —+
(1_21)

Zfb a+3 1 ]
2 2 t 2\, a
(1_21) (1_21) (1_21)(1_21)21
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Now, each term of the three constant terms 1 _ V2 u4 U8 U8
termed as counting integer solutions to linear (1-2)(1+z) (1-z)° (@1-z)° (1-z) (+z)

systems.
Zb—w& 1 _ 1/2 + 1/4
constf ———— =0 if b-a+1>0. (1-z)*A+z,) (@1-z)* (1-z2)
(1_21)
Equivalently b>a. And
If b<a, we use Taylor's expansion of 1 _ 12 I 1/2
1 (1_21)(1+21) (1_21) (1+Zl)
1-2,)? we get Into (2), and sum the terms with similar
' denominator, we get
1 K+2) , . .
——» z{ This gives
1-z) &\ 2 2 U4+t 1UB+t/4+14H)(t-1)

const| —+ a-b+l)_(a-b)° +2=0
(1-z,)°22" 2 2 2
1 1

Since we get constant term only if the
power of z, is zero, that is k=b-a+1.
Therefore the first term is,

1 0 ifb>a
const —
(1_ Zl) Zla1 ' 2

(a=b)*  a-b
For the second term in (1), we have

if b<a+l

2b-a+3
const L —~|=0 if 2b—-a+2>0
(1_21) (1_21)

Ifa>2b+3, we expand into partial
fractions again, in general
1 1 1

-2)00-7) @-z)(-z)+z) (-2 +z)

Taylor expansion for about z, =1

a—2b+3
Zl

is founded, let t=a-2b+3

Loty D gy
Z, 21
(OA-DE=2) g
3!

Therefore
const, —————.

1 (]-' Zl) (l+ Zl)
1+ (—t)(Zl _1) + (_t)(_t _1) (Z1 _ )2 (_t)(_t _1)(_t B 2) (Zl B )3

2! 3!
............................... 2

By subtitled

AR

COﬂS'[Z [ +
' (1_21)3 (1_21)2
1/8+t/4+(-t)(-t-1)/4
41+ z,)

(1_ 21)

By substation t = 2b — a + 3, the constant is
2 a+l
(a—2b) N 2b—a +1—(—1)
4 2 8
Similarly to the first constant term

computations, this identity is also valid for
a=2b+2, 2b+1 and 2b, hence

ZZb—a+3
const( L > > J:
(1_21) (1_21)
0 if a<2b+2
_ 2 _ [ a+l
(@ 42b) +2b2 a,l (81) if a>2b

For the last term, the constant is

const [;”j:
(1_21)(1_21)21
12 1/4+al2 1/8+a*/4+al2 (-1)*/8
const,, 5+ Tt +
(1_ 21) (1_ 21) (1_ Zl) (1+ 21)
2 a
B el
4 8
Summing up all terms in (1) gives:
¢(ab)=
2 _1\a
%+a+7+( ) it a<b
2 2 1)@
ap- & D30 THEDT 8 pcan
4 42 2 8 2
b ¥, it b<2
2 2 2

Also, we can show that, by corollary (1)
¢A (3-1 b) = ¢A (_a —4,-b _3)



We also modified the method of finding
partial fraction using the following theorem
which stat that:

Theorem (2), [7, p.273]:

If a is a simple root of Q(x) so that
Q(X)=(x-a)Q1(x), Ql(a)#0, then the function
P(x)

Q(x)

in the form

can be written in one and only one way

P(x) _ C N P1(x)
Q) x-a QLXx)

constant. C can be calculated by using the
P(a) _ P(a)

Q@ QM)

The same example is solved using a
modified method by assuming that

P(z,) _ 1

Q) (-22,)1-2'2,)1-2,)2]

Write Q(z,) as

Q(Zz) = (22 _al)(zz _az)---(zz _ak)

therefore,

R(2) =-2,(2, -—).2(2, —5).(2, ~D2"
z, z

1

1 1
_Zf (Zz _Z_)-(Zz _Z_z)-(zz _1)22

1

where C is a

formC=

Then
Q(Zz) = (22 _l)-(zz _%)'(22 _1)22
Z, Z1

and P(z,) =_i3' with constant C, = Pl(ak) :
Z) Q (ak)
Hence by computation we get,
P(a,) "
Cl = , = - 21
Q (al) (1_ Zl)
_P@y) _ 7”®
© Q)  (L-z)A-2)
and
_P@) _ 1

Q) (-z)1-7%)

Those are the constant terms that are
founded as before. All other constant can be
found using the same way. This makes the
solution easier.
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Theorem (3), [2]:
If P is a convex rational polytope, then the

functions Ly (Y)and L’ (t)are quasi-
polynomials in t whose degree is the
dimension pf P. if P has integer vertices, then
L, (t)and L (t)are polynomials.

Theorem (4), [2]:

The quasi-polynomials L, (t)andL’ (t)
satisfy

Le (1) = (D)™™ L5 (1)

Suppose the convex rational polytope

PcR? is given by an intersection of half
spaces, that isP={xeR®:Ax<b}, where
AeM, andbeZ™. We may convert these
inequalities into equalities by introducing
slack variables.

If P has rational vertices, we can choose A
and b in such a way that their entries are
integer, without loss of generality nonnegative
ones.

The connection to vector partition functions
is now evident. SincetP={x eRY : Ax<th},

we obtain L, (t) =, (tb) as special evaluation
of ¢,(b) as an example, the quadrilateral Q
described by
X,y>0,
x+y<4
As special case of the polygons appearing
in section (4) with vertices (0,0),(4,0),(3,1) and
(0,5/2) has the Ehrhart —quasi polynomial

x+2y<5

_$\t
23t2+2t+m

Lo (t) = ¢, (5t,4t) n 5 3
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