ON FINDING THE EHRHART POLYNOMIALS USING A MODIFIED PARTIAL FRACTION METHOD

Shatha Assaad Al-Najjar , Samaa. F. A. and Vian A. Al-Salehy School of Applied Sciences, University of Technology .

Abstract

: A wide variety of topics in pure and applied mathematics involve the problem of counting the number of lattice points inside a polytope. Perhaps the most famous special case is the theory of Ehrhart polynomials, which is the basis structure theorem about this type of counting problem.

We present a modified tool to find the Ehrhart polynomial of a convex polytope, by writing a polytope as a linear system and find the solution of this system using integer programming method with a modification on this method. This method depends on deriving the vector partition function as a partial fraction.

Introduction

We are interested in computing the number of integer solutions to the linear system $x \in R_{\geq 0}^{d}$ (where $R_{\geq 0}^{d}$ means d-space of vectors with positive components), $\mathrm{Ax}=\mathrm{b}$, where the coefficients of A are non negative ($\mathrm{m} \times \mathrm{d}$)integral matrix and $b \in Z^{m}$.

Let A fixed and study the number of solutions $\Phi_{\mathrm{A}}(\mathrm{b})$ as a function of b, the function $\Phi_{\mathrm{A}}(\mathrm{b})$ often called a vector partition functions, which appears in mathematical areas: Number theory, Discrete Geometry, Commutative Algebra, Algebraic Geometry, Representation Theory, Optimization, as well as applications to Chemistry, Biology, Physics, Computer Science and Economics [1].

Denote the columns of A by $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{d}}$. For P a d-polytope, Ehrhart studied the particular case of $\Phi_{\mathrm{A}}(\mathrm{b})$ given by the counting function $\mathrm{L}(\mathrm{P}, \mathrm{t}) \#\left(\mathrm{tP} \cap \mathrm{Z}^{\mathrm{d}}\right)$, for positive integer t , this number of lattice points in the dilation tP of P . before we star, the following lemma is needed which go to Euler, [2].

Properties of the Ehrhart polynomials:

A convex polytope $\mathrm{P} \subset \mathrm{R}^{\mathrm{d}}$ is the convex hull of infinity many points in R^{d}. One can define P as the bounded intersection of affine half spaces. A polytope is rational if all vertices have rational coordinates. P° denote the relative interior of P. for a positive integer t, let $L_{p}(t)$ denote the number of integer points in the dilated polytope $\mathrm{tP}=\{\mathrm{tx}, \mathrm{x} \in \mathrm{P}\}$.

The fundamental result about the structure of $L_{P}(t)$ is given by theorems (3) and (4).

Vector partition function:

Let $\phi_{\mathrm{b}}^{\circ}(\mathrm{b})$ count the integer solutions of $x>0, \quad A x=b, \quad A \in M_{m x d}$ And $b \in Z^{m}$. Both $\phi_{\mathrm{A}}(\mathrm{b})$ and $\phi_{\mathrm{b}}^{\circ}(\mathrm{b})$ are quasi-polynomials, and can hence be algebraically defined for arguments which are not integer vector in the positive span of A. the following identity shows the relationship between the two functions.

Theorem 1, [2]:

The quasi-polynomials $\phi_{\mathrm{A}}(\mathrm{b})$ and $\phi_{\mathrm{b}}^{\circ}(\mathrm{b})$ satisfy

$$
\phi_{\mathrm{A}}(-\mathrm{b})=(-1)^{\mathrm{d}-\operatorname{rank}(\mathrm{A})} \phi_{\mathrm{A}}^{\circ}(\mathrm{b})
$$

Corollary 1, [2]:
The quasi-polynomials $\phi_{\mathrm{A}}(\mathrm{b})$ satisfy
$\phi_{\mathrm{A}}(-\mathrm{b})=(-1)^{\mathrm{d}-\mathrm{rank}(\mathrm{A})} \phi_{\mathrm{A}}(-\mathrm{b}-\mathrm{r})$

Lemma 1, [3]:

Let $\Phi_{A}(b)$ be a vector partition functions for the system $A x=b, A \in M_{m x d}$

And $b \in Z^{m}$, then $\Phi_{A}(b)$ equals the coefficients of $Z^{b}=z_{1}^{b_{1}}, \ldots, Z_{m}^{b_{m}}$ of the function $f(Z)=\frac{1}{\left(1-Z^{c_{1}}\right) \ldots\left(1-Z^{c_{d}}\right)} \quad$ expanded as a power series centered at $\mathrm{Z}=0$. Equivalently, the coefficients of Z^{b} in $f(z)$ equals the constant
term in $\frac{f(Z)}{Z^{b}}$ denoted by const $\frac{f(Z)}{Z^{b}}$, so Eulers lemma can be stated as:
$\phi_{\mathrm{A}}(\mathrm{b})=\operatorname{const} \frac{1}{\left(1-Z^{\mathrm{c}_{1}}\right)\left(1-\mathrm{Z}^{\mathrm{c}_{2}}\right) \ldots\left(1-Z^{\mathrm{C}_{\mathrm{d}}}\right) \mathrm{Z}^{\mathrm{b}}}$
In a series of articles [4, 5, 6], complex integration of $\frac{f(Z)}{Z^{b}}$ are used to compute $\Phi_{\mathrm{A}}(\mathrm{b})$ for special case of A .

Here we expand $\frac{f(Z)}{Z^{b}}$ into partial fractions to compute its constant term, and hence $\Phi_{\mathrm{A}}(\mathrm{b})$.

The modified partial fraction method:

This section illustrates the idea of our computation. Our goal is to derive, $\phi_{A}(\mathrm{~b})=\operatorname{const} \frac{1}{\left(1-Z^{\mathrm{c}_{1}}\right)\left(1-\mathrm{Z}^{\mathrm{c}^{2}}\right) \ldots\left(1-Z^{\mathrm{c}_{\mathrm{d}}}\right) \mathrm{Z}^{\mathrm{b}}}$.
We start by expanding
$\frac{1}{\left(1-Z^{\boldsymbol{c}_{1}}\right)\left(1-Z^{\boldsymbol{c}_{2}}\right) \ldots\left(1-Z^{\boldsymbol{c}_{\mathrm{d}}}\right) Z^{\mathrm{b}}} \quad$ into \quad partial fractions in one of the components of Z, say z_{1}, therefore,
$\frac{1}{\left(1-Z^{c_{i}}\right)\left(1-Z^{c_{i}}\right) \ldots\left(1-Z^{c_{c}}\right) Z^{b}}=\frac{1}{Z_{2}^{b_{2}} \ldots Z_{m}^{b_{m}^{m}}} \sum_{k=1}^{d} \sum_{k} \frac{A_{k}\left(Z, b_{1}\right)}{1-Z^{c_{k}}}+\sum_{j=1}^{b_{b}} B_{j} \frac{Z_{j}(Z)}{Z_{1}^{j}}$
Here A_{k} and B_{j} are polynomials in z_{1}, rational functions in $\mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{m}}$, and exponential in b_{1}. The two sums on the right- hand side correspond to the analytic and the meromorphic part with respect to $\mathrm{z}_{1}=0$. The latter does not contribute to the z_{1}-constant term, whence
$\phi_{\mathrm{A}}(\mathrm{b})=\operatorname{const}_{z_{2} \ldots \mathrm{~m}_{\mathrm{m}}}\left(\frac{1}{\mathrm{z}_{2}^{\mathrm{b}_{2}} \ldots \mathrm{z}_{\mathrm{m}}^{\mathrm{b}_{\mathrm{m}}}} \operatorname{const}_{\mathrm{z}_{1}}\left(\sum_{\mathrm{k}=1}^{\mathrm{d}} \frac{\mathrm{A}_{\mathrm{k}}\left(\mathrm{Z}, \mathrm{b}_{1}\right)}{1-\mathrm{Z}^{\mathrm{c}_{\mathrm{k}}}}\right)\right)$

$$
=\operatorname{const}\left(\frac{1}{\mathrm{z}_{2}^{\mathrm{b}_{2}} \ldots \mathrm{z}_{\mathrm{m}}^{\mathrm{b}_{\mathrm{m}}}} \sum_{\mathrm{k}=1}^{\mathrm{d}} \mathrm{~A}_{\mathrm{k}}\left(0, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{m}}, \mathrm{~b}_{1}\right)\right)
$$

The effect of one partial fraction is to eliminate one of the variables of the generating function, at the cost of replacing one rational function by a sum of such. It is best to illustrate the above idea through an actual example.

An illustrating example

Consider the constraints

$$
\begin{aligned}
& \mathrm{x}_{1}+2 \mathrm{x}_{2}+=\mathrm{a} \\
& \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{4}=\mathrm{b} \quad, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \geq 0
\end{aligned}
$$

This can be written as $A x=b$, where
$A=\left(\begin{array}{llll}1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right)$, and $b=(a, b)$, so $\phi_{A}(a, b)$ counts the integer solutions of the above system, so by Eulers lemma,

$$
\phi_{A}(\mathrm{a}, \mathrm{~b})=\operatorname{const} \frac{1}{\left(1-\mathrm{z}_{1} z_{2}\right)\left(1-\mathrm{z}_{1}^{2} z_{2}\right)\left(1-z_{1}\right)\left(1-z_{2}\right) \mathrm{z}_{1}^{\mathrm{a}} \mathrm{z}_{2}^{\mathrm{b}}}
$$

We first expand into partial fractions with respect to Z_{2}

$$
\begin{aligned}
& \frac{1}{\left(1-z_{1} z_{2}\right)\left(1-z_{1}^{2} z_{2}\right)\left(1-z_{2}\right) z_{2}^{b}}= \\
& -\frac{\frac{z_{1}^{b+1}}{\left(1-z_{1}\right)^{2}}}{1-z_{1} z_{2}}+\frac{z_{1}^{2 b+3}}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right)} \\
& 1-z_{1}^{2} z_{2}
\end{aligned}+\frac{\frac{1}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right)}}{1-z_{2}}+\sum_{k=1}^{b} \frac{\cdots}{z_{2}^{k}} .
$$

Taking constant terms gives
$\phi_{A}(\mathrm{a}, \mathrm{b})=\operatorname{const}_{z_{1}}\left(\frac{1}{\left(1-z_{1}\right) z_{1}^{\mathrm{a}}} \operatorname{const}_{z_{2}}\left(\frac{1}{\left(1-z_{1} z_{2}\right)\left(1-z_{1}^{2} z_{2}\right)\left(1-z_{2}\right) z_{2}^{\mathrm{b}}}\right)\right)$
$=$ const $\left(\frac{1}{\left(1-z_{1}\right) z_{1}^{a}}\left(-\frac{z_{1}^{b+1}}{\left(1-z_{1}\right)^{2}}+\frac{z_{1}^{2 b+3}}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right)}+\frac{1}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right)}\right)\right)$
$=$ const $\left(-\frac{z_{1}^{b-a+1}}{\left(1-z_{1}\right)^{3}}+\frac{z_{1}^{2 b-a+3}}{\left(1-z_{1}\right)^{2}\left(1-z_{1}^{2}\right)}+\frac{1}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right) z_{1}^{a}}\right)$
Our work is to find the constant term of the above expression with respect to one variable which is z_{2}, therefore we get,

$$
\begin{aligned}
& \phi_{A}(a, b)=\text { const } \\
& \left(\frac{1}{\left(1-z_{1}\right) z_{1}^{a}}\left(-\frac{z_{1}^{b+1}}{\left(1-z_{1}\right)^{2}}+\frac{z_{1}^{2 b+3}}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right)}+\frac{1}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right)}\right)\right)
\end{aligned}
$$

Others terms are eliminated since they contents some variables and we wants only constant term, therefore

$$
\begin{equation*}
\text { const }\left(-\frac{z_{1}^{b-a+1}}{\left(1-z_{1}\right)^{3}}+\frac{z_{1}^{2 b-a+3}}{\left(1-z_{1}\right)^{2}\left(1-z_{1}^{2}\right)}+\frac{1}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right) z_{1}^{a}}\right) \tag{1}
\end{equation*}
$$

Now, each term of the three constant terms termed as counting integer solutions to linear systems.

$$
\operatorname{const}\left(-\frac{\mathrm{z}_{1}^{\mathrm{b}-\mathrm{a}+1}}{\left(1-\mathrm{z}_{1}\right)^{3}}\right)=0 \text { if } \quad \mathrm{b}-\mathrm{a}+1>0
$$

Equivalently $\mathrm{b} \geq \mathrm{a}$.
If $b<a$, we use Taylor's expansion of $\frac{1}{\left(1-z_{1}\right)^{3}}$ we get
$\frac{1}{\left(1-z_{1}\right)^{3}} \sum_{k \geq 0}\binom{k+2}{2} z_{1}^{\mathrm{k}}$ This gives
$\operatorname{const}\left(\frac{1}{\left(1-z_{1}\right)^{3} z_{1}^{a-b+1}}\right)=\binom{a-b+1}{2}=\frac{(a-b)^{2}}{2}+\frac{a-b}{2}$
Since we get constant term only if the power of z_{1} is zero, that is $\mathrm{k}=\mathrm{b}-\mathrm{a}+1$.

Therefore the first term is,
const $\left(\frac{1}{\left(1-z_{1}\right)^{3} z_{1}^{a-b+1}}\right)=\left\{\begin{array}{cl}0 \quad \text { if } b \geq a \\ \frac{(a-b)^{2}}{2}+\frac{a-b}{2} & \text { if } b \leq a+1\end{array}\right.$
For the second term in (1), we have
const $\left(\frac{z_{1}^{2 b-a+3}}{\left(1-z_{1}\right)^{2}\left(1-z_{1}^{2}\right)}\right)=0 \quad$ if $\quad 2 b-a+2 \geq 0$
If $a \geq 2 b+3$, we expand into partial fractions again, in general
$\frac{1}{\left(1-z_{1}\right)^{2}\left(1-z_{1}^{2}\right)}=\frac{1}{\left(1-z_{1}\right)^{2}\left(1-z_{1}\right)\left(1+z_{1}\right)}=\frac{1}{\left(1-z_{1}\right)^{3}\left(1+z_{1}\right)}$
Taylor expansion for $\frac{1}{\mathrm{z}_{1}^{\mathrm{a}-2 b+3}}$ about $\mathrm{z}_{0}=1$ is founded, let $t=a-2 b+3$
$\frac{1}{z_{1}^{t}}=1+(-t)\left(z_{1}-1\right)+\frac{(-t)(-t-1)}{2!}\left(z_{1}-1\right)^{2}+$

$$
\frac{(-t)(-t-1)(-t-2)}{3!}\left(z_{1}-1\right)^{3}+\ldots
$$

Therefore

$$
\begin{align*}
& \text { const }_{z_{1}} \frac{1}{\left(1-z_{1}\right)^{3}\left(1+z_{1}\right)} \text {. } \\
& \left(1+(-t)\left(z_{1}-1\right)+\frac{(-t)(-t-1)}{2!}\left(z_{1}-1\right)^{2}+\frac{(-t)(-t-1)(-t-2)}{3!}\left(z_{1}-1\right)^{3}+\ldots\right) \tag{2}
\end{align*}
$$

By subtitled
$\frac{1}{\left(1-z_{1}\right)^{3}\left(1+z_{1}\right)}=\frac{1 / 2}{\left(1-z_{1}\right)^{3}}+\frac{1 / 4}{\left(1-z_{1}\right)^{2}}+\frac{1 / 8}{\left(1-z_{1}\right)}+\frac{1 / 8}{\left(1+z_{1}\right)}$
$\frac{1}{\left(1-z_{1}\right)^{2}\left(1+z_{1}\right)}=\frac{1 / 2}{\left(1-z_{1}\right)^{2}}+\frac{1 / 4}{\left(1-z_{1}\right)}$
And
$\frac{1}{\left(1-z_{1}\right)\left(1+z_{1}\right)}=\frac{1 / 2}{\left(1-z_{1}\right)}+\frac{1 / 2}{\left(1+z_{1}\right)}$
Into (2), and sum the terms with similar denominator, we get
const $_{z_{1}}\left(\frac{1 / 2}{\left(1-z_{1}\right)^{3}}+\frac{1 / 4+t}{\left(1-z_{1}\right)^{2}}+\frac{1 / 8+t / 4+1 / 4(-t)(-t-1)}{\left(1-z_{1}\right)}+\right.$ $\left.\frac{1 / 8+t / 4+(-t)(-t-1) / 4}{4\left(1+z_{1}\right)}\right)$

By substation $t=2 b-a+3$, the constant is $\frac{(a-2 b)^{2}}{4}+\frac{2 b-a}{2}+\frac{1-(-1)^{a+1}}{8}$

Similarly to the first constant term computations, this identity is also valid for $a=2 b+2,2 b+1$ and $2 b$, hence
const $\left(\frac{z_{1}^{2 b-a+3}}{\left(1-z_{1}\right)^{2}\left(1-z_{1}^{2}\right)}\right)=$
$\begin{cases}0 & \text { if } a \leq 2 b+2 \\ \frac{(a-2 b)^{2}}{4}+\frac{2 b-a}{2}+\frac{1-(-1)^{a+1}}{8} & \text { if } a \geq 2 b\end{cases}$
For the last term, the constant is
const $\left(\frac{1}{\left(1-z_{1}\right)\left(1-z_{1}^{2}\right) z_{1}^{a}}\right)=$
const $_{z_{1}}\left(\frac{1 / 2}{\left(1-z_{1}\right)^{3}}+\frac{1 / 4+a / 2}{\left(1-z_{1}\right)^{2}}+\frac{1 / 8+a^{2} / 4+a / 2}{\left(1-z_{1}\right)}+\frac{(-1)^{a} / 8}{\left(1+z_{1}\right)}\right)$
$=\frac{a^{2}}{4}+a+\frac{7+(-1)^{a}}{8}$
Summing up all terms in (1) gives:
$\phi_{A}(a, b)=$
$\left\{\begin{array}{cl}\frac{a^{2}}{4}+a+\frac{7+(-1)^{a}}{8} & \text { if } a \leq b \\ a b-\frac{a^{2}}{4}-\frac{b^{2}}{4}+\frac{a+b}{2}+\frac{7+(-1)^{a}}{8} & \text { if } \frac{a}{2}-1 \leq b \leq a+1 \\ \frac{b^{2}}{2}+\frac{3 b}{2}+1 & \text { if } b \leq \frac{a}{2}\end{array}\right.$
Also, we can show that, by corollary (1)

$$
\phi_{\mathrm{A}}(\mathrm{a}, \mathrm{~b})=\phi_{\mathrm{A}}(-\mathrm{a}-4,-\mathrm{b}-3)
$$

We also modified the method of finding partial fraction using the following theorem which stat that:

Theorem (2), [7, p.273]:

If a is a simple root of $\mathrm{Q}(\mathrm{x})$ so that $\mathrm{Q}(\mathrm{x})=(\mathrm{x}-\mathrm{a}) \mathrm{Q} 1(\mathrm{x}), \mathrm{Q} 1(\mathrm{a}) \neq 0$, then the function $\frac{P(x)}{Q(x)}$ can be written in one and only one way in the form $\frac{P(x)}{Q(x)}=\frac{C}{x-a}+\frac{P 1(x)}{Q 1(x)}$ where C is a constant. C can be calculated by using the form $\mathrm{C}=\frac{\mathrm{P}(\mathrm{a})}{\mathrm{Q}_{1}(\mathrm{a})}=\frac{\mathrm{P}(\mathrm{a})}{\mathrm{Q}^{\prime}(\mathrm{x})}$.

The same example is solved using a modified method by assuming that

$$
\frac{\mathrm{P}\left(\mathrm{z}_{2}\right)}{\mathrm{Q}\left(\mathrm{z}_{2}\right)}=\frac{1}{\left(1-\mathrm{z}_{1} \mathrm{z}_{2}\right)\left(1-\mathrm{z}_{1}^{2} \mathrm{z}_{2}\right)\left(1-\mathrm{z}_{2}\right) \mathrm{z}_{2}^{\mathrm{b}}}
$$

Write $\mathrm{Q}\left(\mathrm{z}_{2}\right)$ as

$$
\mathrm{Q}\left(\mathrm{z}_{2}\right)=\left(\mathrm{z}_{2}-\mathrm{a}_{1}\right)\left(\mathrm{z}_{2}-\mathrm{a}_{2}\right) \ldots\left(\mathrm{z}_{2}-\mathrm{a}_{\mathrm{k}}\right)
$$

therefore,

$$
\begin{aligned}
\mathrm{R}(\mathrm{z}) & =-\mathrm{z}_{1}\left(\mathrm{z}_{2}-\frac{1}{\mathrm{z}_{1}}\right) \cdot \mathrm{z}_{1}^{2}\left(\mathrm{z}_{2}-\frac{1}{\mathrm{z}_{1}^{2}}\right) \cdot\left(\mathrm{z}_{2}-1\right) \mathrm{z}_{2}^{\mathrm{b}} \\
& =-\mathrm{z}_{1}^{3}\left(\mathrm{z}_{2}-\frac{1}{\mathrm{z}_{1}}\right) \cdot\left(\mathrm{z}_{2}-\frac{1}{\mathrm{z}_{1}^{2}}\right) \cdot\left(\mathrm{z}_{2}-1\right) \mathrm{z}_{2}^{\mathrm{b}}
\end{aligned}
$$

Then

$$
\mathrm{Q}\left(\mathrm{z}_{2}\right)=\left(\mathrm{z}_{2}-\frac{1}{\mathrm{z}_{1}}\right) \cdot\left(\mathrm{z}_{2}-\frac{1}{\mathrm{z}_{1}^{2}}\right) \cdot\left(\mathrm{z}_{2}-1\right) \mathrm{z}_{2}^{\mathrm{b}}
$$

and $\mathrm{P}\left(\mathrm{z}_{2}\right)=-\frac{1}{\mathrm{z}_{1}^{3}}$, with constant $\mathrm{C}_{\mathrm{k}}=\frac{\mathrm{P}\left(\mathrm{a}_{\mathrm{k}}\right)}{\mathrm{Q}^{\prime}\left(\mathrm{a}_{\mathrm{k}}\right)}$.
Hence by computation we get,

$$
\begin{aligned}
& C_{1}=\frac{P\left(a_{1}\right)}{Q^{\prime}\left(a_{1}\right)}=-\frac{z_{1}^{b+1}}{\left(1-z_{1}\right)^{2}}, \\
& \mathrm{C}_{2}=\frac{\mathrm{P}\left(\mathrm{a}_{2}\right)}{\mathrm{Q}^{\prime}\left(\mathrm{a}_{2}\right)}=-\frac{\mathrm{z}_{1}^{3+2 \mathrm{~b}}}{\left(1-\mathrm{z}_{1}\right)\left(1-\mathrm{z}_{1}^{2}\right)}
\end{aligned}
$$

and

$$
\mathrm{C}_{3}=\frac{\mathrm{P}\left(\mathrm{a}_{3}\right)}{\mathrm{Q}^{\prime}\left(\mathrm{a}_{3}\right)}=-\frac{1}{\left(1-\mathrm{z}_{1}\right)\left(1-\mathrm{z}_{1}^{2}\right)}
$$

Those are the constant terms that are founded as before. All other constant can be found using the same way. This makes the solution easier.

Theorem (3), [2]:

If P is a convex rational polytope, then the functions $\quad L_{P}(t)$ and $L_{p}^{\circ}(t)$ are quasipolynomials in t whose degree is the dimension pf P . if P has integer vertices, then $L_{P}(t)$ and $L_{p}^{\circ}(t)$ are polynomials.

Theorem (4), [2]:

The quasi-polynomials $\quad L_{P}(t)$ and $L_{p}^{\circ}(t)$ satisfy

$$
\mathrm{L}_{\mathrm{P}}(-\mathrm{t})=(-1)^{\mathrm{dimP}} \mathrm{~L}_{\mathrm{P}}^{\circ}(\mathrm{t})
$$

Suppose the convex rational polytope $\mathrm{P} \subset \mathrm{R}^{\mathrm{d}}$ is given by an intersection of half spaces, that is $P=\left\{x \in R^{d}: A x \leq b\right\}$, where $\mathrm{A} \in \mathrm{M}_{\text {mxd }}$ and $\mathrm{b} \in \mathrm{Z}^{\mathrm{m}}$. We may convert these inequalities into equalities by introducing slack variables.

If P has rational vertices, we can choose A and b in such a way that their entries are integer, without loss of generality nonnegative ones.

The connection to vector partition functions is now evident. Since $t P=\left\{x \in R_{20}^{d}: A x \leq t b\right\}$, we obtain $L_{P}(t)=\phi_{A}(t b)$ as special evaluation of $\phi_{\mathrm{A}}(\mathrm{b})$ as an example, the quadrilateral Q described by
$x, y>0, \quad x+2 y \leq 5$
$x+y \leq 4$
As special case of the polygons appearing in section (4) with vertices $(0,0),(4,0),(3,1)$ and $(0,5 / 2)$ has the Ehrhart -quasi polynomial

$$
L_{Q}(t)=\phi_{A}(5 t, 4 t)=\frac{23}{4} t^{2}+\frac{9}{2} t+\frac{7+(-t)^{t}}{8}
$$

References

[1] J.Gubeladze, Course in information, Math 890, Discrete Geometry Fall (2003), math.sfsu.edu/gubeladze/fall2003/discrete. pdf-63k., (2003).
[2] R. P. Stanley, Enumerative combinatorics, Wadsworth \& Brooks/ Cole Advanced Books \& software, California, 1986.
[3] A. I.Barvinok, computing the Ehrhart polynomial of a convex lattice polytope, Discrete Comput. Geom. 12, n0. 1, (1994), 35-48
[4] M. Beck, counting lattice points by means of the residue theorem, Ramanujan J. 4, (3), (2000), 299-310.
[5] M. Beck, R.Diaz, and S.Robins, the Frobenius problem, rational polytopes, and Fourier Dedekined sums, J. Number Theory 96, no. 1, (2002), 1-21.
[6] A.S. Shatha, on the volume and integral points of a polyhedron in \mathfrak{R}^{n}, Ph.D thesis, Al-Nahrain University, collage of science/ Mathematics and Computer application, 2005.
[7] L. R. Ford, SR., and L. R. Ford, SJ., Calculus, McGraw-Hill Book Company. Inc., 1963.
[8] M. Beck and D. Pixton, the Ehrhart Polynomial of the Brikhoff polytope, Discrete Comput. Geom. 30, no. 4, (2003), 623-637.
[9] M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10, no. 4, (1997), 797833.
[10] S. E. Cappell and J. L Shaneson, EulerMaclaurin expansions for lattice above dimesion one, C. R. Acad. Sci. Paris S'er. I Math. 321, no. 7, (1995), 885-890.
[11] B. Chen, Lattice points, Dedekined sums, and Ehrhart polynomials of lattice polyhedra, Discrete Comput. Geom. 28, no. 2, (2002), 175-199.
[12] R. Diaz, and S. Robins, the Ehrhart polynomials of a lattice polytpe, Ann. of Math. (2) 145, no. 3, (1997), 503-518.
[13] J. E. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295, no. 1, (1993), 1-24.
[14] M. Beck, J. A. De. Loera, M. Develin, J. Peifle and R. P. Stanley, Coefficients and roots of Ehrhart polynomials, conference on integer points in Polyhedra (13-17) July in Snowbird, 2003), 1-24.

$$
\begin{aligned}
& \text { الخلاصة } \\
& \text { حساب حجم متعدد الاضلاع وكذلك حساب عدد النقاط } \\
& \text { التي احداثيانها اعداد صحيحة في المجال R } \\
& \text { مهم جدا في فروع الرياضيات المختلفة متل نظرية الاعداد } \\
& \text { ونظرية النمثيل و متعدد الحدود ايرهارت في النوافيقية } \\
& \text { والنتشفبر والنظام الاحصائي. } \\
& \text { تم حساب متعدد الحدود ايرهارت باسخدام بعض الطرق. } \\
& \text { احدى هذه الطرق طورت واسنتتجنا مبرهنة لحساب معاملات } \\
& \text { متعدد الحدود ايرهارت. حبث قمنا بتحوبل المسالة الاصلبة } \\
& \text { الى حل منظومة برمجة خطبة صحيحة. والطريقة التي } \\
& \text { استخدمت لحساب المعاملات هي طريقة تجزئة الكسور . }
\end{aligned}
$$

