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Abstract

In this paper we introduce the numerical solutions of two-sided fractional partial differential
equations with or without parameter. The algorithm for the numerical solution for these equations is
based on finite difference method. Finally, some numerical examples are provided to show that the
numerical method for solving these cases is an effective solution method.

Introduction

The idea has emerged that the fractional
partial differential equations, obtained from
the standard partial differential equations that
replace the standard partial derivatives by
fractional partial ~ derivatives, may more
accurately describe some physical problems
than the corresponding standard partial
differential equations [1].

More and more works by researchers from
various fields of science and engineering deal
with  dynamical systems described by
fractional-partial differential equations, which
have been used to represent many natural
processes in physics, finance, and hydrology, [2, 3,
49].

Liu F. et al. [5] considered the fractional
Fokker-Planck equation and presented its
numerical solution. Recently, Liu F. et al. [6]
also treated the fractional advection-dispersion
equations and derived the complete solution of
this equation with an initial condition.

In this paper presents a practical numerical
method for solving the two-sided fractional
partial differential equation with or without
parameter of the form:

o augt(,t) {C( t)a"u(xt) o (x t)a“u(xt)}
and
° ou(xt) 0“u(x,t) o u(x,t)
o =c, (x,t) ot +c_(xt) YT +5(x,t)

respectively.

We use a variation on the classical explicit
Euler method. We prove this method by using
a novel shifted version of the usual grunwaled
finite difference an approximation for the non-
local fractional derivative operator.
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Finite Difference Method for Solving the
Two-Sided Fractional partial Differential
Equations without Parameter

In this section, we use the finite difference
method to solve the two-sided fractional
partial differential equations of the form:

au(x,t) o“u(x,t) auxt) o 1.a
a1 =c,(xt) ot +C_(x,t) Iz +5(x,1) (1.9)
subject to the initial condition
U(x,0)=Ff(X), L<X<R i (1.b)
and the boundary conditions
u(L,t) =ky(t), O<t<T oovrivivrrrrnn (1.c)

U (RD) = ko(t), 0<t<T

where c., c. and s are known functions of x
and t, f is a known function of x, g and k are
known function of t and a is a given fractional
number.

When a=2 andc(x,t)=c, (x,t)+c (xt),
eq.(1) becomes the following classical
parabolic partial differential equation:

8u((3>t< NN — c(x t)a u(x t)

Similarly, when a=1 andc(x,t)=c+(x,t)+c_(x,t),
eq.(1) reduces to the following classical
hyperbolic partial differential equation

ou(x,t) ou(x,t)

ot X

The finite difference method starts by
dividing the x-interval [L,R] into n subintervals
to get the grid points xj= L + iAXx, where
Ax=(R-L)/nand i=0,1,...,n. Also, the t-
interval [0,T] is divided into m subintervals to
get the grid points t= jAt,  j= 0,1,...,m, where
At=T/m.

Next, by evaluating eq.(1) at (x;,t;) and use
the explicit Euler method one can get:

+s(x,t)

=c(x,t) +s(x,t)



u(x,t,,,)—u(x,t;) o“u(x;,t.)
' L=c (x.t)) L
At 0,x”
Ci(Xi,tj)aal;():;tj) +S(Xi,tj)+O(At) .................. (2)

Then use the shifted Grunwald estimate to
the a- the fractional derivative, [7]:

ou() _ e (3)
P (Ax) 2. u(x—(k =1DAx,t) + O(Ax)
whereg | - Fl)kW’ k=0,1,2,...
Therefore, eq.(2) beéomes
ui,'+ _u i i+1 n-i+l
JlAt = AX] zgk Ik+l] zgk I+k1]+s
i=12,..,n-1 j _O,L...,m—l ........................ 4
where  u;; =u(x;,t;), c,;;=c.(X,Y;),
C,; =C_(x,y;)and s;; =s(x;,t;).

The resulting equation can be explicitly
solved for u;j+1 to give

i+l n—i+l

Ui ju :[;’Z OkUissn, +Uzgkui+k-1,j +ALS;  +U; 5,
k=0 k=0

i=212,..,0=1 j=01...M—Lererrrrrerrerrerenns (5)
A\ At
where 3= and —=¢. 2 .
= (Ax)“ 1=C; (AX)*
Also form the initial condition and

boundary conditions one can get
Uio = f(Xi), 1=0,1,...,n
Uj= kl(tj),j:(),l,..., m
Urj = kg(tj),j:(),l,..., m

By evaluating eq.(5) at each i=1.2,...,n—1and
j=01,...,m-1and using the above three one
equations one can get the numerical solutions of

eqg.(1).

Finite Difference Method for Solving the
Two-Sided Fractional Partial Differential
Equations with Parameter

In this section, we demonstrate the finite
difference method to solve the two-sided
fractional partial differential equations of the
form:

6ugt<,t) ¢ (1) XY 6"U(X H. e (x1) 6‘;U(Xa,t) ........ (6)
X
subject to the |n|t|al condition
u(x,0) =f(x), L<X<R.iiiiiiieinn @)

and the boundary conditions

129

1. 1. Gorial

U (L) = Ka(1), e,

u(R,t) =ky(t), 0<t<T

Where ¢, and c. are known functions of x
and t, f is a known function of x, g and k are
known function of t, o is a given fractional
member and A is a scalar parameter. The
problem here is to find the eigenpair (A,u)
which satisfy eq.(7)-(8).

This equation can be written as an
eigenvalue problem Au:XBu, where

+c(xt)a

0
A=—,B=c, (xt
P ( )

When «a=2

eq.(6) becomes
eigenvalue problem

augt(,t) {( t)a u(x, t)}

and c(x,t) = c+(x,t) +c_(x,t),
the following classical

Similarly, when a=1 andc(x,t)=c,(xt)+c (x.t),
eq.(6) reduces to the following eigenvalue
problem

6u(x,t)

ot

{c( 1)

By following the same previous steps,
eq.(6) reduces to

ou(x, t)}

u(xi,tm)—u(xi,tj) “ ¢ (Xi ) o“u (X )
At IR 0 X"
C(Xi,t,-)%}row) --------- (@)

Also use is made of the shifted Grunwald
estimate to the o-th fractional derivative given
by eq.(3) to reduce eq.(6) as in the following
form

|Ji J+ i,' +i, e -, it
. lAt = |: l ng i k+1] l ng i+k 1]]’
i=12,..,n-1 J:O,:L,,.,m—]_ ......................... €)]
Where ui,j :u(xiltj)’ +|J =C (X y )’
*'J =C (x,,y ) and Uy :(—1)kW’
k=0,1,2,... |
Also from the initial condition and

boundary condition one can get
Uio = f(Xi), iZO,l,..., n
Uj= kl(tj),j:(),l,..., m
Urj = kz(tj),jzo,l,..., m

By evaluating eq.(9) at i=12,...,n-1land
j=01,...,m—10ne can get a system of algebraic
equations which can be solved by any suitable
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method to get the eigenpair
(ﬁ,, {ui,j}i=1,2 ..... n—1) .
j=1,2,...m-1

Numerical Examples

In this section, two numerical examples are
presented, showing the fractional partial
differential behaviors of the solution with the
parameter ¢ .

Example 1: Consider the two-sided fractional

partial differential equation:

ou(x,t) 15 07°u(x,t)
ot

15
X

=I(0.5)x +T(0.5)(0.4—x)"° +

oMu(x,t)
subject to the initial condition
u((x,00=2x,0<x<0.4

and the boundary conditions
u(0,t)=0,0<t<0.025
u(0.4,t)=0.8¢',0<t<0.025

+4xe' —0.8¢e!

This fractional partial differential equation
together with the above initial and boundary
condition is constructed such that the exact
solution is u(x,t) = 2xe".

The numerical solution of example (1) by
using the finite difference method for
Ax=0.1and At =0.0125

Exact
Solution

0.Y.YoY
0.£:0:¥
0.1.voo
0.Y.0:1
0.6V )Y
0.11014

Numerical
Solution

0.17700
0.39300

0.60600
0.16800
0.39900
0.61000

Example 2: Consider the two - sided fractional
partial differential equation:

au(x,t) 15 07u(x 1)

a+X1.8

15 07u(x 1)
18

= | T(02)x

+1(0.2)(02-x)" — N

subject to the initial condition
u (x,0) =x+1.125,0<x<0.2
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and the boundary conditions
u (0,t) = e +0.125, 0 < t< 0.005
u (0.2,t) = e'+0.325, 0 < t< 0.005

This fractional partial differential equation
together with the above initial and boundary
condition is constructed such that the exact
solution is u(x,t) = x + e* + 0.125

The numerical solution of example (2) by
using the finite difference method for
Ax = 0.05and At = 0.0025

Exact
Solution

L Y200
VYo,
XYYo.
Xvye.
AV
XYoo
V)

Numerical
Solution

+.1Ye00
1400
.YYY00
Y400
A1Y00
AAARE

YYYO00

).50000E -3
V.+Y000E -3
19« E-4
¥.4900E -

)
)
\
)
)
\
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