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Abstract 

In this paper we introduce the numerical solutions of two-sided fractional partial differential 

equations with or without parameter. The algorithm for the numerical solution for these equations is 

based on finite difference method. Finally, some numerical examples are provided to show that the 

numerical method for solving these cases is an effective solution method.  

 

Introduction 

The idea has emerged that the fractional 

partial differential equations, obtained from 

the standard partial differential equations that 

replace the standard partial derivatives by 

fractional partial derivatives, may more 

accurately describe some physical problems 

than the corresponding standard partial 

differential equations [1]. 

More and more works by researchers from 

various fields of science and engineering deal 

with dynamical systems described by 

fractional-partial differential equations, which 

have been used to represent many natural 

processes in physics, finance, and hydrology, [2, 3, 

4,9].  

Liu F. et al. [5] considered the fractional 

Fokker-Planck equation and presented its 

numerical solution. Recently, Liu F. et al. [6] 

also treated the fractional advection-dispersion 

equations and derived the complete solution of 

this equation with an initial condition.  

In this paper presents a practical numerical 

method for solving the two-sided fractional 

partial differential equation with or without 

parameter of the form: 
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respectively. 

We use a variation on the classical explicit 

Euler method. We prove this method by using 

a novel shifted version of the usual grunwaled 

finite difference an approximation for the non-

local fractional derivative operator.  

 

Finite Difference Method for Solving the 

Two-Sided Fractional partial Differential 

Equations without Parameter 

In this section, we use the finite difference 

method to solve the two-sided fractional 

partial differential equations of the form: 
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  ...... (1.a) 

subject to the initial condition  

u (x,0) = f(x),  L  x  R  ...................... (1.b) 

and the boundary conditions 

 

u (L,t) = k1(t),  Tt 0  .......................  (1.c) 

u (R,t) = k2(t),  Tt 0  
 

where c+, c- and s are known functions of x 

and t, f is a known function of x, g and k are 

known function of t and  is a given fractional 

number. 

When =2 and ),(),(),( txctxctxc   ,          

eq.(1) becomes the following classical 

parabolic partial differential equation: 
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Similarly, when =1 and ),(),(),( txctxctxc   , 

eq.(1) reduces to the following classical 

hyperbolic partial differential equation 
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The finite difference method starts by 

dividing the x-interval [L,R] into n subintervals 

to get the grid points xi= L + ix, where 

nLRx )(  and i=0,1,…,n. Also, the t-

interval [0,T] is divided into m subintervals to 

get the grid points tj= jt,    j= 0,1,…,m, where 

mTt  . 

Next, by evaluating eq.(1) at (xi,tj) and use 

the explicit Euler method one can get: 
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 ..................  (2) 

Then use the shifted Grunwald estimate to 

the - the fractional derivative, [7]: 
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Therefore, eq.(2) becomes  

,
)()(

,

1

0

,1

,
1

0

,1

,,1,

ji

in

k

jkik

ji
i

k

jkik

jijiji
sug

x

c
ug

x

c

t

uu





























, 

,1,...,2,1  ni 1,...,1,0  mj  ........................  (4)  

where ),(, jiji txuu  , ),(, jiji yxcc   , 

),(, jiji yxcc    and ),(, jiji txss  .                                           

The resulting equation can be explicitly 

solved for ui,j+1 to give 
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Also form the initial condition and 

boundary conditions one can get 

      ui,0 = f(xi), i=0,1,…, n 

      uL,j = k1(tj), j=0,1,…, m 

      uR,j = k2(tj), j=0,1,…, m 

 

By evaluating eq.(5) at each 1,...,2,1  ni and 

1,...,1,0  mj and using the above three one 

equations one can get the numerical solutions of 

eq.(1). 

 

Finite Difference Method for Solving the 

Two-Sided Fractional Partial Differential 

Equations with Parameter 

In this section, we demonstrate the finite 

difference method to solve the two-sided 

fractional partial differential equations of the 

form: 
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subject to the initial condition 

u(x,0) = f(x), L < x < R ...........................  (7) 

and the boundary conditions 

u (L,t) = k1(t), ........................................... (8) 

u (R,t) = k2(t),  Tt 0  

Where c+ and c- are known functions of x 

and t, f is a known function of x, g and k are 

known function of t,  is a given fractional 

member and  is a scalar parameter. The 

problem here is to find the eigenpair (,u) 

which satisfy eq.(7)-(8). 

This equation can be written as an 

eigenvalue problem Au=Bu, where 
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When =2 and ),(),(),( txctxctxc   ,   

eq.(6) becomes the following classical 

eigenvalue problem 
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Similarly, when =1 and ),(),(),( txctxctxc   , 

eq.(6) reduces to the following eigenvalue 

problem 
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By following the same previous steps, 

eq.(6) reduces to 
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Also use is made of the shifted Grunwald 

estimate to the -th fractional derivative given 

by eq.(3) to reduce eq.(6) as in the following 

form 
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k=0,1,2,… 

Also from the initial condition and 

boundary condition one can get 

    ui,0 = f(xi), i=0,1,…, n 

    uL,j = k1(tj), j=0,1,…, m 

    uR,j = k2(tj), j=0,1,…, m 

 

By evaluating eq.(9) at 1,...,2,1  ni and 

1,...,1,0  mj one can get a system of algebraic 

equations which can be solved by any suitable 
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method to get the eigenpair 
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Numerical Examples 

In this section, two numerical examples are 

presented, showing the fractional partial 

differential behaviors of the solution with the 

parameter . 

 

Example 1: Consider the two-sided fractional 

partial differential equation: 
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subject to the initial condition   

u (x,0) = 2x, 0  x  0.4 

and the boundary conditions 

u (0,t) = 0, 0  t 0.025 

u (0.4,t) = 0.8 e
t
, 0  t 0.025 

This fractional partial differential equation 

together with the above initial and boundary 

condition is constructed such that  the exact 

solution is u(x,t) = 2xe
t 
. 

 

The numerical solution of example (1) by 

using the finite difference method for 

1.0x and 0125.0t  

 

Numerical 

Solution 

Exact 

Solution 

Error 

0.17700 0.25202 2000255 E-2 

0.39300 0.35054 0025455 E-2 

0.60600 0.55700 0000555 E-3 

0.16800 0.25055 4075555 E-2 

0.39900 0.30504 0000455 E-2 

0.61000 0.50006 0006555E-3 

 

Example 2: Consider the two - sided fractional 

partial differential equation:  
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subject to the initial condition 

u (x,0) = x+1.125, 0  x  0.2 

and the boundary conditions 

     u (0,t) = e
-t
 +0.125, 0  t 0.005  

     u (0.2,t) = e
-t 

+0.325, 0  t 0.005 

This fractional partial differential equation 

together with the above initial and boundary 

condition is constructed such that the exact 

solution is u(x,t) = x + e
-t
 + 0.125 

 

The numerical solution of example (2) by 

using the finite difference method for 

05.0x and 0025.0t  

 

Numerical 

Solution 

Exact 

Solution 

Error 

5052000 5052000 0 

0005600 0007205 4005555E
 
-3 

0022400 0022205 0055555E
 
-4 

0027300 0027205 0050000E
 
-3 

0005400 0007550 7050000E
 
-3 

0022055 0022550 6065555 E
 
-4 

0027400 0027550 2069005E
 
- 

 

References 
 

[1] F. Huang and F. Liu, “The Time Fractional 

Diffusion Equation and the Advection-

Dispersion Equation”, Anziam Journal,          

Vol. 46, 2005, PP. 1-14. 

[2] J. P. Bouchaud and A. Georges, 

“Anomalous Diffusion in Disordered 

Media Statistical Mechanisms”, Phys. 

Rep., Vol. 195 , 1990, 127–293. 

[3] W. R. Schneider and W. Wyss, “Fractional 

Diffusion and Wave Equations”, J. Math. 

Phys., Vol. 30, 1989, PP. 134-144.   

[4] B. Baeumer, M. M. Meerschaert, D. A. 

Benson and S. W. Wheatcraft, 

“Subordinated Advection Dispersion 

Equation for Contaminant Transport”, 

Water Resources Res., Vol. 37, 2001, 

PP.1543–1550. 

[5] R. Lin and F. Liu, “Analysis of Fractional-

Order Numerical Method for the Fractional 

Relaxation Equation”, J. Comp. Appl. 

Math., Vol. 91, 2004, PP. 198-210. 

[6] F. Liu, V. Anh, I. Turner and                           

P.Zhuang,“Tim Fractional Advection- 

Dispersion Equation”, J. Appl. Math. 

Computing, Vol. 13, 2003, PP. 223-245. 



I. I. Gorial 

 131 

[7] M. Meerschaert and C. Tadjeran, “Finite 

Difference Approximation for Fractional 

Advection Dispersion Flow Equations”, J. 

Comp. Appl. Math., Vol. 172, 2004,       

PP. 65-77. 

[8] C. Lubich, “Discretized Fractional  

Calcculus ”, SIAM.J. Math. Anal, Vol. 17, 

1986, PP. 704-719. 

[9] M. Meerschaert and C. Tadjeran, “Finite 

Difference Approximations for Two- Sided 

Space- Fractional Partial Differential 

Equations”, Appl. Numer. Math., Vol. 56, 

2006, PP. 80-90. 

 

 

 الخلاصة
ذفييهذاييلبذب قديياذاييل الذب ديي ذب  ييلل ذ  ل  ييلل اذب اضليييل   

ذ نب ذذ. يييييبذونذقيييييلن ذ ا  ييييي ذذباجيييييلا   ذلباذذب كسييييي    ذب جزئ ييييي  
خنب ز  ييي ذب دييي ذب  يييلل ذ الييياذب   يييلل اذالئ ييي ذ لييي ذبسيييل ذ

 ب ض نقذب  ااه  .

اييهذااقيياذب ذب  يي قذاييل الذق ييمذب  اليي ذب  لل يي ذنب ذبخ يي ب ذ
ب  لل يي ذ ديي ذاييلاذب   ييلل اذاييهذ يي قذلباذديي ذ يي ا ذف ييل ذ

ذ. ققن 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


