TOTALLY M*-PARANOORMAL OPERATORS

Buthainah A. Ahmed and Sadiq Naji Nassir Department of Mathematics, College of Science, University of Baghdad.

Abstract

In this paper we introduce a class of operators on a Hilbert space, we call the elements of this class totally M*-paranormal operator. We study some basic properties of these operators and we give some sufficient conditions for a totally M*-paranormal operator to be normal operator.

Introduction

Let H be a separable complex Hilbert space and B(H) be the Banach algebra of all bounded linear operators on H. An operator T is called *-paranormal if $\|T^*x\|^2 \le \|T^2x\|$ for every unit vector x in H [3], T is called dominant operator if for each $\lambda \in \phi$ there exists a number $M_{\lambda} > 0$ such that $||(T - \lambda)^* x|| \le M_{\lambda} ||(T - \lambda)x||$ for all $x \in H$. Furthermore, if the constants M_{λ} are bounded By a positive number M, then T is called M-hyponormal operator [2]. Let $\sigma(T), \sigma_{n}(T), \sigma_{an}(T), \rho(T)$ denote the spectrum, the point spectrum, the approximate point spectrum of T and the resolvent of T respectively and let $E_{\tau}(\mu)$ be the μ -space of

T that is $E_T(\mu) = \{x \in H : Tx = \mu x\}.$

Totally M*-paranormal operator, definitions and some basic properties .

Definition 1.1 Let $T \in B(H)$, we call T a totally M*-paranormal operator if for each

 $\lambda \in \sigma(T)$ there exists a number $M_{\lambda} > 0$ such

that $\left\| (T-\lambda)^* x \right\|^2 \le M_{\lambda} \left\| (T-\lambda)^2 x \right\|$ for all x \in H, with ||x|| = 1.

Example 1.2

1-Let T:H \rightarrow H ,defined as follows T=4iI then T is totally M*-paranormal operator.

2- Let H = $\ell_2(\phi) = \{x: x = (x_1, x_2, x_3, \dots, x_n)\}$ $\sum_{i=1}^{\infty} |x_i|^{\bar{}} < \infty \} \text{ define } T:H \rightarrow H \text{ as follows}$

 $T(x_1, x_2, x_3,...) = (0, x_1, 0, 0,)$. It is easy to check that $T^*(x_1, x_2, x_3,...) = (x_2, 0, 0, 0,)$, and $\sigma(T) = \{0\}$, if we take $x = (0, x_2, x_3, x_3, x_4)$ x_4,\ldots). such that $x_2 \neq 0$ then Tx=0 and T^2 x=0 but $T^*(x_1, x_2, x_3) = (x_2, 0, 0, 0, ...) \neq 0.$ Therefore T is not M*-paranormal operator.

Proposition 1.3

Let $T \in B(H)$, T is totally M*-paranormal operator if and only if for each $\lambda \in \mathfrak{c}$, there exists a number $M_{i} > 0$ such that $\left\| (T-\lambda)^* x \right\|^2 \le M_{\lambda} \left\| (T-\lambda)^2 x \right\|, \text{ for all } x \in \mathbf{H}.$

Proof:

Suppose that T is a totally M*-paranormal operator and let $\lambda \in \rho(T)$ then T- λI is invertible therefore

$$\|(T-\lambda)^* x\|^2 \le \|(T-\lambda)^*\| \| \|x\|^2 \le \|(T-\lambda)^*\|^2 \| (T-\lambda)^2 x\|$$

Let $M_{\lambda} = \|(T-\lambda)^*\|^2 \| (T-\lambda)^{-2} \|$, then T is a totally M*-paranormal operator.
The other direction is clear.

Proposition 1.4

Let $T \in B(H)$, T a totally M*-paranormal operator if and only if $M_{\lambda}^{2}(T^{*}-\overline{\lambda})^{2}(T-\lambda)^{2}-2k(T-\lambda)(T-\lambda)^{*}+k^{2}\geq 0$ for each k > 0.

Proof:

We know that for each positive b_{λ} and c_{λ} , $c_{\lambda} - 2b_{\lambda}k + k^2 \ge 0$ for all k >0 if and only if $b_{\lambda}^{2} \leq c_{\lambda}$. Let $b_{\lambda} = \left\| (T - \lambda)^{*} x \right\|^{2}$ and $c_{\lambda} = M_{\lambda}^{2} \| (T - \lambda)^{2} x \|^{2}, \| x \| = 1.$ Then T is a totally M*-paranormal operator if and only if $b_{\lambda}^{2} \leq c_{\lambda}$ this means that T is a totally M*-paranormal operator if and only if $M_{\lambda}^{2} \| (T - \lambda)^{2} x \|^{2} - 2k \| (T - \lambda)^{*} x \|^{2} + k^{2} \ge 0.$

Proposition 1.5

Let T be a totally M*-paranormal operator, then: $1-T-\lambda I$ and λT are totally M*- paranormal operators.

2- if T is invertible operator then T^{-1} is totally M*-paranormal operator

Proof :(1)

 $\left\| \begin{bmatrix} (T - \lambda I) - \alpha I \end{bmatrix}^* x \right\|^2 = \left\| \begin{bmatrix} T - (\lambda + \alpha) I \end{bmatrix}^* \right\|^2$ $\leq M_{\lambda} \left\| \begin{bmatrix} T - (\lambda + \alpha) I \end{bmatrix}^2 x \right\| \leq M_{\lambda} \left\| \begin{bmatrix} (T - \lambda) - \alpha \end{bmatrix}^2 x \right\|$ If $\lambda = 0$, then λT is totally M*-paranormal operator. Suppose that $\lambda \neq 0$ then

Suppose that $\lambda \neq 0$ then

$$\left\| \left(\lambda T - MI \right)^* x \right\|^2 = \left| \lambda \right|^2 \left\| \left[T - \left(M / \lambda \right) I \right]^* x \right\|^2$$

$$\leq M_{\lambda} \left| \lambda \right|^2 \left\| \left[T - \left(M / \lambda \right) I \right]^2 x \right\| \leq$$

 $M_{\lambda} \| [(\lambda T - MI)^2 x] \|$ Hence λT is totally M*paranormal operator.

(2) if
$$\lambda = 0$$
 then $\|T^{*^{-1}}x\|^{2} \leq \|T^{*^{-1}}\|^{2} \|x\| \leq \|T^{*^{-1}}\|^{2} \|T^{-2}x\|$, take
 $M_{0} = \|T^{*^{-1}}\|^{2} \|T^{2}\|.$
let $\lambda \neq 0$ then $\|(T^{*^{-1}} - \overline{\lambda})x\|^{2} = \|-\overline{\lambda}T^{*^{-1}}[T^{*} - (1/\overline{\lambda})I]x\|^{2} \|x\| = |\lambda|^{2} \|T^{*^{-1}}\|^{2} \|[T^{*} - (1/\overline{\lambda})I]x\|^{2} \leq M_{1/\lambda} |\lambda|^{2} \|T^{*^{-1}}\|^{2} \|[T^{-1} - (1/\overline{\lambda})I]x\|^{2} \leq M_{1/\lambda} \|T^{*^{-1}}\|^{2} \|T^{2}\| \|(T^{-1} - \lambda I)^{2}x\|$
 $\leq M_{1/\lambda} \|T^{*^{-1}}\|^{2} \|T^{2}\| \|T^{2}\| \|(T^{-1} - \lambda I)^{2}x\|$, take
 $M_{\lambda} = \|T^{*^{-1}}\|^{2} \|T^{2}\| \|T^{2}\| \|M_{1/\lambda}$.

Hence T^{-1} is totally M*- paranormal operator. By using definition it is easy to prove the following Proposition

Proposition 1.6

Let T a totally M*-paranormal operator then :

1-E_T(λ)⊆ $E_{T^*}(\overline{\lambda})$ for all λ∈¢, in fact if x is an eigenvector for T with eigenvalue λ then x is an eigenvector for T* with eigenvalue $\overline{\lambda}$.

2- For a fixed scalar λ , $E_T(\lambda)$ reduces T

3- $E_{T}(\lambda) \perp E_{T}(\mu)$ whenever $\lambda \neq \mu$.

For any operator $T \in B(H)$, we set $Re(T)=(1/2)[T + T^*]$, and $ImT=(1/2i)[T - T^*]$, [1.p148].

Proposition 1.7

Let T a totally M^* -paranormal operator then :

1- if $\sigma(T) \cap \mathbb{R} \neq \phi$ then $0 \in \sigma_{ap}(\operatorname{Im} T)$. 2- if $\sigma(T) \cap \operatorname{iR} \neq \phi$ then $0 \in \sigma_{ap}(\operatorname{Im} T)$.

3-Re $\sigma(T) \subset \sigma_{ap}(\text{Re}T)$.

4- Im
$$\sigma(T) \subset \sigma_{m}(\operatorname{Im} T)$$
.

Proof:

1-Since $\sigma(T) \cap \mathbb{R} \neq \phi$ then there exists a real number r such that $r \in \sigma(T)$. Thus the line $L=\{z \in \phi \mid Imz=Imr=0\}$ intersect $\sigma(T)$ at a boundary point c. Therefore $c \in \sigma_{ap}(T)$. Then there exist a sequence of unit vectors $\{x_n\}$ in H. Such that $(T-cI)x_n \to 0$ and $(T-cI)^2x_n \to 0$ then $(T-cI)^*x_n \to 0$ when $n\to\infty$. Thus $(ImT - ImcI)x_n =$ $(1/2i)[(T-T^*)-(c-c)I]x_n \to 0$. Hence $Imc \in \sigma_{ap}(ImT)$. Thus $0 \in \sigma_{ap}(ImT)$ By the same way we can prove (2) (3) and (4)

By the same way we can prove (2),(3), and (4). It easy to prove the following theorem.

Theorem 1.8

- 1-Let $(T-\lambda I)$ be a *-paranormal for each $\lambda \in \sigma(T)$ then T is a totally M*-paranormal operator.
- 2-Let T be a dominant operator and $(T-\lambda I)$ is an idempotent operator for each $\lambda \in \sigma(T)$ then T is totally M*-paranormal operator.

Corollary1.9

Every M-hyponormal operator in particular, every hyponormal operator, normal operator, selfadjoint operator and $(T-\lambda I)$ is idempotent operator for each $\lambda \in \sigma(T)$ then T is totally M*-paranormal operator.

M*-paranormal operator and normal operators

The following theorems give conditions under which a totally M*-paranormal operator is normal operator.

Theorem 2.1

If T is a totally M*-paranormal operator then T can be expressed uniquely as the direct sum $T = T_1 \oplus T_2$ defined on the space $H=H_1\oplus H_2$ with the following properties:

1- H_1 is the closure of the space spanned by the eigenvectors of T

2- T_1 is normal

 $3 - \sigma_p(T_2) = \phi$

4-T is normal if and only if T₂ is normal

Proof:

1. Let $H_1 = \sum_{\lambda \in \sigma_p(T)} \bigoplus E_T(\lambda)$. Since H_1^{\perp} is a

closed linear subspace, then $H = H_1 \oplus H_2$ where $H_2 = H_1^{\perp}$ Let $T_1 = T|_{H_1}$ and $T_2 = T|_{H_2}$ then

T= T₁ \oplus T₂ uniquely 2- Let $H_1 = E_T(\lambda_1) \oplus E_T(\lambda_2) \oplus E_T(\lambda_3) \oplus \dots$

and $x \in H_1$. Then $x = x_{\lambda_1} + x_{\lambda_2} + x_{\lambda_3} + \dots$

for any
$$\mathcal{X}_{\lambda i} \in E_{T}(\lambda i)$$
, i. e., $x = \sum_{\lambda \in \sigma_{p}(T_{1})} x_{\lambda i}$

for each i, and
$$\sum |x|_{\lambda_{i}}^{2} < \infty$$

 $T_{1}^{*}T_{1}\left[\sum_{\lambda_{i} \in \sigma(T_{1})} x_{\lambda_{i}}\right] = T_{1}^{*}\left[\sum_{\lambda_{i} \in \sigma_{p}(T_{1})} T_{1}x_{\lambda_{i}}\right] =$
 $\lambda_{1}T_{1}^{*}x_{\lambda_{1}} + \lambda_{2}T_{2}^{*}x_{\lambda_{2}} + \lambda_{3}T_{3}^{*}x_{\lambda_{3}} + ...$
 $= |\lambda_{1}|^{2}x_{\lambda_{1}} + |\lambda_{2}|^{2}x_{\lambda_{2}} + |\lambda_{3}|^{2}x_{\lambda_{3}} + ...$ and
 $T_{1}T_{1}^{*}x = T_{1}T_{1}^{*}(x_{\lambda_{1}} + x_{\lambda_{2}} + x_{\lambda_{3}} + ...)$
 $= \overline{\lambda_{1}} Tx_{\lambda_{1}} + \overline{\lambda_{2}} Tx_{\lambda_{2}} + \overline{\lambda_{3}} Tx_{\lambda_{3}} +$
 $= |\lambda_{1}|^{2}x_{\lambda_{1}} + |\lambda_{2}|^{2}x_{\lambda_{2}} + |\lambda_{3}|^{2}x_{\lambda_{3}} +$

Hence T_1 is normal.

3- Suppose that $\sigma_p(T_2) \neq \phi$ and let $M \in \sigma_p(T_2)$ Then there exists $x \neq 0 \in H_2$ such that $(T_2 \cdot M)x = 0$.Since $T(0 + x) = T_2x = Mx = M(0 + x)$, hence x in H_1 .

This is contradiction to $H_2 = H_1^{\perp}$ and $x \neq 0$, therefore $\sigma_p(T_2) = \phi$ 4- Since

$$T = \begin{bmatrix} T_{1} & 0 \\ 0 & T_{2} \end{bmatrix}, \text{ and } T^{*} = \begin{bmatrix} T_{1}^{*} & 0 \\ 0 & T_{2}^{*} \end{bmatrix} \in B(H_{1}, H_{2})$$

Then $T^{*}T = \begin{bmatrix} T_{1}^{*}T_{1} & 0 \\ 0 & T_{2}^{*}T_{2} \end{bmatrix} \text{ and } TT^{*} = \begin{bmatrix} T_{1}T_{1}^{*} & 0 \\ 0 & T_{2}T_{2}^{*} \end{bmatrix}$
Thus $T^{*}T = TT^{*}$ if and only if $T_{2}^{*}T_{2} = T_{2}T_{2}^{*}$.

Theorem 2.2

Let $T \in B(H)$, be a totally M*-paranormal operator . If the eigenspaces $E_T(\lambda)$ of T Form a total family, then T is normal operator.

Proof:

Let H_0 be the null space of TT*-T*T, the problem is to show that $H_0=H$ or equivalently $H_0^{\perp} = \{\theta\}$, claim $E_T(\mu) \subseteq H_0$ for all μ . Let $x \in E_T(\mu)$, thus $T^* x \in E_T(\mu)$ Therefore $TT^*x = \mu$ $(T^*x)=T^*(\mu x)=T^*Tx$. Thus $(TT^*-T^*T)x=0$ and $x \in H_0$.

It follows that if $x \perp H_0$, then $x \perp E_T(\mu)$ for all M.But the eigenspaces form total family. Hence x=0 then $(TT^*-T^*T)x=0 \forall x \in H$. Thus T*T=TT* and T is normal operator Collarary 2.3

Let T - λ I be a *-paranormal for each $\lambda \in \sigma(T)$. If the eigenspaces $E_T(\lambda)$ of T from a total family then T is normal operator.

References

- [1] S.K. Berberrian, "Introduction to Hilbert space", Second edition. Chelsea Publising Company. New York.n .Y., 1976.
- [2] Hou., jinchaan ,"Some Results on Mhyponormal operators", Journal of math. Research and Exposition vol.4, No.2, 1984, pp.101-103.
- [3] C.S.Rtoo, "some class of operators" Math. J, Toyamess Univ, Vol. 21,1998,pp147-152.

الخلاصة

في هذا البحث نقدم صنفا من المؤثرات على فضاء هلبرت. يطلق على هذا الصنف من المؤثرات ب (المؤثرات الموازية للسوية من النمط - *M) سوف ندرس بعض الخواص الاساسية لهذه المؤثرات .كما نعطي بعض الشروط عليها للحصول على المؤثر السوي.