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Abstract

Let f,g: X —=X be maps of a compact connected Riemannian manifold, with or without
boundary. For & > 0 sufficiently small, we introduce an € — Nielsen coincidence number N=(f,g)
that is a lower bound for the number of coincidence points of all self — maps that are € - homotopic
to f and g. We prove that there is always maps fi, g1: X — X that is € — homotopic to f and g such that

fi and g4 have exactly N=(f, g) coincidence points.

Introduction

The Nielsen coincidence point theory
applied to study of the calculation by computer
of multiple solutions of systems of
polynomials  equations,using a  Nielsen
coincidence number to obtain a lower bound
for the number of distinct solution [5].

Because machine accuracy is finite, the
solution procedure requires approximations,
but the information is still applicable to the
original problem. The reason is that
sufficiently close functions on well - behaved
spaces are homotopic and Nielsen coincidence
number is a homotopy invariant. Although the
homotopy between two sufficiently close maps
are through maps that are close to both, no
limitation on the homotopies employs. The
purpose of this paper is to introduce a type of
Nielsen coincidence point theory that does
assume that a specified to-lerance for error
must be respected.

If distortion is limited to a pre—assigned
amount, then it may not bepossible, without
exceeding the limit, to deform maps f and g so
that it has exactly N(f,g) coincidence points.
For very simple example, consider the maps
fog:l —=1=1[01] such that

flo =gf2/3) =1, g(0)
=g{2f3} = ﬂ,fﬂ:'l.-"f:E} = f( 1 ) = 0 and
g(1/3) = g(1) =1 . If the maps f; and g1 have
N{f,g)=1 coincidence point, then there must
be sometel such that If(s) —f£ ()] = 1/3 and
g} — g, &)l = 1/3.

This example suggests a concept of the
geometric minimum (coinciden-ce point)
number of maps f, g : X — X different from the

one, MF[fg], that is the focus of Nielsen
coincidence point theory, namely,

MF[f,g]=min{#coin(f,g) : f1.g91 homotopic
to f, g respectively },......c..c...... 1)

where #coin(f, g) denotes the cardinality of the
coincidence point set.The distance d( f, g)
between maps f, g : Z =X, where Z is

compact and X is a metric space with distance
function d, is defined by
d(f.g) = max [d(f(2). g(z)): zeZ}. ......... (@)
Given £ > 0, a homotopy {4.}:Z = X is an
€ —homotopy if d(h,, k) < eforall t,t's1,
For
a given € > 0, we define the € - minimum
(coincidence point )number MF=(f, g) of maps
frg+ X = X of a compact metric space by
MFE(f. g) = min (% (coin (fy. g,)):
f1.g1is € — homotopic to f.g respectively ).
.............................. (3)
Note that the concept of e—homotopic

maps does not give an equivalence relation
The notation MF[f,g] for the minimum
number incorporates the symbol [f, g],
generally used to denote the homotopy class of
f and g, because MF[ f, g ] is a homotopy
invariant. We do note use the corresponding
notation for the € -minimum number because it

is not invariant on the homotopy class of f and
g. For instance, although constants maps K;

and K; of I are homotopic to maps f and g of
the example,for which MF=(f,g) =3 for any
e =1/3 obviously MFs(Ky,K,) = 1 for any
choice of e.



Let f,g:X—=X be maps of acompact
manifold.Just as the Nielsen coincidence
N(f.g) has property N(f.g) = MF[f,g], in
the next section we will introduce the
€ — Nielsen coincidence number N=(f,gJ, for
e sufficiently small,that has the property
NE(f,g) = MF=(f,g). My main result proven
in section 3, is a " minimum coincidence
theorem " : give f,g : X = X, there exists f;
and g, with d(f,fi) = ¢ and d(g.g,) <& such
that fi and g; have exactly N=(f g)
coincidence points.

The e — Nielsen coincidence number

Let X be a compact, connected
differentiable  manifold, possibly  with
boundary. We introducea Riemannian metric
on X and denote the associated distance
function by d. If the boundary of X is
nonempty, we choose a product metric on a
tubular neighborhood of the boundary and
then use a partition of unity to extend to a
metric for X. There is an € = 0 small enough

so that,if p,g € X with d( p,q) <&, then there is
a unique geodesic c,; connected them. This
choice of e is possible even through the

manifold may have a nonempty boundary
because the metric is a product on a
neighborhood of the boundary for the rest of
this paper, € >0 will always be small enough

so that points within a distance of & are
connected by a unique geodesic. We view the
geodesic between p and g as a path c,(t) in X

such that c,,(0) =p and cyu(1)=gq. The
function that takes the pair (p, q) t0 cuq IS
continuous. If xecygthend (px) =d (p, q)
because ¢, is the shortest path from p to g

(see[ 7, corollary 10.8 on page 62 ] ).
If fofugi:Z—=X are maps with

dlf.fi) <e and dig gi) < e, then setting
@) =@ and  h(2) = ¢y, (E)
defines ane —homotopy between f and fi, g
and gy respectively. Thus an equivalent
definition of the € —minimum coinci-dence
number of f,g: X = X is
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MFE(f.g) = min {$ {fﬂiﬂ {fpgﬂ}:

dif.fil <ecand dig.gi) < €vevvveneeenn, 4)
For maps

fog:X = X let
25(f.9) = {x eX: d(f(x), g(x)) <
€}

................................. (5)

Theorem (1) :

The set A®(f.g) is open in X.
Proof:

Let R¥denote the subspace of E of
non— negative real numbers.Define

Df g:X = Bby Dp () =d(f(x).g(x)). Since
[0,6) is open in R*, it follows that
4%(f, ) = p7:(l0.e)) is an open subset of X.
For maps f.g: X — X ,define an equivalence

relation on Coin( f, g ) as follows :
x,ve Coin (f,g) are € - equivalent, if there is a

path w:I—=X from x to ¥ such that
dif ow,gow) <e.

The equivalence classes will be called the
e-coincidence point classes or, more briefly,
the e-cpc of f and g.

Theorem (2):

Coincidence points x ,y of fg:X—=X
are e—equivalent if and only if there is a
component of A®(f,g) that contains both of
them.

Proof :
Suppose x,ve Coinlf,g) are

€ — equivalence and let w be a path in X from
x to y such that d(f ew,ge=w) < e. Thus for
each seI we have d{fiw(s).giw(s))) < ¢,
so wil) = A=(f, g). Since w{I) is connected it
is contained in some component of A=(f, g).
Conversely, suppose x ,v € Coin(f, g) are
in the same component of A=(f,g).The
components of A®(f,g) are pathwise
connected so there is a path w in it from x to .
Since w is in ASf(f.g) that means
difew,gew) <e and thus x and ¥ are
€ —equivalent. o

Theorems (1) and (2) imply that the e~ cpc
are open in Coin ( f, g ), so there are finitely
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many of them F®, EF,... , F£ . We denote the
component of A=(f,g) that contains Ef by
AS(f.g). An e—cpc, Fi = Coin(f.g) N &5 (f. ) is
essential if the coincidence point index
i ((f.g)85(F.gh) = 0. The e—Nielsen
coincidence number of f and g, denoted by
NE(f,g) , the number of essential € — cpc.

Theorem (3) :

If the coincidence points x andy of
f.g: X — X are e — equivalent, then x and ¥ are
in the same ( Nielsen ) coincidence point class.
Therefore each coincidence point class is a
union of e —cpc and N¢(f,g) = N(f. g).

Proof :

If x and y are € — equivalent by means of a
path - w  between them such that
d(f ew, g ew) < € then h.(s) = crruian grwian (E)
defines a homotopy, relative to the endpoints,
between few and gew so x and y are in the
same coincidence point class. Therefore a
coincidence point class F of f and g is the
union of € —cpc.If F is essential, the additively
property of coincidence point index implies
that at least one of the € — cpc it contains must

be an essential € — cpc, thus Ne(f,g) =

N{f,g). o
The ¢ —Nielsen coincidence number
is a local Nielsen coincidence number

in the sense of [4], [1], spe-cifically
NE(f. g) = n((f.g). A%(F. g)).

However, in the local Nielsen coinci-dence
theory, the domain U of the local Nielsen
n((f,g).U) is the same for all the maps

considered whereas A%(f,g) depends on f and
g.
Theorem (4):

Letf, g: X=X be maps then
Ne(f.g) = MF<(f,g).

Proof :
Given maps fi, g1 : X = X with d(f,fi) < ¢

and dlg, g1) <€, let {hJ,{h;}:X =X be the
€ -homotopy with ho=f and
hy=fi, hhy=g and hi=g,; defined by
he() = ruopw® and Al = cyug,m (@)
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respectively.Theorem (1) implies that
d(f(x),g(x)) = e for all x in the Boundary

of ,A%(f,g). Thus for x in the boundary of,
A (f.g) and tel we have
d(f(x), he(x)) + d (. (x), R} (x)) +
d(hy(x),g(x)) = d(flx).g(x)) = €............ (6)
Since {h.} and {r;} are an e-homotopy,
d(h (), F)) = dlh, () hg(x)) < € and
d(np(x), g(x)) = dhi(x), hy(x)) <€ S0
d(h.(x),h.(x)) = 0, that is k. and k. have no
coincidence points on the boundary of
A5 (f.9) -
Therefore, the homotopy property of
coincidence point index implies that
i((F. 9).85C. @) )= iC(f1. 90085 CF. @) covcen @)

Consequently, if £ = Coinl(f,g) naf(f. g)
is an essential €—CpC, then
1((f1,91.45(f,9)) #0 so f; and g, have a
coincidence point in A (f, g).We conclude that

fi and gy have at least N=(f,g) coincidence
points. o

The minimum coincidence theorem :

The main result in this section is to prove
the minimum coincidence theorem, but before
that we need the following theorem.

Lemma (5) :

Let F be a closed subset of a compact
manifold X and let U be an open, connected
subset of X that contains F, then there is an
open, connected subset VV of X containing F
such that the closure of V is contained in U.

Proof :

Since F and X — U are disjoint compact
sets, there is an open set W containing F such
that the closure of W is contained in U.There
are finitely many components Wi, ... ,I. of W
that contain points of the compact set F. Let
a; be a path in U from xe Win F to

x,eW> N F and let 4; be an open subset of U
containing a; such that the closure of 4; is in

U.
Since a; is connected,we may assume 4; is

also connected. Continuing in this manner, we
let



V=W;UA;UW,UA,U.. UW,.UA, . ..(8)
Which is connected. The closures of each of
the W; and 4; are in U so the closure of V is
alsoinU. o

Let Fi = coin(f.g) N A3(f, g)be an € — cpC.
By lemma 5, there is an open, connected
subset 1;of 4f(f.g) containing F° whose
closure cl(V;) is in afi(f.g}. For the map
D; ;:X — B* defined by D, (x) = d(f(x), g(x)),
we see that Dy, (ci {Ie;}:] =[0,8;] where
d; < €. Choose a; =0 small enough so that
&;+ 2a; < €,

Theorem(6) (Minimum Coincidence
Theorem):

Given fg:X—=X, there exists
fi.g.: X=X with dif.fi) < € and
dig.g,) < e such that f; and g, have exactly
Ne(f,g) coincidence points.

Proof:
We will define fand g;outside A=(f,g) to

be a simplicial approximation of f and g
respectively such that dif.f) =<« and
dlg.g.) = «,where a denotes the minimum of

the a; . The proof then consists of describing
fi and gion each Af(f.g} so¢to simplify
notation, we will assume for now that A={f, g)

is connected and thus we are able to suppress
the subscript j. Triangulate X and take a
subdivision of such small mesh that if u and v
are a simplicial approximation to f and g
respectively with respect to that triangulation,
then diu, f) < a/2 and d(v. g7 < a/2 and, for o a

simplex that intersect X —int(V), we have
ulg)ne =¢ and vio) No = ¢. By the Hopf
construction, we may modify u and v, moving
no point more than /2, so that it has finitely
many coincidence points, each of which lies in
a maximal simplex in V and therefore in the
interior of X (see [ 2,Theorem 2 on page 118]),
[9]. We will still call the modified maps u and
Vv, SO we now have maps u and v with finitely
many coincidence points and it has the pro-
perty that d(u. f)<« and d{v.g) = «. Refine the
triangulation of X so that the coincidence
points of u and v are vertices.Since V is a
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connected n—-manifold, we may connect the
coincidence points of u and v by paths in V, let
P be the union of all these paths. With respect
to a sufficiently fine subdivision of the
triangulation of X, the star neighbor-hood S(P)
of P, which is a finite, connected polyhedron,
has the property that the derived neighborhood
of S(p) lies in V. Let T be a spanning tree for
the finite connected graph that is the
1-skeleton of S(P), then T contains coin(u,v).
Let R(T) be a regular neighborhood of T in
V nint(X) then, since T is collapsible, R(T) is
the n — ball by [8, Corollary 3.27 on page 41].

Thus we have a subset W = int(R(T)) of V
containing coin (u,v) and a homeomorphism
g : W— R".We may assume that ¢ (coin(u,v))
lies in the interior of the unit ball inE™ ,which
we denote By. Set @'L{BJ = B;. If xe By, then
d(u(x),v(x)) = d(ulx),f(x) +
d(f(x),g(x)) + d(g(x),v(x))
<S+ta+d<Zéd+ta<e (9

So there is a unique geodesiC Cuixju()

connected u(x) to v(x). Consider the map
H:Bf x I — X defined by Hix, £} = €y 50 (£),
then H-*(w) is an open subset of By x1I
containing B; x {0}. Therefore there exists
ty = 0 such that H(B; x [0, t,]) © W,

Denote the origin in E® by 0 and let

0 = fp_l{U}. Define a retraction
p: B —0* — 3B], the boundary of
By, by
-1
plx) = (mtp(x}} ....................... (10)

Define K: By x [0,t,] = W by
setting K(0%,t) = 0* for all t and, otherwise let

k(x,t) =@ (@(Ol(H(p),0)). oo (11)

The function K is continuous because
@(H(8B; = 1)) is a bounded subset of B™. Now
define Dg:By % [0,tg] = BRY by Dglxt) =
d(x,K(x,£)). Since Dz([0,7)) is an open
subset of By x [0,%,] containing By x {0}, there
exists0 = & = t; = i such that
dlx K(x.t,))<e and d(x,&(xt,))<a. Define
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hyhy:By =X by mx)= K(xt) and < (d(u(x},g(x}} + d{g(x},v(x}:}:]
ho(x) = K(x,t;) respectively. +d(v(x),g(x))

Next we extend hy and hzto the set 57 s i2a<e (13)
consisting of xel’ such that 0 = |@(x)| = 2 by
letting Now suppose x € Bj. If
hi(—x} = cu(x},v(x}((l_ fi}lt}J(X}l + : ((ﬁ g }J ﬁj(f!g }) = ﬂ’ then
2¢, — 1) £ =h(x) = K(x.t,) and gy (x) =
haz(x) = Cyiy) i ((1— t2)|@(x)| + , hy(x) = K(x, ) s0
26,-1) 1z AAEF) = dEGot)fG)

’ = d(K(x,ty), u(x)) +d(ulx),f(x)

where  1=|p(x)|=2.  Noting that <a+é<e
h(x) =u(x) and h;(x) =v(x) if @ (x) =2, d{gi{xlg(x}} =d(K(x,t;),g(x))
we extend Ry and hy to all X by setting iy =u = d(K(et,),v(x)) + d(v(x), g(x))
and h, = v outside B:. TG TE (14)

The maps hy and h; have a single
coincidence point at 0%, If If i ((}ﬂ 9), A5 (f, 9‘3‘) =0 then
i((£,9),85(F.9)) =0, we let d{fE{xlf{-ﬂ} -=_; d(f1(x), hy(x))

+d(hy(x), flx)

A=h.g=hy XX L a o 0) + a(K et £2)
i ((£,9).85(£.9)) =0, by [ 2, Theorem 4 on cat@td)=e.
pagel23], there is maps fi.gi:X =X, d(g.(x), g(x)) = d(g.(x),hs(x))
identical to u and v respectively outside of B;, +d(hy(x), g(x))
such that ; and g, have no coincidence point = d(g,(x). hy (x)) + d(K(x. t,). g(x))
in By and d(fi,u) <a and d(g,,vi<aWe CSAFH(EFHE) T E i, (15)

claim thatd(f,fi)< € and dig,g.) <e. For
x€B;, we defined filx)= wux) and
g, (x) =v(x) where dlu, fl<a<e and
d(v, gl<a<e.

If xeB; — By, then fi(x) = hy(x)e

Culadwix)

and 31(x} = hy (%) eCux) opm

50 d(hy (x),ux)) = d(v(x),ulx))

and d{hg(x}, v(x}} = d{u(xl ‘E:’(x}}.

Therefore,

d(f1(x),f(x)) = d(hy (2).f (x))

= d{hifx},u(x}} + d{u(x}, f(x}}

= d(v(x),ulx)) +d(ulx), f(x))

s (d{v(xlf (x0)+d(fx), u(x}})

+d(ulx), flx))

<d+2a < e

d{ﬂi(ﬂ:ﬂfx}} = d{hz(x}:ﬂ‘:x}}

= d(hy(x),v(x)) + d(vix),g(x))

= d(u{x}l v(x}} +d{vix), g(x))

Which  completes the proof that
d(f.fi) <eand dig, gi) <e.
We return now to the general case, in which
A%(f,2) may be not connected.Applying the

construction above to each AS(f,g) gives us
maps fi, gi:X =X with exactly N=(f,g)
coincidence points. For x & As(fg) we
defined ffjand  gyto be a  simplicial
approximation with d{(f,fi) <x<e and
d(g, g1) << e.For xeds(f,g), the argument
just concluded proves that

d(g.91) =20 +8; <E, i (16)

because & is the minimum of the «;, so we
know that d(f,f) < e and d(g, g1) < €. O

Theorem 6 throws some light on the failure
of the Wecken property for surfaces [3]. For
instance,consider the celebrated example of



Jiang [6], of maps f and g of the paths surface
with N(F, g) = 0 but MF[f,g]l =2.The
coincidence point set of f and g consists of
three points, one of them of index zero. The
other two coincidence points, vy and y- are of

index +1 and -1 respectively and Jiang
described a path, call it o from ¥y to v2 such

that g = o is homotopic to f = o relative to the
endpoints. Suppose € > 0 is small enough so

that points in the pants surface that are within
e of each other are connected by a unique

geodesic. If there were a path = from y; to ¥
such that g =t and f =1 were € - homotopic,
then N=(f,g) = 0 and therefore, by theorem 6,

there would be a coincidence point free maps
homotopic to f and g. Since Jiang proved that
no maps homotopic to f and g can be
coincidence point free, we conclude that no
such path = exists. In other words,for any

paths T from 4 to v, that is homotopicto get
and f =t relative to the endpoints, it must be
that d(g e1, fe1) = €.
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