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Abstract 

In this paper, the problem of solving one-dimensional parabolic moving boundary value 
problem  (heat equation) which involves a singularity in its initial and boundary conditions is solved 
using the varitional approach which is by using the direct Ritz method. 
 
Introduction  

The term moving-boundary problems 
(M.B.P) are commonly used when the 
boundary is associated with time dependent 
problems, and the boundary is unknown in 
advance and has to be determined as a part of 
the problem which is a function of time and 
space. A moving-boundary problem will be 
taken with time-dependent problems governed 
by a parabolic partial differential equation with 
a prescribed initial condition and boundary 
condition. Examples of such type of problems, 
are shock waves in gas dynamics, cracks           
in solid mechanics, melting of the polar ice 
cap, ... , etc, [4]. 

The term "Stefan problem" is generally 
used for heat transfer problems with phase-
changes such as from the liquid to the solid. 
Stefan problems have some characteristics that 
are typical of them, but certain problems 
arising in fields such as mathematical physics 
and engineering also exhibit characteristics 
similar to them. The term "classical" 
distinguishes the formulation of these 
problems from their weak formulation, in 
which the solution need not possess classical 
derivatives. Under suitable assumptions, a 
weak solution could be as good as a classical 
solution. In hyperbolic Stefan problems, the 
characteristic features of Stefan problems are 
present but unlike in Stefan problems, 
discontinuous solutions are allowed because of 
the hyperbolic nature of the heat equation. The 
numerical solutions of inverse Stefan 
problems, and the analysis of direct Stefan 
problems are so integrated that it is difficult to 
discuss one without referring to the other. So 
no strict line of demarcation can be identified 
between the classical Stefan problem and other 

similar problems. On the other hand, including 
every related problem in the domain of 
classical Stefan problem would require several 
volumes for their description. A suitable 
compromise has to be made. The basic 
concepts, modeling, and analysis of the 
classical Stefan problems have been 
extensively investigated and there seems to be 
a need to report the results at one place.[10] 

A moving boundary value problem is 
linear initial-boundary value problem with a 
moving boundary whose position has to be 
determined as part of the solution. Parabolic 
moving boundary problems describe many 
phenomenas of interest that arising in physical 
and biological sciences, engineering, 
metallurgy, soil mechanics, decision and 
control theory, etc. (see [4]). 

Consider the following class of moving 
boundary value problems of the parabolic type 
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Where f and r are given functions which are 
constant of their arguments, p and q are given 
constants and s(t) is the unknown moving 
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As a consequence obtaining analytical 
solutions for problems belonging to the class 
(1) is a difficult task (see [4]). 

Several numerical methods have been 
proposed for the solution of moving boundary 
problems. Let us list here those of more 
frequent use: finite deference method, finite 
element method, isotherm migration, method 
of lines, enthalpy, method (alternating phase) 
and variational inequalities method. For the 
fundamental aspects of those methods, as well 
as for an extended bibliography, We refer the 
interested reader to [4].  

As far as the performance of different 
methods is concerned the introductory remark 
in a survey paper by Fox [5] is pertinent: 
``Problems of the same general nature can 
differ enough in detail to make a good method 
for one problem less satisfactory and even 
mediocre for another almost similar problem''. 
This point of view justifies the development of 
so many deferent numerical methods. At a 
more general level the numerical approaches 
for the solution of moving boundary problems 
belong to three main classes, namely front-
tracking, fixing-domain and fixed-domain. In a 
front-tracking approach the position of the 
moving boundary is computed explicitly by 
the numerical algorithm. The method of lines 
is an example of the front-tracking strategy. 
On the other hand in a fixed-domain or in a 
fixing-domain approach the moving boundary 
can be recovered a posteriori from the solution 
properties. 

For a fixing-domain approach a variable 
transformation is used in order to reduce the 
problem to a computational domain. The 
isotherm migration method belongs to the 
fixing-domain class. A weak formulation of 
the problem is usually used for the fixed-
domain approach. The enthalpy method is 
within the fixed-domain class. Our approach 
belongs to the front-tracking class.  

The moving boundary conditions in (1) 
are called explicit when p ≠0 or q ≠0 (implicit 
otherwise). In the case of explicit moving 
boundary conditions it is possible to apply a 
finite difference formula to find a first 
approximation of the moving boundary 
position at the next time step. Of course that is 
not possible when implicit moving boundary 
conditions are prescribed. Moreover, existence 

and uniqueness of solution is easier to prove 
for problems with explicit boundary conditions 
than for problems with implicit ones (see 
[11]). Problems with implicit moving 
boundary conditions arise in diffusion of 
oxygen and lactic acid in tissues [6], in the 
theory of diffusion flames [2], and in statistical 
decision theory [3]. 

The governing differential equation and 
the moving boundary conditions are also 
nonlinear and may depend on the free 
boundary and its derivative. In this paper we 
will transform our problem which is especial 
case o eq.(1) to the varitional formulation then 
with  the cooperation of the direct Ritz method 
we shall get the desired approximate solution .   
 
Mathematical Formulation of the Classical 
Stefan problem  

Among the class of free boundary value 
problems for partial differential equations,the 
one-dimensional parabolic problems have been 
examined in some detail. Perhaps the best 
understood problem of this kind is the 
formulation for the melting of a slab of ice in 
the contact with a viscous fluid. If one 
assumes that the ice is held at 0°C throughout, 
and that the heat transfer in the fluid occurs by 
conduction only, then the temperature 
distribution is described by the usual heat 
equation  

0cuu txx =−  .......................................... (2) 
subject to the initial and boundary conditions  

)t,0()t,0(u α=    , 0)t),t(s(u =   , 

dt
ds)t),t(s(ux λ−=    , s (0)=0 .................... (3) 

Here u denotes the temperature in the fluid 
between a wall at x and 0 held at temperature 
α(t) and the unknown and moving boundary 
s(t) between the fluid and ice. The flux 

condition 
dt
ds)t),t(s(ux λ−= .is obtained from an 

energy balance and indicates that the heat 
flowing toward the ice is used to melt it rather 
than raise its temperature. The condition      
s(0) = 0 means that initially no fluid is present. 
The constants c and λ are determined from the 
conductivity, heat capacity, and latent heat of 
water. The original formulation of this paper 
considered by Sackett has a singularity in the 
boundary data at the initial time. To overcome 
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this difficulty Sackett used a sophisticated 
similarity transformation whereas Meyer 
applied a simple subtracting of the singularity 
from the boundary data. In my problem the 
governing differential equation is singular at 
the initial time and the moving boundary 
conditions are implicit [12]. 

The following formulation is a special 
case of problem (1) which will be considered 
in this paper: 
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Where ∈ is a very small number which is 
chosen in order to avoid the singularity 
occurred in this problem    

 
Variational Formulation of the Heat 
Diffusion Problem 

The variational formulation corresponding 
to diffusion type problem will be found, the 
formulation is considered for homogenous and 
non- homogenous initial conditions. 

 
1-Heat Diffusion Problem with Homogeneous 

Initial Conditions: 
In this case, the initial condition equals to 

zero, therefore we take the bilinear form (u, v) 
to be the of the following type[13]: 
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R
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Now, we turn to the problem of evaluating 

the variational formulation corresponding to 
the heat diffusion problem with homogeneous 
initial condition. 

Using the definition, we have the 
following general form of variational 
formulation: 

J(u) = 
2
1 <Lu, u> − <f, u> 

Since L is symmetric and by definition           
<u, v> = (u, Lv), we have: 

J(u) = 
2
1 (Lu, Lu) − (f, Lu) , where f is 

equal zero in this problem  
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Now, by using the divergence theorem, we 
have: 
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Now, taking k(t, s) ≡ 1 and taking the 
derivation and integration with respect to s, eq. 
(12) will be of the following form: 
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And using the homogenous initial condition, 
we get: 
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This represents the variational formulation 
for the diffusion problem with homogenous 
initial condition. 
 
2-Heat Diffusion Problem with Non-

Homogenous Initial Conditions: 
In this case we consider the bilinear form 

(u, v) of the form: 
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With non- homogenous initial conditions. 
One can notice that adding v(x, 0) is a 

necessary condition in order to satisfy, the 
initial condition equals zero and for its utility 
in proving the non- degeneracy of the bilinear 
form (u, v) and the symmetry of the operator 
L. Now, we turn to the problem of evaluating 
the variational formulation corresponding to 
the heat diffusion problem with non 
homogeneous initial condition. Using the 

definition J(u)=
2
1 <Lu, u> − <f, u>, we have 

the following general form of variational 
formulation: 

J(u) = 
2
1 <Lu, u> − <f, u> 

And by definition <u, v> = (u, Lv), we have: 
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Similarly as in homogenous case and by 
using the divergence theorem, we obtain that: 
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taking k(t, s) ≡ 1 and differentiating and 
integrating with respect to s, eq.(15), takes the 
form: 
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The final version of eq. (16), takes the 
form: 
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Numerical Solutions of the Poblem   
Now the direct variational approach, (to 

namely direct Ritz method) will be used to 
find the critical points, corresponding to the 
functional (13,17), derived above which 
represent the solution of the original problem . 
This will be made with  cooperation of 
computer programs,  

As a numerical application, consider the 
Heat diffusion problems. governed by  
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Where ∈ a very small number is tends to 0 in 
order to a void the singularity.   
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From the chemical and physical 
interpretation of the problem, and for 
numerical solution of the above problem 
propose the moving boundary s(t) of this 
problem requires the following conditions to 
be satisfied :- 
1- When t increases, s(t) increases. 
2- When t increases, s(t) decreases. 
3- When t = 0, s(t) = s0, where s0 is the initial 

moving boundary where s(0)=∈ . 
The following definition of s(t) could be 

taken, which satisfies the above three 
conditions, 

s(t) = bt+∈  
Now, instead of solving the problem 

analytically, we can find the critical points of 
the functional: 
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for the homogeneous condition, and the 
functional:  
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for the  Non-homogeneous condition. 
In order to use the direct Ritz methods, we 

approximate the solution φ (x, t) as the 
follows: 

φ(x, t)=ψ(x, t) + W(x,t). 
Where ψ(r,t) is any function which satisfies 
the non-homogeneous boundary conditions, 
and W(x,t) any function which satisfies the 
homogeneous boundary conditions. 

One of the choices for W(x, t) which fits 
our needs is the following function:  

W(x, t) = (x - s)2 t (a1+a2x+a3t ) 
Where a1, a2, a3,b are constant  

In addition, for the non-homogenous 
boundary condition, and by using 
mathematical inspection and induction, we can 
take ψ(x, t) to be as 

1
s

)xsx(s)t,x( 2

2

+
−−

=ψ
&  

Where   
dt
dss =&  

Which satisfies the non- homogenous 
boundary conditions. 

The numerical result obtained upon 
carrying the computer program written in 
MathCAD software we are given by: 

a1=0.143, a2 = -1.1, a3=0.775 and b=0.3 
With functional minimum equals to zero. 
Hence the approximate solution is given by: 
 

φ(x,t)=                                                                  
 
 

      + (x-s)2 t (0.143-1.1x + 0.775t ) 
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  الخلاصة 

، تمت دراسة حلول معادلة الحـرارة   حثفي هذا الب
وهي معادلة تفاضلية جزئيه حدودية ذات سـطح متحـرك   
والتي تضمنت نقطة انفراديـة فـي الشـروط الحدوديـة     

وذلك بتطبيق الاساليب المباشرة . باستخدام الطرق التغايرية
 .للحلول العددية

 
 
 
 
 
 
 
 
 
 


